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Mission for speakers: address

(i) definition of the field,

(ii) research highlights in the field,

(iii) critical considerations for someone wanting to enter the field
today,

(iv) ideal type(s) of training, and

(v) suggested changes and directions for the field.
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My background:

Ph.D. in Applied Mathematics, Brown University

Q:

1. How do we attract bright undergraduates to graduate studies in
mathematical neuroscience?

2. How do we convey to students what this field is all about?

A:

1. recruit undergraduates for research

2. faculty research presentations

3. research posters in the halls

4. talks to undergraduates on visits to campuses

5. publications to mail to smaller colleges (What’s Happening in the
Mathematical Sciences)? how to coordinate?

6. REU/RTG
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My thesis: The Generation of Edge Oscillations in an Inhomoge-
neous Reaction-Diffusion System


ut = uxx + I(εx)W (u, w) − u,

wt = D(wxx + ε2(u − γw))

Fabry-Pérot
interferometer

→ supports standing wave solutions (u(x), w(x)) that could
destabilize ⇒ perform stability analysis
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Evans function for linear stability analysis:

• linearization about Φ(ξ), ξ = x − ct ⇒ eigenvalue equation

λP = BPξξ + cPξ + DF (Φ(ξ))P =: LP

• rewrite LP = λP as Y ′ = M(ξ, λ)Y, Y ∈ IR2n, with solutions Y (ξ) = Ψ(ξ, λ)Y (0)

• define

Eu
−(λ) = {Y (0) ∈ IR2n : Ψ(ξ, λ)Y (0) → 0 as ξ → −∞} : k − dim

Es
+(λ) = {Y (0) ∈ IR2n : Ψ(ξ, λ)Y (0) → 0 as ξ → +∞} : (2n − k) − dim

• take bases Y −
1 (λ), . . . , Y −

k (λ) of Eu
−(λ), Y +

1 (λ), . . . , Y +
2n−k(λ) of Es

+(λ)

• let

E(λ) = |Y −
1 (λ) . . . Y −

k (λ) Y +
1 (λ) . . . Y +

2n−k(λ)|,

such that E(λ) = 0 ⇔ λ is an evalue of L
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Since then...

• sleep rhythms and related epilepsy: synchronization and cluster-
ing of synaptically coupled oscillators


Cmv′ = −ΣIion − gsyns(v − Esyn),

s′ = α(vpre)(1 − s) − βs

• spike-timing dependent plasticity: computational implications and
biological mechanisms

• persistent, localized activity patterns in neuronal network models

• modeling the basal ganglia and a possible mechanism underlying
deep brain stimulation for Parkinson’s disease

• traveling waves in spiking neural field models

• oscillations in heterogeneous networks/effects of synaptic coupling

• noise and bursting in single neuron models

• canards and mixed-mode oscillations in single neuron models

• deriving information about coupling architecture from activity
patterns

• the efficacy of synaptic inputs at inducing neuronal firing

Q: What is the best training for tackling such problems?
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Claims:

1. Specialized training in neuroscience topics is not a requirement
for a success in mathematical neuroscience.

2. Training in applied mathematics provides tools that are useful for
tackling mathematical neuroscience problems (mechanisms).

Downside:
entropy information theory
spike-frequency adaptation filter
Nernst potential principal components
(un)supervised learning Hebbian plasticity
bursting oscillations Hodgkin-Huxley equations

Also, how to:

• generate good problems?

• communicate across fields?
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Challenges:

1. Develop training that integrates mathematics and neuroscience.

2. Develop training that integrates students with diverse backgrounds.

Ideas:

1. computational neuroscience vs. mathematical neuroscience

2. semi-unified courses

3. journal clubs: within and between departments

4. working groups

5. experimental rotations?
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Deep brain stimulation (DBS):
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Box and arrow diagram:

−−2 = inhibition

−−� = excitation

Note: VL thalamus relays outputs between cortical areas,
modulated by inhibition from basal ganglia.
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Biophysical basal-ganglia-thalamocortical network model:
Individual thalamic (TC) equations:

STN

GPi
+ −

+

−

TC (out)

GPe (in)
Cmv′ = −IL − INa − IK − IT − IGPi→TC − Isignal

h′
T = (hT∞(v) − hT )/τhT

(v)

h′ = (h∞(v) − h)/τh(v)

s′ = α(1 − s)exc(t) − βs, exc(t) = ΣH(t − ton)(1 − H(t − toff))

IL = gL(v − vL) IT = gTm2
T∞(v)hT (v − vCa)

INa = gNam
3
∞(v)h(v − vNa) IGPi→TC = gGPi(v − vinh)Σj(sGPi)j

IK = gKn4(v − vK) Isignal = gsignals(v − vexc)

X∞(v) = (1 + exp(v − θX)/σX)−1; X ∈ {m, h, mT , hT}

STN voltage equation:

Cmv′
STN = −IL − INa − IK − IT − ICa − IAHP − IGPe→STN + DBS

GPe voltage and synaptic equations (GPi is similar):

Cmv′
GPe = −IL − INa − IK − IT − ICa − IAHP − ISTN→GPe − IGPe→GPe

s′
GPe = αGPe(1 − sGPe)inh(vGPe, t) − βGPesGPe
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Some important directions for the field:

1. Automation of parameter estimation techniques, optimized for
neuronal network structure and data

2. Scale-up: from small networks where mechanisms can be analyzed
to larger-scale networks with complex coupling architectures
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An interesting paradox:

• PD: ↑ inhibition from GPi to thalamus associated with motor
symptoms

• DBS: data (e.g. Hashimoto et al., 2003) and simulations (e.g.
McIntyre et al.) show GPi activity ↑ further

• Why should this ↑ in inhibition relieve PD symptoms?
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Idea:

• In PD, GPi outputs become rhythmic, not just stronger. This
compromises thalamic relay.

• DBS cuts the rhythmicity and restores relay: stronger inhibition
is less of a nuisance if it’s more regular.

Papers:

• Terman et al., J. Neurosci., 22(7):2963-2976, 2002

• Rubin and Terman, J. Comp. Neurosci., 16:211-235, 2004

• Rubin and Josić, Neural Comp., 19:1251-1294, 2007

• Guo et al., in preparation
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Test of prediction: GPi data into thalamic model!

use GPi recordings from primates in PD/DBS as input:
green=GPi signal, red=cortical inputs, black=TC response
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Observation:

• Mathematicians are trained to derive precise statements of as-
sumptions under which particular results can be proved to hold.

• Assumptions play a much different role in applied mathematical
neuroscience problems.

A final question:

How does this work fit into a mathematics department?

• valued by colleagues?

• tenure credit?

• student thesis work?
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