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Expected Markovianity

Theorem 1 Let:

– A be a ∗–algebra,

– AI ,A∂I,AI′ sub–∗–algebras of A, such that

A∂I ⊆ AI ∩AI′ (1)

Let

EX : A → AX ; X = I, I′, ∂I (2)

be Umegaki conditional expectations onto the re-

spective ranges, satisfying the projectivity condi-

tion

E∂IEI = E∂IEI′ = E∂I (3)

If E∂I is faithful, then the following four identities

are equivalent (EX |AY
denotes restriction of EX

on AY ):



EI |AI′
= E∂I |AI′

(4)

EI(AI′) ⊆ A∂I (5)

E∂I(aIaI′) = E∂I(aI) · E∂I(aI′) ; ∀aI ∈ AI aI′ ∈ AI′

(6)

EI′ |AI
= E∂I |AI

(7)

EI′(AI) ⊆ A∂I (8)

Intuitive interpretation :

– AI the past, or interior algebra

the present or boundary algebra

– AI′ the future or exterior algebra



If E∂I is not faithful, then

(4)←→ (5) −→ (6) ←− (8) ←→ (7).

and, if (6) holds, then for each aI ∈ AI and a′ ∈ AI′

E∂I

(
|E∂I(aI′)−EI(aI′)|

2
)
= 0 (9)

E∂I

(
|E∂I(aI)− EI′(aI)|2

)
= 0 (10)



Factorizability implies Markovianity

Definition Let be given

– a ∗–algebra A

– a measurable space (X,O)

– for any I ∈ O a sub–∗–algebra AI of A, such that

I ⊆ J ⇒ AI ⊆ AJ

– for any I ∈ O a surjective Umegaki conditional
expectation

EI : A → AI (11)

The family (EI) (I ∈ O) is called factorizable if for
any I, J ∈ O

EIEJ = EI∩J (12)

if (12) holds only when I ⊆ J, i.e. if one only
requires that

I ⊆ J ⇒ EIEJ = EI

then the family (EI) is called projective.

Notice that in both cases EI and EJ commute.



Factorizability implies projectivity (particular case).

Factorizability implies Markovianity

Example, if:

– X is a topological space

O is its Borel σ–algebra

I := {I ⊆ X : I = I−(closure) and (Io)− = (I−)o(interior)

I′ := (Io)c

Then

I ∩ I′ = I ∩ (Io)c = I− \ Io = ∂I

The Markov property follows because:

EI(aI′) = EIEI′(aI′) = EI∩I′(aI′) = E∂I(aI′)

Many other examples are possible depending on

how, given I, one defines I′.



Markov systems as local perturbations of prod-

uct systems

Factorizable families of surjective Umegaki condi-

tional expectations arise naturally in the theory of

product systems.

In the discrete case they are the conditional expec-

tations naturally associated to product measures.

Basic idea:

Start from such a family (E0
I ) and perturb it by a

localized multiplicative family (LMF).

Simplest example:

I 7→MI ∈ AI

MIMJ = MI∪J

E0
I (|MI |2) = E0

I (M∗
IMI) = 1



(e.g. MI is an isometry). Then ∀ϕ ∈ S(A) (E0
I )–

compatible (i.e. ϕ ◦E0
I = ϕ for any I0)

lim
I↑S

ϕI0

(
M∗

I aI0MI)
)
=: ψI0

(
aI0

)

exists and defines a projective family of states.



Problems with expected Markovianity

– commutative case: none

– extreme non–commutative case (all local alge-
bras are factors): triviality

Definition 1 A quasi–conditional expectation with
respect to the triple

AI0 ⊆ AI ⊆ AJ

is a completely positive identity preserving map

EJ,I : AJ → AI

such that

EJ,I(ba) = bEJ,I(a) ; ∀b ∈ AI0 , ∀a ∈ AJ (13)

Lemma 1 Let B0 ⊆ B ⊆ A be C∗–algebras and let
E : A → B a quasi–conditional expectation with
respect to the triple

B0 ⊆ B ⊆ A
then

E(B′0 ∩A) ⊆ B′0 ∩ B



1–dimensional case: notations

Hn separable Hilbert space n ∈ N

Bn := B(Hn)

For n ∈ N let

jn : Bn → jn(Bn) =: An ⊂ A = ⊗NB
be the natural embedding onto the n-th factor:

jn : b ∈ Bn → 1⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
m6=n

⊗ b︸︷︷︸
n
∈ A (14)

jo(ao)j1(a1)·. . .·jn(an) = ao⊗a1⊗. . .⊗an⊗1⊗. . .⊗an⊗1⊗. . .
(15)

For I ⊆ N denote:

AI the C∗-subalgebra of A generated by jn(M) : n ∈ I

we shall write simply

An := A{n} ; An] = A(−∞,n] ; A[n = A[n,+∞)



The shift on A is defined, if A{n} ≡ B ∀n, to be the

unique endomorphism uo of A into itself satisfying

uo ◦ jn = jn+1 ∀n ∈ N (16)

or equivalently

uo(jo(ao)j1(a1)·...·jn(an)) = j1(ao)j2(a1)·...·jn+1(an)

It follows that, for each natural integer n and each

subset I of N :

uo(AI) = AI+n (17)

i.e., the family of local algebras (AI) is covariant

with respect to the shift. A state ϕ which is invari-

ant for the shift i.e.

ϕ ◦ uo = ϕ (18)

will be called translation invariant or stationary

.



Definition 2 A quasi–conditional expectation with

respect to the triple

A[0,n−1] ⊆ A[0,n] ⊆ A[0,n+1]

is called Markovian if

En+1,n(A[n) ⊆ An (19)

Definition 3 A state ϕ on A is called a Markov

state with respect to the localization A[0,n] if for

each n ∈ N there exists a quasi-conditional expec-

tation En+1,n with respect to the triple

A[0,n−1] ⊆ A[0,n] ⊆ A[0,n+1] such that

ϕ ◦ En+1,n = ϕ (20)

In this case we shall say that the quasi-conditional

expectation En+1,n is compatible with the state ϕ.

In the following we shall simply say that ϕ is a

Markov state on A without explicitly mentioning

the localization {A[0,n]}.



The structure of QMS

Let ϕ be a Markov state on A and let (En+1,n) be
an associated family of quasi-conditional expecta-
tions. Define, for each n ∈ N,

En = j∗n ◦En+1,n ◦ (jn ⊗ jn+1) : Bn ⊗ Bn+1 → Bn

Because of the Markov property, En is a transition

expectation on M .

The invariance condition

ϕ ◦ En+1,n = ϕ

implies that

ϕ(a[o,n−1]jn(an)jn+1(an+1)) = (21)

= ϕ(a[o,n−1]En+1,n(jn(an)jn+1(an+1))) =

= ϕ(a[o,n−1]jn ◦ En(an ⊗ an+1))) =

= ϕ(a[o,n−1]jn ◦ En((an ⊗ En+1(an+1 ⊗ 1))))

Iterating one finds

ϕ(jo(ao) . . . jn−1(an−1)jn(an)) = (22)



= ϕo

(
Eo(ao ⊗ . . .⊗ En−1(an−1 ⊗ En(an ⊗ 1)))))

Thus ϕ is completely determined by the pair

{ϕo; (En)}

Conversely:

Proposition 1 For any pair {ϕo(En)} such that ϕo

is a state on M and each En is a transition expec-

tation Bn⊗Bn+1 → Bn, the right hand side of (21)

determines a unique state ϕ on A. Such state is

called a backward, one sided Markov chain.



Obstructions for a QMC to be a QMS

They come from the invariance condition

ϕ ◦ En+1,n = ϕ

Recall that

ϕ(a[o,n−1]jn(an)jn+1(an+1)) =

= ϕ(a[o,n−1]jn ◦ En((an ⊗ En+1(an+1 ⊗ 1))))

But the left hand side of (2) is also equal to

ϕ(a[o,n−1]En+1,n((jn(an)En+2,n+1(jn+1(an+1)))))

(23)

We write simply that for each a, b ∈ B

En(a⊗b) = En((a⊗En+1(b⊗1))) , mod{ϕo, (Ek)}
(24)



Structure of locally faithful QMS

Theorem 2 Suppose that there exists a Markovian

CP1 map

En] : A → An] (25)

En](A[n) ⊆ An

such that

ϕ(an−1]a[n) = ϕ(an−1]En](a[n)) (26)

Then there exist:

(i) an algebra

Ap
n ⊆ An

(ii) a Umegaki conditional expectation

E
p
n] : A → Ap

n] := An−1] ∨A
p
n ⊆ An] (27)

with the following properties:

ϕ(an−1]a[n) = ϕ(an−1]E
p
n](a[n)) (28)



Ep
n](A[n) ⊆ A

p
n ⊆ An (29)

Proof. Then because of (25), for each k ∈ N

ϕ(an−1]a[n) = ϕ(an−1]E
k
n](a[n))

and therefore also:

ϕ(an−1]a[n) = ϕ


an−1]

1

k

k∑

h=1

Eh
n](a[n)


 (30)

Going to the GNS representation, where the er-

godic theorem holds we deduce that the weak limit

lim
k→∞

1

k

k∑

h=1

Eh
n] =: Ep

n]

exists and is a Umegaki conditional expectation

onto the fixed points of En]:

E
p
n] : A → Ap

n] ⊆ Fix En]

and, from (30) we deduce that (28) holds.

(28) also implies that

An−1] ⊆ A
p
n] ⊆ An]



therefore, defining the algebra Ap
n by:

Ap
n] = An−1] ∨A

p
n

and from this (27) follows.

From our assumptions it follows that

A[n ⊆ (An])

Remark. In tensor product algebras one has

Ap
n := A′

n−1] ∩A
p
n] ⊆ A

′
n−1] ∩An] = An



Cecchini’s theorem (for matrix algebras)

Theorem 3 In the notations of Theorem (2), sup-

pose that for each n, Ap
n is a factor and denote

Af
n := (Ap

n)
′ ∩An (31)

ϕn := ϕ|Ap
n ∨A

f
n+1

Then if the An are matrix algebras, ϕ is a 2–block

factor for the localization
∨

n
(Af

k ∨A
p
k+1) ≡

∨

n
(Ap

k ∨ A
f
k) ≡

∨

n
An

Equivalently: for any

ϕ(af
ka

p
k+1 · a

f
k+1a

p
k+2 · . . . · a

f
na

p
n+1) = (32)

= ϕk(a
f
ka

p
k+1)ϕk+1(a

f
k+1a

p
k+2) . . . ϕn(a

f
na

p
n+1)

Remark. If the An are matrix algebras then

Ap
n ∨Af

n = An

In the general case this property is satisfied under

additional conditions (of split type). There exist



examples of subalgebras with trivial relative com-

mutant (singular subalgebras).

Proof. From the Definition (31) it follows that

Af
n ∨ A[n+1 ⊆ A[n is in the commutant of Ap

n and

therefore, if Ap
n is a factor, then by Lemma (1) it

follows that

E
p
n](A

f
n ∨A[n+1) ⊆ (Ap

n)
′ ∩Ap

n = C1

Hence there exists a state

ϕ
p
n] ∈ S(A

f
n ∨A[n+1)

such that for any, one has

E
p
n](a

f
na[n+1) = ϕ

p
n](a

f
na[n+1)

But from (28), choosing an−1] = 1, a[n = a
p
na

f
na[n+1,

it follows that

ϕ(ap
na

f
na[n+1) = ϕ(ap

n)ϕ
p
n](a

f
na[n+1)

Therefore

ϕ
p
n] = ϕ|Af

n ∨A[n+1

Iterating this formula we obtain (32).



Markov fields on graphs

Bx = H(x) (≡ B)

BΛ := B(HΛ) ; ∀Λ ⊆fin L

A := C∗−ind−lim BΛ (C∗−inductive limit ) ≡ ⊗x∈LBx

jx : b ∈ B(x)→ jx(b) = b⊗ 1{x}c ∈ A (33)

natural embedding of Bx into A

jΛ := ⊗x∈Λjx ; Λ ⊆ L

identification

BΛ ≡ ⊗x∈ΛBx ≡ BΛ ⊗ 1Λc = jΛ(BΛ)

the elements of the ∗–sub–algebra of A := BL de-

fined by

Bloc = BL,loc :=
⋃

Λ⊂fin L

BΛ (set theoretical union)

will be called local operators (observables if self–

adjoint).



(Forward) Markov fields

A local family of C∗–algebras is a quadruple

{A , L , I , {AF}F∈I}

such that

– A and AF are C∗–algebras

– L is a set

– I is a directed family of subsets of L closed under

difference,

– the map F ∈ I 7→ AF ⊆ A is order preserving (⊆)

– if {Fa} is any family in I such that
⋃

a Fa = F ∈ I,
then

⋃
aAFa is dense in AF .

–
⋃
{AF |F ∈ I} is dense in A (usually L /∈ I)

Definition

d : I → I a map such that

(i)
⋃
{dF |F ∈ I} = L,

(ii) dF ⊆ F , F ∈ A,



(iii) F ⊆ G =⇒ dF ⊆ dG,

(iv) if {Fa} is any family in I such that Fa ↑ L
(i.e.

⋃
a Fa = L) then dFa ↑ L.

For F,G ∈ I with F ⊆ G, a linear map EG,F : AG →
AF is said to have the d–Markov property if

EG,F (AG\F ) ⊆ AF\dF .

(unification of Nelson’s topological Markov prop-

erty with Dobrushin’s discrete d–Markov property)

Definition

A state ϕ ∈ S(A) is called a d–Markov chain if there

exist

(i) an increasing sequence {Fn}n∈N in I such that

Fn−1 ⊆ dFn ⊆ Fn ↑ L ,

(ii) a sequence of d–Markovian quasi–conditional

expectations

EFn+1,Fn : AFn+1
7→ AFn



w.r.t. the triplet AdFn ⊆ AFn ⊆ AFn+1
, i.e. CP1

maps satisfying

EFn+1,Fn

(
adFnaFn+1

)
= adFnEFn+1,Fn

(
aFn+1

)

adFn ∈ AdFn ; aFn+1
∈ AFn+1

(iii) a state ϕF0
∈ S(AF0

).
such that

ϕ = lim
n
ϕF0
◦EF1,F0

◦ . . . ◦ EFn,Fn−1
(34)

in the ∗–weak topology, for some sequence {EFn+1,Fn}n∈N
of quasi–conditional expectation as above.

The state ϕ is called a d–Markov state if

ϕ ◦EFn+1,Fn = ϕ , n ∈ N

for some sequence sequence {EFn+1,Fn}n∈N of quasi–
conditional expectation as above.

A d–Markov state is also a d–Markov chain.

The converse is not true in general.

For d–Markov states each EG,F can be chosen to
be the ϕ–conditional expectation from AG into AF



L = N: two interpretations of the points of L

In one (time) he order structure is important.

In the other one it is not.

I: Time In this case there may be a privileged point

0 and an orientation which allows to distinguish be-

tween past and fugure (Fugure 1). This interpre-

tation is frequent in probability



II: Position In this case there is no privileged in-
stant inside L but, if one considers the localization
given by the finite subsets of L (inside) and their
complements (outside, Figure 2), one can consider
the 1–point compactification of L and ∞ is the
privileged point (Figure 3a).
This interpretation has the advantage of being pos-
sible also in multidimensional lattices (Dobrushin’s
theory).

In all figures the curved arrows indicate the direc-
tion of conditioning.
Alternative interpretations are: a gas with one– or
two–sided boundary conditions at ∞ (Figure 2).
This interpretation is frequent in statistical me-
chanics.



(Backward) QMF

Luigi Accardi, Hiromichi Ohno:

Quantum bio information and Markov fields on graphs,

to appear in: QP – PQ Series,

Proceedings of QBIC-I, Tokyo university of Sci-

ence, 14–19 March, 2007

notations as above, but:

For Λ ⊆fin L we denote

dΛ =: Λ

Λ ⊂⊂ Λ1 means Λ ⊆ Λ1

Definition

A state ϕ on A = BL is called

a generalized quantum Markov state on BL

if there exist:

– an increasing sequence Λn ↑ L
(i.e.: eventually absorbing any finite subset)



– for each Λn, a quasi-conditional expectation EΛc
n

with respect to the triplet

BΛnc ⊆ BΛc
n
⊆ BL (35)

– for each Λn, a state

ϕ̂Λc
n
∈ S(BΛc

n
)

such that for any Λ0 ⊂⊂ Λn one has

ϕ|BΛ0
= ϕ̂Λc

n
◦EΛc

n
|BΛ0

(36)

If, in condition (36), one can choose

ϕ̂Λc
n
= ϕ|BΛc

n
(37)

then ϕ is called a quantum Markov state.

ϕ is called a weak Markov state if

for all a ∈ BL,loc there exists Λ(a) ⊆fin L

such that ∀Λ(a) ⊆ Λ ⊆fin L one has:

ϕ(a) = ϕ(EΛc(a))



Remark. for quantum Markov states EΛc
n

can be

replaced by an Umegaki conditional expectation

from BL onto a sub–algebra of BΛc
n

( ergodic argument used in [AcFri80] )

Remark. In the case of infinite tensor products

(the only one considered here) one has, for any

subset, I ⊆ L:

BIc = B′I the commutant of BI (38)

Recall that, by definition [x.], a quasi–conditional

expectation with respect to the triplet (35) is a

CP1 map EΛc
n
: BL → BΛc

n
satisfying

EΛc
n
(aΛncaΛn) = aΛncEΛc

n
(aΛn) ; Λc

n := (Λn)
c

(39)

Because of (38) this implies that

EΛc
n
(BΛn) ⊆ (BΛc

n
)′ = B(Λc

n)
c = BΛn

Consequently

EΛc
n
(BΛn) ⊆ BΛc

n
∩ BΛn

= BΛc
n∩Λn

= B~∂Λn



which is the natural quantum generalization of the

multidimensional (discrete) Markov property as orig-

inally formulated by Dobrushin .

The above argument shows that, whenever (38)

holds (e.g. in the case of infinite tensor products)

the Markov property

EΛc
n
(BΛn) ⊆ B~∂Λ

follows from the basic property (39) of the quasi–

conditional expectations.

This is not true in general when (e.g. in the abelian

case or in the case of CAR algebras).

Luigi Accardi, Francesco Fidaleo, Farruh Mukhame-

dov:

Markov states and chains on the CAR algebra,

IDA–QP (2007), to appear

In all these cases the Markov property should be

included in the definition of the various notions of

Markov states as an additional requirement.



Fact

there are natural classes of states which are weak

Markov states but not Markov states.



Graphs

G = (L, E) (non-oriented simple) graph, that is,

L is a non-empty at most countable set and

E ⊂ {{x, y}; x, y ∈ L, x 6= y}

L vertices

E edges

Two vertices x, y ∈ L are called adjacent,

x ∼ y

or nearest neighbors, if {x, y} ∈ E,

For each x ∈ L the set of nearest neighbors of x

will be denoted

N(x) := {y ∈ L : y ∼ x}



degree of x ∈ L

κ(x) := |N(x)| = |{y ∈ L ; y ∼ x}|,

where | · | denotes the cardinality.

we always deal with locally finite graphs i.e., κ(x) <

∞ for all x ∈ L

A graph can be equivalently assigned by giving the

pair

{L,∼}

of its vertices and the binary symmetric relation ∼.

path or a trajectory or a walk from x ∈ L to y ∈ L
is a finite sequence of vertices such that

x = x1 ∼ x2 ∼ . . . ∼ xn = y.

n := length of the path

d(x, y) := the shortest length of a walk connecting

x and y.



d(x, x) = 0

we always deal with connected graphs, i.e., for any
pair of vertices there exists a walk connecting them.

Λ ⊆fin L

means that Λ is a finite subset of L.

the external boundary of Λ

~∂Λ := {x /∈ Λ : ∃ y ∼ x , y ∈ Λ}
the closure of Λ

Λ := Λ ∪ ~∂Λ

Λ ⊂⊂ Λ1

means that

Λ ⊂ Λ1

Notice that, by definition

Λ ∩ ~∂Λ = ∅

~∂{x} =: ∂x = N(x) \ {x}



Bundles on graphs

x ∈ L→Hx Hilbert space of dimension dH(x) ∈ N

d := dH(x) = dH < +∞ (independent of x)

Given

Λ ⊆fin L

define

HΛ := ⊗x∈ΛHx

fix, ∀x ∈ L, an o.n. basis of Hx:

(ej(x)) ≡ e(x) ; j ∈ S(x) := {1, . . . , dH}

πS : S → L bundle whose fibers are the finite sets

π−1
S (x) := S(x)

the sections of this bundle are the maps:

{ωΛ : x ∈ Λ→ ωΛ(x) ∈ S(x)} =: ΩΛ

A section ωΛ is called a configuration in the volume

Λ.



For each configuration ωΛ define

eωΛ := ⊗x∈ΛeωΛ(x)(x) ∈ HΛ (1)

EωΛ is the corresponding rank one projection:

EωΛ := |eωΛ〉〈eωΛ| = eωΛe
∗
ωΛ

(2)

Then the set

{eωΛ : ωΛ ∈ F(Λ, S)} (3)

is an o.n. basis of HΛ.

BΛ := B(HΛ) ; ∀Λ ⊆fin L

Entangled Markov fields on trees

for trees, the construction of entangled Markov

chains proposed in

L. Accardi, F. Fidaleo:

Entangled Markov chains.

Annali di Matematica Pura e Applicata, (2004)

Preprint Volterra N.556 (2003)

can be generalized.



a tree is a connected graph without loops.

This definition implies that any finite subset Λ ⊆fin

L enjoys the following fundamental property:

Property (T)

For any Λ ⊆fin L and for arbitrary x ∈ ~∂Λ, there

exists a unique point y ∈ Λ such that x ∼ y.

(L,E) graph

for each {x, y} ∈ E, let be given a transition ampli-

tude d× d matrix (ψxy(i, j))

i.e. a complex matrix such that the matrix (|ψxy(i, j)|2)
is bi–stochastic, i.e.

d∑

i=1

|ψxy(i, j)|2 =
d∑

j=1

|ψxy(i, j)|2 = 1

(ψxy(i, j)) will be called an amplitude matrix

notice that unitarity of the matrices (ψxy(x, j))i,j is



not required.

Define the vector

ψxy =
d∑

i,j=1

ψxy(i, j) · ei(x)⊗ ej(y) ∈ Hx ⊗Hy (4)

Algebraic formulation

Lemma

In the notation

EΛ := {{x, y} | x, y ∈ Λ, x ∼ y}

for any Λ ⊆fin L, define the vector ψΛ ∈ HΛ by

ψΛ :=
∑

ωΛ

ψΛ(ωΛ)eωΛ (5)

ψΛ(ωΛ) :=
∏

{x,y}∈EΛ

ψxy(ωΛ(x), ωΛ(y)) (6)

If Λ enjoys Property T then ∀x ∈ ~∂Λ,

‖ψΛ∪{x}‖
2 = ‖ψΛ‖2



Proof. Property T ⇒ ∀x ∈ ~∂Λ, ∃!y ∈ Λ such that

x ∼ y. Then

‖ψΛ∪{x}‖
2 =

∑

ωΛ,ωx

|ψΛ∪{x}((ωΛ, ωx))|2

=
∑

ωΛ\{y},ωy,ωx

|ψΛ∪{x}((ωΛ\{y}, ωy, ωx))|2

=
∑

ωΛ\{y},ωy

d∑

ωx=1

|ψΛ((ωΛ\{y}, ωy))|2 · |ψxy(ωy, ωx)|2

=
∑

ωΛ

|ψΛ(ωΛ)|2 = ‖ψΛ‖2

which is the thesis.

Proposition Suppose that Λ enjoys Property T

and let

Λ′ ⊂⊂ Λ ⊆fin L

Then for any a ∈ BΛ′ and x ∈ ~∂Λ one has:

〈ψΛ, aψΛ〉 = 〈ψΛ∪{x}, aψΛ∪{x}〉

Proof. Because of Property T, given x ∈ ~∂Λ, there

exists a unique point y ∈ Λ such that x ∼ y. Then



we have

〈ψΛ∪{x}, aψΛ∪{x}〉 =
=

∑

ωΛ′,ω′
Λ′

∑

ωΛ\{Λ′∪{y}}

∑

ωx,ωy

ψΛ∪{x}((ωΛ′, ωΛ\{Λ′∪{y}}, ωx, ωy))

·aωΛ′ω′
Λ′
ψΛ∪{x}((ω

′
Λ′, ωΛ\{Λ′∪{y}}, ωx, ωy))

=
∑

ωΛ′,ω′
Λ′

∑

ωΛ\{Λ′∪{y}}

∑

ωx,ωy

ψΛ((ωΛ′, ωΛ\{Λ′∪{y}}, ωy))
∗

aωΛ′ω′
Λ′
ψΛ((ω′

Λ′, ωΛ\{Λ′∪{y}}, ωy))|ψxy(ωx, ωy)|2

=
∑

ωΛ′,ω′
Λ′

∑

ωΛ\Λ′
ψΛ((ωΛ′, ωΛ\Λ′))∗aωΛ′ω′

Λ′
ψΛ((ω′

Λ′, ωΛ\Λ′))

= 〈ψΛ, aψΛ〉

The trouble with Property T is that, if Λ has Prop-

erty T and x ∈ ~∂Λ, unfortunately it is not true that

also Λ∪x has Property T. However trees have a very

special property given by the following Lemma.

Lemma In a tree every finite subset Λ ⊆ L enjoys

Property T.



Proof. Let Λ ⊆ L be a finite subset and let x ∈ ~∂Λ.

If there exist y, z ∈ Λ such that y ∼ x , z ∼ x, then

since a tree is connected, there is a path between

y and z and this would give a loop. Against the

definition of tree.

Corollary If (L,E) is a tree, and the vector ψΛ

is defined by (5), (6), then, for any Λ ⊆fin L of

cardinality ≥ 2, one has:

‖ψΛ‖2 = d (7)

and the limit

ϕ(a) =
1

d
lim
Λ↑L
〈ψΛ, aψΛ〉

exists for any a in the local algebra B and defines

a state ϕ on B.

Proof. The first statement follows by induction

because, if Λ = {x, y}, then we get

‖ψxy‖2 =
∑

i,j

|ψxy(i, j)|2 = d

The second statement follows from the first one



Algebraic formulation

The simplification coming from considering trees
rather than general graphs manifests itself in the
fact that the analogue of the basic isometries, used
in the construction of [AcFi03], in this case com-
mute.

Proposition For Λ ⊆fin L, x ∈ ~∂Λ and z ∈ Λ, define
V(z|x) : Hz →Hz ⊗Hx by

V(z|x)eiz =
∑

ix

ψxz(ix, iz)eix ⊗ eiz (8)

and extend it naturally to a map HΛ0
→HΛ0

for any
Λ0 containing Λ. Then ∀x, y ∈ ~∂Λ, z ∈ Λ with x ∼ z,
y ∼ z, V(z|x) and V(z|y) are isometries satisfying:

V(z|x)ψΛ = ψΛ∪{x}

V(z|x)V(z|y) = V(z|y)V(z|x)

Proof. We have

〈V(z|x)eiz, V(z|x)ejz〉 = δiz,jz

∑

ix,jx

〈ψxz(ix, iz)eix, ψxz(jx, iz)ej

= δiz,jz

∑

ix

|ψxz(iz, ix)|2 = δiz,jz = 〈eiz,



Therefore any V(z|x) is an isometry. Next, we get

V(z|x)ψΛ = V(z|x)(
∑

ωΛ\{z},iz

ψΛ((ωΛ\{z}, iz))eωΛ\{z} ⊗ eiz)

=
∑

ωΛ\{z},iz

ψΛ((ωΛ\{z}, iz))(
∑

ix

ψxz(ix, iz)eωΛ\{z} ⊗

=
∑

ωΛ\{z},ix,iz

ψΛ∪{x}((ωΛ\{z}, ix, iz))eωΛ\{z} ⊗ eix ⊗

= ψΛ∪{x}.

Finally, we obtain

V(z|x)V(z|y)eiz = V(z|x)(
∑

iy

ψyz(iy, iz)eiy ⊗ eiz)

=
∑

ix,iy

ψxz(ix, iz)ψyz(iy, iz)eix ⊗ eiy ⊗ eiz

= V(z|y)(
∑

ix

ψxz(ix, iz)eix ⊗ eiz)

= V(z|y)V(z|x)eiz.

Proposition Define the transition expectation E(z|x) :

Bx ⊗ Bz → Bz by

E(z|x)(ax ⊗ az) = V ∗
(z|x)(ax ⊗ az)V(z|x)



and extend it to B in the usual way. Let xo be any

(initial) point in L and denote

ϕ0 =
1

d
〈

d∑

ix0=1

eixo
, ·

d∑

jx0=1

ejxo
〉

the e(xo)–maximally entangled state on Bx0. De-

fine inductively L0 = {x0} and

Ln = L̄n−1

ELn :=
∏
{E(x|y) : x ∈ Ln , y ∈ ~∂Ln , x ∼ y}

where the product is well-defined because the fac-

tors commute (being implemented by commuting

isometries). Then for any Λ ⊆ Ln and any aΛ ∈ BΛ:

ϕ(aΛ) = ϕ0 ◦EL0
◦ · · · ◦ ELn(aΛ)

and ϕ is a QMF.

Proof. From Proposition ??, we have

ϕ0 ◦ EL0
◦ · · · ◦ELn(aΛ)

=
1

d
〈

d∑

ix0=1

∏

x∈L1

V(x0|x)eix0, EL1
◦ · · · ◦ ELn(aΛ)

∏

x∈L1

V(x0|x



=
1

d
〈ψL1

, EL1
◦ · · · ◦ ELn(aΛ)ψL1

〉
...

=
1

d
〈ψLn+1

, aΛψLn+1
〉

= ϕ(aΛ)

Now, we prove that ϕ is a QMF. For each Λ ⊆fin L

and ω~∂Λ
∈ Ω~∂Λ

, we define

ψω~∂Λ
=

∑

ωΛ

ψ(ωΛ, ω~∂Λ
) · eωΛ ⊗ eω~∂Λ

and V~∂Λ,Λ̄
: H~∂Λ

→ HΛ̄ by

V~∂Λ,Λ̄
(eω~∂Λ

) = ‖ψω~∂Λ
‖−1ψω~∂Λ

Then V~∂Λ,Λ̄
is well defined because ‖ψω~∂Λ

‖ 6= 0 for
each ω~∂Λ

(otherwise ψ(ωΛ, ω~∂Λ
) = 0 for each ωΛ,

contradicting (7) with Λ replaced by Λ). Moreover,
since the ψω~∂Λ

are mutually orthogonal, V~∂Λ,Λ̄
is an

isometry. If we put

ψ~∂Λ
=

∑

ω~∂Λ

‖ψω~∂Λ
‖eω~∂Λ

then we have

V~∂Λ,Λ̄
(ψ~∂Λ

) =
∑

ω~∂Λ
,ωΛ

ψ(ωΛ, ω~∂Λ
)eωΛ ⊗ eω~∂Λ

= ψΛ̄



Since VΛ is an isometry, we get ‖ψ~∂Λ
‖2 = d. De-

noting

ϕ~∂Λ
:= d−1〈ψ~∂Λ

, ·ψ~∂Λ
〉

EΛc(aΛ̄) := V ∗
~∂Λ,Λ̄

aΛ̄V~∂Λ,Λ̄
, EΛc := EΛc⊗idBΛ̄c

for each aΛ̄ ∈ BΛ̄, we see that

ϕ~∂Λ
EΛc(aΛ) = d−1〈ψ~∂Λ

, V ∗
~∂Λ,Λ̄

aΛV~∂Λ,Λ̄
〉 = d−1〈ψΛ̄, aΛψΛ̄〉 =

for each aΛ ∈ BΛ. Hence ϕ is a QMF.

Maximally Entangled Markov fields on general

graphs

for maximally entangled amplitude matrices,

the construction of the previous section

can be carried over to general graphs.

Origin of the difficulties: loops (trees have no loops)

if x ∼ y ∼ z ∼ u is a path in L (x, y, z, u mutually 6=)

then the bi–stochasticity of |ψxy(ix, iy)|2 implies that
∑

ix,iy,iz

|ψxy(ix, iy)ψyz(iy, iz)ψzx(iz, iu)|2 =



(
∑

ix

|ψxy(ix, iy)|2)
∑

iy,iz

|ψyz(iy, iz)ψzx(iz, iu)|2 =

(
∑

iy

|ψyz(iy, iz)|2)
∑

iz

|ψzx(iz, iu)|2 =
∑

iz

|ψzx(iz, iu)|2 = 1

if x ∼ y ∼ z ∼ x is a loop in L, then
∑

ix,iy,iz

|ψxy(ix, iy)ψyz(iy, iz)ψzx(iz, ix)|2

is equal to the trace of a bi–stochastic matrix,

which can be any number in [0, d].

Hence, we need more assumptions. Now, we as-

sume

ψxy(ix, iy) =
1√
d
eiθxy(ix,iy) (9)

where θxy(ix, iy) ∈ R.

For Λ ⊆fin L define

– vΛ the number of vertices in Λ

– εΛ the number of edges in Λ

αΛ := vΛ − εΛ (10)

is a numerical invariant of the graph.



Lemma For Λ ⊆fin L let be defined by

ψΛ(ωΛ) :=
∏

{x,y}∈EΛ

ψxy(ωΛ(x), ωΛ(y))

ψΛ :=
∑

ωΛ

ψΛ(ωΛ)eωΛ

ψxy(ix, iy) =
1√
d
eiθxy(ix,iy)

Then

‖ψΛ‖2 = dαΛ

Proof.

For each ωΛ ∈ ΩΛ (9) and (6) imply that

|ψΛ(ωΛ)|2 =
∏

{x,y}∈EΛ

|ψxy(ωΛ(x), ωΛ(y))|2 = (
1

d
)εΛ = d−εΛ

Since the number of configurations is dvΛ, we ob-

tain

‖ψΛ‖2 =
∑

ωΛ

|ψΛ(ωΛ)|2 = d−εΛdvΛ = dαΛ

Proposition Let Λ′ ⊂⊂ Λ ⊆fin L. Then for any



a ∈ BΛ′ and x ∈ ~∂Λ

d−αΛ〈ψΛ, aψΛ〉 = d
−αΛ∪{x}〈ψΛ∪{x}, aψΛ∪{x}〉

Proof. Denoting

∂Λx := ~∂x ∩ Λ

we find

d
−αΛ∪{x}〈ψΛ∪{x}, aψΛ∪{x}〉 =

= d
−αΛ∪{x}

∑

ωΛ′,ω′
Λ′

∑

ωΛ\{Λ′∪∂Λx}

∑

ω∂Λx

∑

ix

ψΛ∪{x}((ωΛ′, ωΛ\{Λ′∪∂Λx}, ω∂Λx, ix))
∗

·aωΛ′ω′
Λ′
ψΛ∪{x}((ω

′
Λ′, ωΛ\{Λ′∪∂Λx}, ω∂Λx, ix))

= d
−αΛ∪{x}

∑

ωΛ′,ω′
Λ′

∑

ωΛ\{Λ′∪∂Λx}

∑

ω∂Λx

∑

ix

ψΛ((ωΛ′, ωΛ\{Λ′∪∂Λx}, ω∂Λx))
∗

aωΛ′ω′
Λ′
ψΛ(ω′

Λ′, ωΛ\{Λ′∪∂Λx}, ω∂Λx))
∏

y∈∂Λx

|ψxy(ix, ω∂Λx(y))|2



= d
−αΛ∪{x}d

εΛ−εΛ∪{x}+1 ∑

ωΛ′,ω′
Λ′

∑

ωΛ\Λ′

ψΛ((ωΛ′, ωΛ\Λ′))∗aωΛ′ω′
Λ′
ψΛ((ω′

Λ′, ωΛ\Λ′))

= d−αΛ〈ψΛ, aψΛ〉



Construction of the purely generated transi-

tion expectations

From the above it follows that the limit

ϕ(a) = lim
Λ↑L

d−αΛ〈ψΛ, aψΛ〉

exists finitely for any a in the local algebra and

defines a state ϕ on B
We want to prove that this state is a generalized

quantum Markov chain.

From the definition of ϕ, we have

ϕ(EωΛ) = d−vΛ

For any Λ ⊆fin L, we define the operator V~∂Λ,Λ̄
:

H~∂Λ
→HΛ̄ by

V~∂Λ,Λ̄
eω~∂Λ

= d
βΛ
2

∑

ωΛ

ψΛ(ωΛ, ω~∂Λ
)eωΛ ⊗ eω~∂Λ

where βΛ = |ΛE| − vΛ and

ψΛ(ωΛ, ω~∂Λ
) =

∏

{x,y}∈ΛE

ψxy((ωΛ, ω~∂Λ
)(x), (ωΛ, ω~∂Λ

)(y))



Lemma For any Λ ⊆fin L, the operator V~∂Λ,Λ̄
is

isometry. Moreover, for sufficiently large Λ′ ⊆fin L,

we obtain

V~∂Λ,Λ̄
d−

αΛ′\Λ
2 ψΛ′\Λ = d−

αΛ′
2 ψΛ′

Proof. For each orthonormal basis eω~∂Λ
, eω′

~∂Λ
∈

H~∂Λ
, we have

〈V~∂Λ
eω~∂Λ

, V~∂Λ
eω′

~∂Λ
〉

= 〈d
βΛ
2

∑

ωΛ

ψΛ(ωΛ, ω~∂Λ
)eωΛ ⊗ eω~∂Λ

, d
βΛ
2

∑

ω′
Λ

ψΛ(ω′
Λ, ω

′
~∂Λ

)eω′
Λ

= δω~∂Λ
,ω′

~∂Λ
dβΛ〈

∑

ωΛ

ψΛ(ωΛ, ω~∂Λ
)eωΛ,

∑

ω′
Λ

ψΛ(ω′
Λ, ω~∂Λ

)eω′
Λ
〉

= δω~∂Λ
,ω′

~∂Λ
dβΛ

∑

ωΛ

|ψΛ(ωΛ, ω~∂Λ
)|2

= δω~∂Λ
,ω′

~∂Λ
dβΛdvΛd−|ΛE| = δω~∂Λ

,ω′
~∂Λ

Therefore, V~∂Λ,Λ̄
is isometry. Furthermore, ΛE ∪

(Λ′\Λ)e = E′
Λ. Now, we have

V~∂Λ,Λ̄
d−

αΛ′\Λ
2 ψΛ′\Λ



= V~∂Λ,Λ̄
d−

αΛ′\Λ
2

∑

ωΛ′\Λ

ψΛ′\Λ(ωΛ′\Λ)eωΛ′\Λ

= d−
αΛ′\Λ

2 d
βΛ
2

∑

ωΛ′\Λ̄,ωΛ,ω~∂Λ

ψΛ′\Λ((ωΛ′\Λ̄, ω~∂Λ
))ψΛ(ωΛ, ω~∂Λ

)

= d−
αΛ′
2

∑

ωΛ′
ψ(ωΛ′)eωΛ′ = d−

αΛ′
2 ψΛ′

For each Λ ⊆fin L, we define the transition maps

EΛc : BΛ̄ → B~∂Λ
by

EΛc(aΛ̄) = V ∗
~∂Λ,Λ̄

aΛ̄V~∂Λ,Λ̄

for any aΛ̄ ∈ BΛ̄, and quasi-conditional expectations

EΛc : B → B by

EΛc(aΛ̄ ⊗ aΛ̄c) = IBΛ
⊗ EΛc(aΛ̄)⊗ aΛ̄c

for any aΛ̄ ∈ BΛ̄ and aΛ̄c ∈ BΛ̄c. By definition, we

have

EΛc(eωΛ,ω′
Λ
) =

∑

ω~∂Λ

dβΛψΛ(ωΛ, ω~∂Λ
)∗ψΛ(ω′

Λ, ω~∂Λ
)Eω~∂Λ

In particular,

EΛc(EωΛ) = d−vΛ · 1



Lemma For any Λ0 ⊂⊂ Λ ⊆fin L and aΛ0
∈ BΛ0

, we
have

EΛc(aΛ0
) = ϕ(aΛ0

)

In particular the family {EΛc} is weakly projective
and ϕ is the unique weakly invariant state.

Proof. From the above calculation, we obtain

EΛc(eωΛ0
,ω′

Λ0
)

=
∑

ωΛ\Λ0
,ω~∂Λ

dβΛψΛ((ωΛ\Λ0
, ωΛ0

), ω~∂Λ
)∗ψΛ((ωΛ\Λ0

, ω′
Λ0

), ω~

=
∑

ω~∂Λ
,ω~∂Λ0

d
|Λ0E|−vΛ̄0ψΛ0

(ωΛ0
, ω~∂Λ0

)∗ψΛ0
(ω′

Λ0
, ω~∂Λ0

)Eω~∂Λ

=
∑

ω~∂Λ0

d
|Λ0E|−vΛ̄0ψΛ0

(ωΛ0
, ω~∂Λ0

)∗ψΛ0
(ω′

Λ0
, ω~∂Λ0

) · I

On the other hand, we have

ϕ(eωΛ0
,ω′

Λ0
) = d

−αΛ̄0〈ψΛ̄0
, eωΛ0

,ω′
Λ0
ψΛ̄0
〉

= d
−αΛ̄0

∑

ω~∂Λ0

ψΛ̄0
((ω~∂Λ0

, ωΛ0
))∗ψΛ̄0

((ω~∂Λ0
, ω′

Λ

= d
|Λ0E|−vΛ̄0

∑

ω~∂Λ0

ψΛ0
(ωΛ0

, ω~∂Λ0
)∗ψΛ0

(ω′
Λ0
, ω~∂



Lemma The family {EΛc} is not projective. In par-

ticular, ϕ is not a Markov state.

Proof. For arbitrary eωΛ̄,ω′
Λ̄
∈ BΛ̄, we get

EΛc(eωΛ̄,ω′
Λ̄
) = dβΛψΛ(ωΛ, ω~∂Λ

)∗ψΛ(ω′
Λ, ω

′
~∂Λ

)eω~∂Λ
,ω′

~∂Λ

where ωΛ̄ = (ωΛ, ω~∂Λ
) and ω′

Λ̄
= (ω′

Λ, ω
′
~∂Λ

). From

the proof of Lemma (??) we have that

EΛ′cEΛc 6= EΛ′c

for Λ ⊂⊂ Λ′ ⊆fin L.

Interpretation

In many models used in statistical mechanics, the

vertices x ∈ L are identified to particles, the Hilbert

space H(x) to their state space, the basis (ej(x)) to

the eigenvectors of some non degenerate observ-

able A(x) and the index set S(x) to the eigenvalues

of this observable, say

S(x) = {1, . . . , dH} ≡ {a1(x), . . . , adH(x)}



With these identifications the section ωΛ is identi-

fied to the event or configuration:

ωΛ ≡ {[A(x) = a(x)ωΛ(x)] ; ∀x ∈ Λ}

aaa



Abstract Toronto

In the past 30 years the theory of quantum Markov

chains (QMC) has undergone several developments.

The attempt to give an intrinsic operator–theoretical

characterization of QMC produced a deep analysis,

due to C. Cecchini, of various notions of quantum

Markovianity.

The notion of Markovianity on CAR algebras, and

the corresponding structure theorems, revealed a

surprisingly richer structure than in the infinite ten-

sor product case.

Moreover, as it often happens in quantum proba-

bility, the efforts to better understand the quantum

case has lead to question some deeply rooted be-

liefs concerning classical Markov processes.

Applications to physics have proliferated in sev-

eral different directions, ranging from the inter-

esting theoretical results of Fannes, Nachtergaele,



Werner, Matsui, Mohari, Mukhammedov, Ohno,...

to numerical simulations related to the Bethe ap-

proximation.

these authors gave important contributions to the

theory of quantum Markov chains with finite state

space

The results of Lindblad, Alicki and Fannes on the

notion of quantum dynamical entropy and the sub-

sequent extension by Ohya, Watanabe and others,

have established a connection between QMC and

the theory of quantum chaos.

Finally Petz and his school has shown that QMC

play a relevant role also in quantum information,

notably in the problems related to the capacity of

quantum channels.

Now the boundary of this line of research is the

extension of the above results to Markov fields (i.e.

processes with multidimensional index set).



What is needed is not so much an abstract theory

(many variants are possible and some of them al-

ready published) as a new nontrivial, class of con-

crete examples which could play for fields a role

analogue to that, played in the 1–dimensional case,

by the QMC, i.e. a benchmark on which to test

the power of different theoretical proposals.

Now such class of examples has begun to be de-

veloped.

I will use this class to illustrate some points of the

abstract theory and some interesting open prob-

lems.

Sibiu Abstract

The notion of Markovianity on CAR algebras, and

the corresponding structure theorems, revealed a

surprisingly richer structure than in the infinite ten-

sor product case.


