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Expected Markovianity
Theorem 1 Let:
— A be a x—algebra,

— Ar, Agr, Ap sub——algebras of A, such that

Agr CArNAp (1)
et

Ex:A— Ay ; X =11,0I (2)

be Umegaki conditional expectations onto the re-
spective ranges, satisfying the projectivity condi-
tion

EgrEr = EgrEp = Egyj (3)

If Eg7 is faithful, then the following four identities
are equivalent (Ex |4, denotes restriction of Ex
on Ay ):



Er(Ap) C Agg (5)

Egr(arap) = Egr(ar) - Egr(ap) ; Ya; € A; ap € Ap
(6)

Epla,= Eor |4, (7)

Ep(Ar) C Apy (8)

Intuitive interpretation :
— A; the past, or interior algebra
the present or boundary algebra

— Ay the future or exterior algebra



If Eg7 is not faithful, then
(4)— (5) — (6) «— (8) — (7).

and, if (6) holds, then for each ay € Ay and a’ € Ap

Ey;(1Eor(ap) — Er(ap)[?) =0 (9)

Ey;(1Bar(ar) — Ep(ap)|?) =0 (10)



Factorizability implies Markovianity
Definition Let be given

— a x—algebra A

— a measurable space (X, 0)

— for any I € O a sub—x—algebra A; of A, such that

ICJ=A; C Ay

— for any I € O a surjective Umegaki conditional
expectation

Er: A— Aj (11)

The family (E;) (I € O) is called factorizable if for
any I,J e O

EiE; = Eing (12)

if (12) holds only when I C J, i.e. if one only
requires that

1 CJ= E]EJ = Iy
then the family (E7) is called projective.

Notice that in both cases E; and E; commute.



Factorizability implies projectivity (particular case).
Factorizability implies Markovianity

Example, if:

— X is a topological space

O is its Borel o—algebra
Z:={ICX:I=1 (closure)and (I°)” = (I")°(interior,
I' == (I°)¢
Then
INI'=INn{% =1 \I°=0I
The Markov property follows because:
E](CLI/) — E]EI/(CLI/) — E]ﬂfl(a’fl) — Eaj(a]/)

Many other examples are possible depending on
how, given I, one defines I'.



Markov systems as local perturbations of prod-
uct systems

Factorizable families of surjective Umegaki condi-
tional expectations arise naturally in the theory of
product systems.

In the discrete case they are the conditional expec-
tations naturally associated to product measures.

Basic idea:

Start from such a family (E?) and perturb it by a
localized multiplicative family (LMF).

Simplest example:
I — My € ‘AT
MMy = My,

EP(|M[|?) = EP(M{Mp) = 1



(e.g. My is an isometry). Then Vo € S(A) (EP)-
compatible (i.e. ¢ o EY = ¢ for any Ip)

H b S -

IIIP:]S, SOIO <M]a’IOMI)> —- wfg <a’IO)
exists and defines a projective family of states.



Problems with expected Markovianity
— commutative case: none

— extreme non—commutative case (all local alge-
bras are factors): triviality

Definition 1 A quasi—conditional expectation with
respect to the triple

Ao C A C Ay

iIs a completely positive identity preserving map
Ejr:Ay— Ag

such that

EJ,](ba,) _— bEJ,](a,) , Vb e AIO , Ya € Ay (13)

Lemma 1 Let Bo C BC A be C*—algebras and let
FEF : A — B a quasi—conditional expectation with
respect to the triple

BoCBCA
then
E(BpnA) CByNB



1—dimensional case: notations

H,, separable Hilbert space n € N

By ;= B(Hy)

For n € N let

Jn : Bn — jn(Bn) =: An C A = nNB

be the natural embedding onto the n-th factor:

o bEB,—1801®.. . ®1®0b €A  (14)

2
m#£=En n

jo(ao)j1(ar)-. . .jnlan) = ao®a1®. . . Qan®1R...Qan®1R. ..

(15)
For I C N denote:

A the C*-subalgebra of A generated by jn,(M) :n €1

we shall write simply

An = Afny 0 A = Accom] 7 A = A too)



The shift on A is defined, if A{n} = B Vn, to be the
unigue endomorphism u° of A into itself satisfying

u® o jn = ]n_l_]_ Vn € N (16)
or equivalently

u®(Jo(ao)j1(ar)-....jnlan)) = j1(ao)jo(ai)-....jp+1(an)

It follows that, for each natural integer n and each
subset I of N :

u’(Ar) = Argn (17)

i.e., the family of local algebras (Aj) is covariant
with respect to the shift. A state ¢ which is invari-
ant for the shift i.e.

pou’ = (18)

will be called translation invariant or stationary



Definition 2 A quasi—conditional expectation with
respect to the triple

Ajon—1] & Ajon] € Afo,n+1]
is called Markovian if

En—l—l,n(A[n) C Ay (19)

Definition 3 A state ¢ on A is called a Markov
state with respect to the localization Ay, if for
each n € N there exists a quasi-conditional expec-
tation En_|_1,n with respect to the triple

A[O,n—l] C A[O,n] C A[O,n—l—l] such that

polipp1n=1¢ (20)

In this case we shall say that the quasi-conditional
expectation Ey 1, IS compatible with the state ¢.

In the following we shall simply say that ¢ is a
Markov state on A without explicitly mentioning
the localization {Ag ,1}-



The structure of QMS

Let ¢ be a Markov state on A and let (E,41,) be
an associated family of quasi-conditional expecta-
tions. Define, for each n € N,

En = ]f;kz © En—l—l,n o (Jn ® jn—l—l) : Bn & Bn—l—l — Bn

Because of the Markov property, &, is a transition
expectation on M.

T he invariance condition

polmi1n=2¢
implies that

p(afon—11in(an)int1(an41)) = (21)
— @(a[o,n_l]En—|—1,n(jn(an)jn—|—1(an—l—l))) —
= (afo,n—1)dn © Enlan ® apy1))) =

= ¢(ajo,n—119n © En((an ® Epp1(ant1 ©1))))
Iterating one finds

©(jolao) - .. jn—1(an—1)inlan)) = (22)



= po(Eo(a0® ... ® En_1(an_1 ® Enlan ® 1)))))
Thus ¢ is completely determined by the pair

{900; (gn)}

Conversely:

Proposition 1 For any pair {po.(En)} such that o,
is a state on M and each &, is a transition expec-
tation Bp ® B,,4-1 — Bn, the right hand side of (21)
determines a unique state ¢ on A. Such state is
called a backward, one sided Markov chain.



Obstructions for a QMC to be a QMS

They come from the invariance condition

polmi1n=2¢
Recall that

Sp(a’[o,n—]_].]n(a’n)]n—l-l (an—l—l)) —

= p(a[op—1)dn ° En((an @ Epy1(an41 ®1))))
But the left hand side of (2) is also equal to

e(aon—11En+1,n(Unlan) Enyo nt10Unt+1(ant1)))))
(23)

We write simply that for each a,b e B

En(a®b) = En((a®E;,41(b®1))) ,  mod{o, (£)}
(24)



Structure of locally faithful QMS

Theorem 2 Suppose that there exists a Markovian

CP1 map
En] A — An] (25)
such that
T hen there exist:
(i) an algebra
AP C Ay

(i) a Umegaki conditional expectation
Eg] A — Aﬁ] = A1) VAP C A, (27)

with the following properties:

plan_11a[,) = @(an_uEﬁ](a[n)) (28)

n]



ER(AR) CARC An (29)

Proof. Then because of (25), for each k € N

and therefore also:

1 k
So(a’n—l]a’[n) — ¥ (a’nl]k Z Efr}:](a’[n)> (30)
h=1

Going to the GNS representation, where the er-
godic theorem holds we deduce that the weak |limit

exists and is a Umegaki conditional expectation

onto the fixed points of En]:
D . p :
En] A — An] C Fix E)

and, from (30) we deduce that (28) holds.

(28) also implies that
A1) C A, CA

n]



therefore, defining the algebra AP by:

Aﬁ] =A,_11V AP
and from this (27) follows.

From our assumptions it follows that

A, € (Ay)

Remark. In tensor product algebras one has

n



Cecchini’s theorem (for matrix algebras)

Theorem 3 In the notations of Theorem (2), sup-
pose that for each n, AY is a factor and denote

Al = (APY N Ay (31)

Then if the A,, are matrix algebras, ¢ is a 2—block
factor for the localization

\/ (Al v A D)=\ (A Y Al

Equivalently: for any

f.p f o p p _
go(akak_|_1 ARy Qo a,,flan_I_l) = (32)

\/ An

= @k(a£a£+1)¢k+1(a£+1a£+2) e S0’“(6’4;/“?:&1)

Remark. If the A,, are matrix algebras then

AP AF = Ay

In the general case this property is satisfied under
additional conditions (of split type). There exist



examples of subalgebras with trivial relative com-
mutant (singular subalgebras).

Proof. From the Definition (31) it follows that
A V Ap,41 € Ap, is in the commutant of AP and
therefore, if AL is a factor, then by Lemma (1) it
follows that

ED (AL V Apq1) C (AR) N AR = C1
Hence there exists a state
Py € S(A}V Apg1)
such that for any, one has
Eﬁ](afza’[n—l—l) — wﬁ](afrfza[n—l—l)
But from (28), choosing a,, 1) =1, af, = aﬁafla[n_l_l,
it follows that
p(abalap, 1) = @(aﬁ)wﬁ](wffza[wrﬂ
T herefore
Py = ol ALV Apyq

Iterating this formula we obtain (32).



Markov fields on graphs

Bri=B(HA) i VYACep L
A = C*—ind—lim Bp (C*—inductive limit ) = Q. Ba

jr:be B(x) — jz(b) =b® lipe€e A (33)

natural embedding of B, into A

IN = Qrenlz , NC L

identification

BA = QzepBz = BA @ Lpae = ja(Ba)

the elements of the x—sub—algebra of A .= B; de-
fined by

Bioc =Brioc:= U Ba (set theoretical union)
ACfin 1

will be called local operators (observables if self—

adjoint).



(Forward) Markov fields

A local family of C*—algebras is a quadruple

{Av L, 71, {AF}FEI}

such that

— A and Ag are C*—algebras

— L is a set

— 7 is a directed family of subsets of L closed under
difference,

—the map FeZ— Ap C A is order preserving (C)
— if {Fa} is any family in Z such that U, Fo = F € 7,
then U, AFr, is dense in Ap.

—U{Ap|F €7} is dense in A (usually L ¢ T)

Definition
d:7Z — 71 a map such that

() U{dF|FeT}) =1L,

(ii) dF C F, FeA,



(iii) F C G = dF C dG,

(iv) if {F,} is any family in Z such that F, T L
(i.e. Uy Fo = L) then dF, T L.

For F,G € 7 with F'C G, a linear map Eg F : Ag —
Ap is said to have the d—Markov property if

Eq r(Aa\r) C Ap\gr -

(unification of Nelson’'s topological Markov prop-
erty with Dobrushin’s discrete d—Markov property)

Definition

A state o € S(A) is called a d—Markov chain if there
exist

(i) an increasing sequence {Fy},cN in Z such that

Fp 1 CdFy, CFatL,

(ii) a sequence of d—Markovian quasi—conditional
expectations

EFTL—l—].?Fn : AFn—I—l = AFTL



w.r.t. the triplet Ayp, C Ap, € Ap,,,, i.e. CP1
maps satisfying

LF, 1,Fy <aanaFn_|_1) = aqp,F, 1, Fy <aFn_|_1)

adr, € .Aan : aF, 41 c ‘AFn—I—l
(iii) a state pp, € S(AR,).
such that
90:Iir,anSOFOOEFlaFOO"'OEFnaFn—l (34)

in the x—weak topology, for some sequence {EFnH,Fn}neN
of quasi—conditional expectation as above.

The state ¢ is called a d—Markov state if

polp  F =¥, n €N

for some sequence sequence {Ef, ., F, ineN Of quasi—
conditional expectation as above.

A d—Markov state is also a d—Markov chain.
The converse is not true in general.

For d—Markov states each Eg g can be chosen to
be the p—conditional expectation from Agx into Ag



L = N: two interpretations of the points of L

In one (time) he order structure is important.
In the other one it is not.

I: Time In this case there may be a privileged point
O and an orientation which allows to distinguish be-
tween past and fugure (Fugure 1). This interpre-
tation is frequent in probability

Past Future

n

Figure 1

Jee

—ooe e| oo —oco ..

Fiosure 4a Figure 4b Figure 4c¢



II: Position In this case there is no privileged in-
stant inside L but, if one considers the localization
given by the finite subsets of L (inside) and their
complements (outside, Figure 2), one can consider
the 1—point compactification of L and oo is the
privileged point (Figure 3a).

This interpretation has the advantage of being pos-
sible also in multidimensional lattices (Dobrushin’s
theory).

Outside Qutside

Inside 007

Figure 2

O, O

Figure 3a Fioure 3b

In all figures the curved arrows indicate the direc-
tion of conditioning.

Alternative interpretations are: a gas with one— or
two—sided boundary conditions at oo (Figure 2).
This interpretation is frequent in statistical me-
chanics.



(Backward) QMF

Luigi Accardi, Hiromichi Ohno:
Quantum bio information and Markov fields on graphs,

to appear in: QP — PQ Series,
Proceedings of QBIC-I, Tokyo university of Sci-
ence, 14—19 March, 2007

notations as above, but:

For A Cy¢;, L we denote
d\ =: A

A CC A1 means A C Aq

Definition

A state ¢ on A = By, is called

a generalized quantum Markov state on 5y,
if there exist:

— an increasing sequence Ap | L

(i.e.: eventually absorbing any finite subset)



— for each A,, a quasi-conditional expectation E/\%
with respect to the triplet

Ba-. C Bac C B (35)

— for each A,,, a state

Pne € S(Bac)
such that for any Ag CC Ap one has

©|Bag = PAc © Enc|Ba, (36)

If, in condition (36), one can choose

P = ©|Bac (37)

then ¢ is called a quantum Markov state.
@ IS called a weak Markov state if
for all a € By, o there exists A(a) Cripy L

such that VA(a) C A Gy L One has:

p(a) = ¢(Epc(a))



Remark. for quantum Markov states Eac Can be
replaced by an Umegaki conditional expectation
from By onto a sub—algebra of Bac

( ergodic argument used in [AcFri80] )

Remark. In the case of infinite tensor products
(the only one considered here) one has, for any
subset, I C L:

Bre = B} the commutant of Bj (38)

Recall that, by definition [x.], a quasi—conditional
expectation with respect to the triplet (35) is a
CP1 map Eac : Br, — Bac satisfying

Enc (ap—can,) = an—cEnc(an,) Ay = (An)¢
(39)
Because of (38) this implies that

Eng(Bp,) € (Be)' = Bxeye = By,

Consequently

Enc (Bp,,) © Bae N Bx- = Brcnnn = Bja,



which is the natural quantum generalization of the
multidimensional (discrete) Markov property as orig-
inally formulated by Dobrushin .

The above argument shows that, whenever (38)
holds (e.g. in the case of infinite tensor products)
the Markov property

Enc(Ba,) C Bz,

follows from the basic property (39) of the quasi—
conditional expectations.

This is not true in general when (e.g. in the abelian
case or in the case of CAR algebras).

Luigi Accardi, Francesco Fidaleo, Farruh Mukhame-
dov:

Markov states and chains on the CAR algebra,
IDA—QP (2007), to appear

In all these cases the Markov property should be
included in the definition of the various notions of
Markov states as an additional requirement.



Fact

there are natural classes of states which are weak
Markov states but not Markov states.



Graphs
G = (L£,&) (non-oriented simple) graph, that is,

L is a non-empty at most countable set and

EC {{z,y};z,y € L,z # y}

L vertices

E edges

Two vertices z,y € L are called adjacent,
T~y

or nearest neighbors, if {z,y} € F,

For each x € L the set of nearest neighbors of «
will be denoted

N(x) :={yeL:y~uzx}



degree of x € L

k(z) = |N(@)| = [{y € L, y ~ =z},

where |- | denotes the cardinality.

we always deal with locally finite graphsi.e., sk(x) <
oo for all x € L

A graph can be equivalently assigned by giving the
pair

{L7N}

of its vertices and the binary symmetric relation ~.

path or a trajectory or a walk from x € L toy € L
is a finite sequence of vertices such that

r =1 ~NITp~...~NITp=1Y.
n .= length of the path

d(xz,y) := the shortest length of a walk connecting
x and y.



d(x,z) =0

we always deal with connected graphs, i.e., for any
pair of vertices there exists a walk connecting them.

A Ctin L

means that A is a finite subset of L.

the external boundary of A

ON:={z¢N:TJy~z, y € N}
the closure of A

A= AUJIA

N CC N\
means that
A C N1

Notice that, by definition
ANOA =0

d{z} =: 8z = N(z) \ {z}



Bundles on graphs

r € L — Hy Hilbert space of dimension dy(z) € N
d = dy(x) =dy <+ (independent of )
Given
A Cfin L
define
HA ‘= QzenHa
fix, Ve € L, an o.n. basis of H:

(ej(z)) =e(z) g€ S(x) ={1,...,dy}
mg . S — L bundle whose fibers are the finite sets

rgt(z) == S(x)
the sections of this bundle are the maps:

{wp :x €N — wp(x) € S(x)} =: Qp

A section wp is called a configuration in the volume
AV



For each configuration wa define

Ewp = ®5€€/\6w/\(zc) (x) € HA

Ew, 1s the corresponding rank one projection:

Eup = |ewp)(ewp] = ew/\ez/\

Then the set

{ewn © wp € F(N,S)}

is an o.n. basis of HA\.

Brn:=B(HA) ;  YAChp L

Entangled Markov fields on trees

(1)

(2)

(3)

for trees, the construction of entangled Markov

chains proposed in
L. Accardi, F. Fidaleo:
Entangled Markov chains.

Annali di Matematica Pura e Applicata, (2004)

Preprint Volterra N.556 (2003)
can be generalized.



a tree is a connected graph without loops.

This definition implies that any finite subset A gfm
L enjoys the following fundamental property:

Property (T)

For any N\ gfm L and for arbitrary x & 5/\, there
exists a unique point y € \ such that x ~ y.

(L,E) graph

for each {z,y} € E, let be given a transition ampli-
tude d x d matrix (Yzy(¢,5))

i.e. a complex matrix such that the matrix (|¢zy (4, 5)|?)
IS bi—stochastic, i.e.

Z Yy (3, 5)|% = Z by (i, )2 = 1

1=1
(vzy(3,7)) will be called an amplitude matrix
notice that unitarity of the matrices (vay(x,5)); ; is



not required.
Define the vector

d
Yoy = Z Yy (1,7) - ei(x) ® €j(y) EHs: QHy (4)
i,J=1

Algebraic formulation

Lemma
In the notation

Ep = {{z,y}|z,y € Nz~ y}
for any A Gy L, define the vector ¥p € ‘Ha by

YA =) Pa(wp)ewp (5)
WA

Ua(wa) = ] Yay(wa(z), wa(y)) (6)

{z,y}eEA

If A enjoys Property T then Vx & 5/\,

A ll® = Al



Proof. Property T = Vx & 5/\, dly € A such that
x ~1y. Then
leaurall® = Y AUz (W, wa))[?
WA ,Wx
— Z |¢Au{x}((w/\\{y}aWyawzr:))|2

WA\ fy} Wy

d
= Y Y alwaygyp we))I? - ey (wy, wa)|?

=" [Ya(wa)l? = [lwall?
WA

which is the thesis.

Proposition Suppose that A enjoys Property T
and let

N CC A Cein L

Then for any a € Bys and x € O\ one has:

(N, abA) = (UAULz) APAUL2Y)

Proof. Because of Property T, given x € 5/\, there
exists a unique point y € A such that x ~ y. Then



we have

(PAULz) OAULe}) =

= ) > 2. YAua (WAL WA (AU ) W wy)

WL Wi CANINUfy}) Ty

)t YA} (O O (U} s wy)

= ) > 2 vallwanway (augyyy wy))

WL Wi AN U{y}} ey

a’w/\/w;\,w/\((w;\’? CA\{NU{y}}> Wy)) |¢5’3y (we, Wy) |2

= X 2 vallnswnad) ey Pal(@hn waa)

War Wy CAN

= (Yn,aPp)

The trouble with Property T is that, if A has Prop-
erty T and x &€ 5/\, unfortunately it is not true that
also AUx has Property T. However trees have a very
special property given by the following Lemma.

Lemma In a tree every finite subset A C L enjoys
Property T.



Proof. Let A C L be a finite subset and let = € ON.
If there exist y,z € A such that y ~x , z ~ x, then
since a tree is connected, there is a path between
y and z and this would give a loop. Against the
definition of tree.

Corollary If (L, FE) is a tree, and the vector i
is defined by (5), (6), then, for any A Csq L Of
cardinality > 2, one has:

[¥all? =d (7)
and the limit
1
p(a) = ElAiTnzwA,awM

exists for any a in the local algebra B and defines
a state ¢ on B.

Proof. The first statement follows by induction
because, if A = {x,y}, then we get

[yl = 3 [ay (i, ) = d
t,J

The second statement follows from the first one



Algebraic formulation

The simplification coming from considering trees
rather than general graphs manifests itself in the
fact that the analogue of the basic isometries, used
in the construction of [AcFiO3], in this case com-
mute.

Proposition For A Csiy L, z € A and z € A, define
Vizz) - Hz = Hz ® Ha DY

Vizie) i, = Z Yz (iz,i2)e;, ® e, (8)

and extend it naturally to a map 7—(/\0 — 7—(/\0 for any
Ag containing A. Then Vz,y € AN, z € A with z ~ z,
y ~ 2z, Vi) and V() are isometries satisfying:

Vizlz)¥YA = YAu(a)

Vi) Vizly) = Vi) Vizle)

Proof. We have
<V(z|x)€izvv(z|x)€jz> — 5iz,jz Z <¢xz(73xaiz)€ima¢xz(jxaiz)ej

lx,)x

— 51,27],2 Z |¢5€Z(7’Z7 7’53)|2 — 51,27],2 — <€izf
iy



Therefore any V(. Is an isometry. Next, we get

WA\ {2}tz

= 2 UAlon\ (2} 82)) (O tuz (i i2)ewp ()

WA\{z}:t2

Z Qb/\U{ZC}((c"u/\\{z}a iiCa Zz))ew/\\{z} 024 € ¢
w/\\{z}ail’aiz

= YAU{z}-
Finally, we obtain
Vel Vel - = Vi Qo dyz(iy,iz)ey, @ e;.)
iy
— Z Yz iz, 12)yz(iy, 12)e;, ® ei, & €,

’L:Ij,’l/y
= Vi) QL taz(ia, iz)e;, ® e;,)
iz
Vel Viele) €ix
Proposition Define the transition expectation E(zm ;
B: ® B, — B, by

E(zley (ax @ az) = V() (a2 ® a2) Vi)



and extend it to B in the usual way. Let z, be any
(initial) point in L and denote

1 d d
Yo — E< Z @mo Z ]$0
=1 :
the e(a;o)—maximally entangled state on B;,. De-
fine inductively Lg = {zg} and

Lp = Ly_1

where the product is well-defined because the fac-
tors commute (being implemented by commuting
isometries). Then for any A C L, and any ap € Ba:

w(apn) = poo Ep,o0---0Er, (ap)
and ¢ is a QMF.
Proof. From Proposition ??, we have

oo Epyo---0Ep, (ap)
;L

- E<Z H V(zr:o|zr:)€i:z:07EL1O"'OELn(a’/\) H V(ZUO|ZU

Zmozl xelq xelq



1
E<¢Lla Ep,o0---oEr (ap)dr,)

1
E <¢Ln—|—1 ) a’/\¢Ln+1 >

w(ap)

Now, we prove that ¢ is a QMF. For each A Gy L

and Wan € Qa/\' we define

Ywgp = g/; D(Wn, wgp) - ewp ® ews,

and Vx T Hz

GAA - Hgn — HA bY

Vinalews,) = (K
Then Va/\/‘\ is well defined because ||¢W | &= 0 for
each wz, "(otherwise ¥ (wp,w /\) =0 for each wp,
contradicting (7) with A replaced by A). Moreover,
since the %ﬁ are mutually orthogonal, V=, = is an

ON,N\
isometry. If we put
=3 Iltwy, llews,
“HN
then we have

Van A(¥gn) = > blwa,wzn)ew ® ews = R
wa—»/\,w/\



Since V) is an isometry, we get ||¢67/\||2 = d. De-
noting

. —1
905/\ =d <¢5/\7 Qpa_’/\>

5/\0(0,/\) = 8/\/\ Va/\/\ , Epne 1= 5/\c®idlg/_\c
for each ay € By, we see that

egnBnc(an) = d=* (Vzp, Vi, RAVEAR) = A ¥R, anvp) =

for each ap € Bo. Hence ¢ is a QMF.

Maximally Entangled Markov fields on general
graphs

for maximally entangled amplitude matrices,

the construction of the previous section

can be carried over to general graphs.

Origin of the difficulties: loops (trees have no loops)

ifer~y~z~uwuisapathin L (z,y, z,u mutually #)
then the bi—stochasticity of |zy (i, iy)|? implies that

Z |¢ZU?J(7JZC> iy)¢yz(iy, i2)Wzx(iz,90) |2 —

@:Eﬂyﬂz



(Z |¢5’3?J(7’5’777’?J)|2) Z |¢y2(zyazz)¢zx(2z,7xu)|2 —

ly,lz
(Z [Py (iy, iz)|2) Z [z (22, ZU)|2 — Z Y22 (22, Zu)|2 =1
Ly 1z (%
ift~y~z~uaxisaloopin L, then
Z Wzvy(ixaiy)¢yz(iyaiz)¢zx(iz,ix)|2
1z,yy,lz

IS equal to the trace of a bi—stochastic matrix,
which can be any number in [0,d].

Hence, we need more assumptions. Now, we as-
sume

1 . o
¢xy(7;x, Zy) — ﬁewa:y(zx,zy) (9)

where 0y (iz,iy) € R.

For A Gy, L define
— vp the number of vertices in A
— ep the number of edges in A

QN -— UN\ — EA (10)

IS @ numerical invariant of the graph.



Lemma For A Gy, L let be defined by

Ualwp) i = ] vay(wa(@), wa(y))

{z,y}eEA

YA =) a(wp)ewp
WA

wxy(?zx, Zy) = ﬁezemy(lm,zy)

T hen
[Yall? = d*A

Proof.
For each wp € QA (9) and (6) imply that

|¢/\(¢‘1/\)|2 = H |¢xy(w/\(a:),w/\(y))|2 — (%)6/\ — €A
{z,y}€EA

Since the number of configurations is dA, we ob-
tain

[9All2 = 3 [9a(wp)|? = d™AdYA = dY
WA

Proposition Let A" cCc A Gy L. Then for any



a € Bps and z € 9N

d— N <¢/\, CMﬂ/\> == d_O‘/\U{x} <¢/\U{x}7 a¢AU{x}>

Proof. Denoting
Op\T = dz N A

we find

d™ N AU} ALY =

= Y Y Yy

W /\/,w;\, CYA\(NUOpz} YOpT T
. *
Qb/\U{zr:} ((wpr, WA\ {ANUOpT}> YOpT> iz))

/ .
'a’w/\/w;\,w/\U{x} ( (w/\’7 WA\ {NUOpz}> YOpT> iz))

aLARCED YD SRS 3 »

W /\/,w;\, CYA\(NUIpz} YOpT
*
YA ( (Cd/\/, WA\ {ANUO\T}> wa/\zc) )

- 2
a’w/\/w;\,w/\ (w;\” WA\ {ANUOpT}> wa/\zc)) 1;[ [Vay (ix, wa/\zc(y))|
YCOAT



— d_O‘/\u{m}dQ\_e/\u{x}"'l Z Z

YA ((wprs uJ/\\/\/))>'<Clw/\,w;\/¢/\ ((wips, WA\A))

= d “NYp, ap)



Construction of the purely generated transi-
tion expectations

From the above it follows that the limit

p(a) = lim d™Nyn, ay)
exists finitely for any a in the local algebra and
defines a state o on B
We want to prove that this state is a generalized
quantum Markov chain.
From the definition of ¢, we have

SO(Ew/\) — d_v/\

For any A Cyin L, we define the operator Vz

GAN
Ha—*/\ — H/_\ by

BA
Va_’/\,/_\ewa—’/\ =d?2 g/; ¢A(WA,W5A)€MA & 6w5/\
where Gp = |[Ag| — vp and

¢A(wA,W5A) — H Qbiﬁy((w/\?"‘Ja_’/\)(x)a (w/\awa_’/\)(y))
{z,y}eNE



Lemma For any A Gy, L, the operator Va/\/\ IS

isometry. Moreover, for sufficiently large A’ Ctin L,
we obtain

_ZNWA o
Vi 3 Yann =d 2 P

Proof. For each orthonormal basis ews e, €
N
Hg/\, we have

V 6_, V e
< w aAwa_,/\>

A W

“an IN

— 5 - W dﬁ/\ Z¢/\(¢W\» aA)ew/\azw/\(w/\a 8/\)6 />
w

A\

= O . dﬁAZW/\(w/\, 01°

ON"" AN WA
= 6, . dngndMNel=5
8A’w5/\ “an AN
T herefore, Va/\/\ IS isometry. Furthermore, Ap U

(N\A)e = E). Now, we have

~_AA\A
Vanrd 2 Pana

d2 Z¢A(WA> 8/\)601/\@60) d2 Z¢A(WA>W8A)€

“A



_INN\A
= Vaaad 7 2 danaloaaleny,
WANA

CAN\A - BA
= d 2 d?2 Z Qﬂ/\’\/\((w/\/\/_\?Wa_’/\))Qﬂ/\(w/\aWa_’/\)
CNN\ACNE A
= d 2 ) Y(wp)ew,, =d 2 hp

CU/\/

For each A Gy, L, we define the transition maps
Ene - By — 85/\ by
5/\c(a,/—\) = Vg/\’/—\a/—\va—’/\’/—\
for any ax € By, and quasi-conditional expectations
Ene : B — B by
Epc(az @ age) = Ip, ® Enc(azr) @ axc

for any axz € By and azc € Bz.. By definition, we
have

En(eup ) = 2 AR wgn) YN (s w5p) gy
“HN
In particular,



Lemma For any Ag CC A Cin L and ap, € Bp,, we
have
Enc(an,) = ¢(an,)

In particular the family {Eac} is weakly projective
and ¢ is the unique weakly invariant state.

Proof. From the above calculation, we obtain
Ene(egn w /\o)
= Y dAlWaAg WY W) AW A WAy &
wA\AO7w5A
[Nog|—vA
Z d o /\Ow/\g(w/\gawa_’/\o)*w/\g(wj\oawa_’/\o)Ewa-’/\
YaNYEng

[NoE|—vp
wZ: d B /\Ow/\g(w/\gawa_’/\o)*w/\g(w;\C)?wa_’/\o) -1
ONg

On the other hand, we have

— g %A

= d Mo Y ¢AO((w5AO,on))*¢AO((w5AO»w7

“ono

Nor|—vx
= "ol > ?ﬁ/\o(w/\o,wg/\c))*?ﬂ/\o(wf\o,w

“ino



Lemma The family {Enc} is not projective. In par-
ticular, ¢ is not a Markov state.

Proof. For arbitrary e € By, we get

WA W

A
_ % I
(‘:/\C(Gw/_\,w;_\) = d6A¢A(WAaW5A) w/\(wA,w8—>/\)€w5/\’wé/\
_ o — . Io— ()
where wy = (w/\,wa/\) and wx (wA,ng). From

the proof of Lemma (?7) we have that

E/\/CE/\C # E/\/C
for Acc N Cqipn L.

Interpretation

In many models used in statistical mechanics, the
vertices x € L are identified to particles, the Hilbert
space H(x) to their state space, the basis (e;(z)) to
the eigenvectors of some non degenerate observ-
able A(x) and the index set S(x) to the eigenvalues
of this observable, say

S(z) ={1,....dy} ={a1(x),...,aq, (2)}



With these identifications the section wp is identi-
fied to the event or configuration:

wpa = {[A(z) = a(z)wpa(z)] ; Ve AN}

ddd



Abstract Toronto

In the past 30 years the theory of quantum Markov
chains (QMC) has undergone several developments.

The attempt to give an intrinsic operator—theoretical
characterization of QMC produced a deep analysis,
due to C. Cecchini, of various notions of quantum
Markovianity.

The notion of Markovianity on CAR algebras, and
the corresponding structure theorems, revealed a
surprisingly richer structure than in the infinite ten-
Sor product case.

Moreover, as it often happens in quantum proba-
bility, the efforts to better understand the quantum
case has lead to question some deeply rooted be-
liefs concerning classical Markov processes.

Applications to physics have proliferated in sev-
eral different directions, ranging from the inter-
esting theoretical results of Fannes, Nachtergaele,



Werner, Matsui, Mohari, Mukhammedov, Ohno,...
to numerical simulations related to the Bethe ap-
proximation.

these authors gave important contributions to the
theory of quantum Markov chains with finite state
space

The results of Lindblad, Alicki and Fannes on the
notion of quantum dynamical entropy and the sub-
sequent extension by Ohya, Watanabe and others,
have established a connection between QMC and
the theory of quantum chaos.

Finally Petz and his school has shown that QMC
play a relevant role also in quantum information,
notably in the problems related to the capacity of
quantum channels.

Now the boundary of this line of research is the
extension of the above results to Markov fields (i.e.
processes with multidimensional index set).



What is needed is not so much an abstract theory
(many variants are possible and some of them al-
ready published) as a new nontrivial, class of con-
crete examples which could play for fields a role
analogue to that, played in the 1-dimensional case,
by the QMC, i.e. a benchmark on which to test
the power of different theoretical proposals.

Now such class of examples has begun to be de-
veloped.

I will use this class to illustrate some points of the
abstract theory and some interesting open prob-
lems.

Sibiu Abstract

The notion of Markovianity on CAR algebras, and
the corresponding structure theorems, revealed a
surprisingly richer structure than in the infinite ten-
Sor product case.



