Active Sensory Dynamics

André Longtin
Physics
Cellular and Molecular Medicine

Center for Neural Dynamics
University of Ottawa

OUTLINE

- Definition of Field
- n What I do: Dynamics of Sensory Coding
- (saccades, stimulus-driven network oscillations, noise, multi-scale signal separation)
- n Research Highlights in the field
- n Critical Considerations for those entering
- n Ideal type of Training
- n Suggested Changes

But tomorrow at CNS...

Computational and Mathematical Neuroscience

Obvious Definition of the Field:

<u>intersection</u> of computational sciences and mathematics with neuroscience.

But the key word "intersection" implies any percentage of overlap and relevance.

Open mind: from one extreme (99% math) to the other (99% neuro)

Varying degree of experiment-theory interaction

I call my own field: "Neurophysics and Nonlinear Dynamics"

Cellular biophysics
electric field modeling
nonlinear dynamics
Langevin and Fokker-Planck equations
Nonequilibrium statistical mechanics
information theory
computational physics, ...

Neuroscience Fields of Interest (to me)

- n Sensory acquisition and processing
- n Role of feedback, delays, noise
- n Sensory-motor integration (posture, timing)
- n Interesting problems in bifurcation theory/nonequilibrium statistical mechanics that arise from those neuroscience interests

Many Approaches out there

- n Specialize in a few analytical tools, and look for the right nuts to put into your "nutcracker".
- n Specialize on one neurobiological system, study it well enough using a variety of tools to get at fundamental principles of neural design.
- à Like studying the evolution of one class of stars, and end up being able to estimate the age of the universe.

Brain Diagram by Arab philosopher Avicenna (circa 1300) <u>Five ventricles</u>: common sense, imagination, judging, second imagination (composing/combining images), memory.

(University Library, Cambridge)

From Da Vinci's notes

Shifts of (covert) attention

Hermann von Helmholtz (1821-1894)

Hermann von Helmholtz (1821-1894) "neurophysics pioneer"

- n Law of conservation of energy (etc...)
- n Auditory perception (scales, consonance)
- n Visual perception (covert attention)
- n Propagation speed of nerve pulse: 27m/s!

Big Debate: Delay between volition and action! His hypothesis: "cytoplasmic flow"

(wait for Hodgkin-Huxley (1952): nonlinear diffusion).

Visual attention during reading

- n Fovea: central $\sim 2^{\circ}$ degrees of the visual field
- n Parafovea: up to ~ 5°, decreased acuity

(i) Lexical processing

n attentional window:
lexical processing rate
λ(ε)
depends on eccentricity

3

n two levels: preprocessing & lexical access

(ii) Timing of saccades

Linking High Level and Low Level

- n Without noise, just a few model trajectories occur
- Optimal noise tuning to properly sample input space of "sentences" while reading at decent speed?
- n How does saccade target selection really work?
- à Noise is important determinant of target selection in biophysical neural net models (X.J. Wang at Yale)
- à Need to team up with those doing measurements in superior colliculus and LIP areas (M. Pare at Queens)
- à Can we predict neural correlates of e.g. dyslexia?

Experimental-Theoretical Collaborations (if that is of interest to you)

- n They take a while to develop
- n You have to learn each other's language
- n You have to learn the folklore in a given subfield
- n Personalities have to "click"
- n After a number of years you start thinking alike...for good or for worse...

Information Theoretic Calculations:

Coherence Function:

$$C(f) = \frac{\left|\left\langle \widetilde{\mathbf{X}}^* \widetilde{\mathbf{S}} \right\rangle\right|^2}{\left\langle \widetilde{\mathbf{X}}^* \widetilde{\mathbf{X}} \right\rangle \left\langle \widetilde{\mathbf{S}}^* \widetilde{\mathbf{S}} \right\rangle}$$

Mutual Information Rate:

$$MI = -\frac{1}{2} \int_{-f_c}^{f_c} df \log_2[1 - C(f)]$$

Information Theoretic Calculations:

"First Principles":

$$\frac{d}{dt}V_i(t) = \mu - V_i(t) + \sqrt{2D_i}\xi_{i,bg}(t) + \beta I_i(t) + \frac{g}{N}\sum_j K_{\tau_d} * \sigma_j(t)$$

Interesting theory along the way

DESIGN: FEEDFORWARD + FEEDBACK

Fokker-Planck analysis on noisy Leaky Integrate-and-fire neurons Doiron, Lindner, Longtin, Bastian and Maler, *Phys. Rev. Lett.* 93, 048101 (2004)

Explains how Gamma rhythm arises from delayed neural nets with spatiotemporal input

Additive global noise delays Turing bifurcations (Axel Hutt, Andre Longtin, Lutz Schimansky-Geier, Phys. Rev. Lett. 2007)

$$\begin{split} \frac{\partial V(x,t)}{\partial t} + V(x,t) &= \int\limits_{\Omega} K(x-y) S_e(V(y,t-\frac{|x-y|}{v_K})) \\ + L(x-y) S_i(V(y,t-\frac{|x-y|}{v_L})) \ dy + I(x,t) \end{split}$$

WHY STUDY NOISE?

Response

In vivo recording of electroreceptor afferents (P-units)

WARNING: WE ARE NOT ALONE

Focus Issue

Stochastic Dynamics of Neural and Genetic Networks

Guest Editors

André Longtin University of Ottawa, Canada

Peter S. Swain McGill University, Canada

Editor-in-Chief

David K. Campbell Boston University, Boston, MA

Chaos Volume 16, Issue 2, June 2006

Ex: HEARING IMPLANTS

n DAMAGED COCHLEA

à Bypass it by stimulating acoustic nerve: Feedforward <u>problem</u>: poor at noisy cocktail parties

n DAMAGED COCHLEAR NUCLEUS (next station)

- à feedforward input from acoustic space
- à MOSTLY feedback input from higher brain

Need to figure out: feedforward AND feedback

And we need to figure out how the brain does...

n Blind source separation on-line

à Look at how e-fish do it: electrocommunication

à Look at how frogs do it: calls in swamp

Edwards, Alder and Rose, Nature Neurosci. 5, 2002.

Of interest to mathematicians: Numerical Cognition

Nieder, A. & E. K. Miller (2003), "Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex", *Neuron* 37, 149.

Nieder, A. & E. K. Miller (2004), "A parieto-frontal network for visual numerical information in the monkey", *PNAS* 101, 7457.

<u>Piazza M, Pinel P, Le Bihan D, Dehaene S.</u> (2007) A magnitude code common to numerosities and number symbols in human intraparietal cortex. *Neuron* 53, 293.

Research Highlights

- n Too many at too many levels
- n One thing is for sure: models have made their mark, from the early days of Kybernetik to Neuron, Nature Neuroscience etc...
- n Real test maybe still to come (but it is coming): strong predictions with medical impact will get attention

Critical Consideration for those entering the field

- Mhat do you like? Do you want to:
- à become a hybrid (do experiment and theory)?
- à talk actively with neuroscientists?
- à do theory/computation, with some relevance to neuroscience?
- à just devise interesting theory?
- à All of it is needed!

Ideal Training

- n See preceding slide: what do you like?
- n Do training accordingly

Ex: Maurice Chacron: Ph.D. theoretical neurophysics, wanted to do experiment as well: went to Woods Hole Neural Systems and Behavior course, then did an experimental postdoc; now Prof. of Physiology at McGill

Ex: Brent Doiron: Ph.D. theoretical neurophysics, wanted to continue in that field: did theoretical postdoc with both a theoretical and an experimental advisor; now Prof. of Mathematics, U. Pittsburgh

Training

- n Summer schools (University of Ottawa-MITACS)
- n Workshops
- work placements in another group in Canada and abroad
- n Multidisciplinary graduate programs

(or programs that allow you flexibility in course selection)

Suggested Changes

- n Canadian Funding Structure still somewhat archaic for this new field
- n Close to nothing from CIHR (unless you collaborate with experimentalist)
- NSERC: Interdisciplinary, Animal Biology, Applied Math, Psychology
- More exposure for our undergrads in math, physics
 and engineering à modeling courses
 - à summer schools

National Linking: it has begun.

Mathematical Neuroscience Meeting September 16-19, 2007

Centre de Recherches Mathématiques Université de Montréal

Organized by:

Steve Coombes (Nottingham)

André Longtin (Ottawa)

Jon Rubin (Pittsburgh)

Sponsored by CRM (NSERC), MITACS, U. OTTAWA, MATHEON