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Report on the paper

“Sharp A1 bounds for Calderón-Zygmund operators
and the relationship with a problem of Muckenhoupt
and Wheeden” , IMRN, 2008.

with A. Lerner and S. Ombrosi

and also some work in progress with the same authors
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Three conjectures:

1) Muckenhoupt-Wheeden (M.-W.) conjecture

2) ”weak” (M.-W.) conjecture

3) The A2 conjecture
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motivation

The Hardy–Littlewood maximal function

Mf(x) = sup
x∈Q

1

|Q|
∫

Q
|f(y)| dy

C. Fefferman and E.M. Stein (early 70’s)

extension of the classical weak-type (1,1) estimate:

‖Mf‖L1,∞(w) ≤ C
∫

Rn
|f(x)|Mw(x)dx

if w ≥ 0

This is a sort of duality for M .

The proof is by a covering classical argument.
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Hence

M : L1(w) −→ L1,∞(w)

if and only if

M(w) ≤ C w

the A1 condition.

we denote by

[w]A1

the best of these C (the A1 constant, characteristic or
norm)
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consequences

if 1 < p < ∞:
∫

Rn
(Mf)p w dx ≤ cp

∫

Rn
|f |p M(w) dx.

Proof by interpolation

Why F-S considered this question?

vector-valued extension: for every 1 < p, q < ∞:
∥∥∥∥∥
( ∑

j

(Mfj)
q
)1

q

∥∥∥∥∥
Lp(Rn)

≤ C

∥∥∥∥∥
( ∑

j

|fj|q
)1

q

∥∥∥∥∥
Lp(Rn)
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model

We view M as the model example to understand Singular
Integrals.

‖M‖
L1,∞(w)

≤ cn [w]
A1

for 1 < p < ∞:

‖M‖
Lp,∞(w)

≤ cn [w]
1/p

A1

but

‖M‖
Lp(w)

≤ cnp′ [w]
1/p

A1

p′ = p
p−1
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Singular Integrals

To fix ideas we think of the case

Tf(x) = v.p.
∫

Rn
K(x− y) f(y) dy

The critical size

|K(x)| ≤ C

|x|n
and the regularity assumption

|∇K(x)| ≤ C

|x|n+1

The results are new for the Hilbert transform:

Hf(x) =
∫

R

f(y)

x− y
dy

But they hold for Calderón-Zygmund singular integral
operators.
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Muckenhoupt-Wheeden conjecture

Natural question: Suppose that w ≥ 0 Is it true

Conjecture 1 (Muckenhoupt-Wheeden conjecture)

‖Tf‖
L1,∞(w)

≤ C
∫

Rn
|f(x)|Mw(x)dx

It was studied during the 70’s by B. Muckenhoupt and
R. Wheeden.

Best result: let ε > 0 very tiny and w ≥ 0, then

‖Tf‖L1,∞(w) ≤ Cε

∫

Rn
|f |M

L(logL)ε(w) dx.

C. P. ≈ 1994
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Consequence

if w ∈ A1

T : L1(w) → L1,∞(w)

but with a “rough” bound

‖T‖
L1(w)→L1,∞(w)

≤ c [w]2
A1

since

M
L(logL)ε(w) ≤ c M

L logL
(w) ≈ M2w

PROBLEM: Can we improve this estimate?
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The Lp case

The proof is based on the following Lp strong estimate:

Let 1 < p < ∞ and let ε > 0 be tiny.
Also let w ≥ 0. Then

∫

Rn
|Tf |p w dx ≤ C

∫

Rn
|f |p M

L(logL)p−1+ε(w) dx

C. P. 1994

M. Wilson some previous partial results for smooth, con-
volution and small p.

Hence if w ∈ A1

‖T‖
Lp(w)

≤ cp [w]
1+1/p

A1
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Weak Muckenhoupt-Wheeden conjecture

If we assume w ∈ A1

‖Tf‖L1,∞(w) ≤ cn[w]
A1

∫

Rn
|f |w dx.

i. e.

Conjecture 2 (Weak Muckenhoupt-Wheeden conjecture)

‖T‖
L1(w)→L1,∞(w)

≤ cn [w]
A1

To understand the weak estimate we need to understand
the Lp case first
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the case p = 2

R. Fefferman and J. Pipher (aprox. in 1997) proved

‖H‖
L2(w)

≤ c [w]
A1

where H is the Hilbert transform.

The proof is based on sharp A1 bounds for square func-
tions on L2(w) from a well known estimate of Chang-
Wilson-Wolff:

∫

Rn
(Sf)2 w dx ≤ C

∫

Rn
|f |2 M(w) dx
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the general case

Natural question: find the best exponent α for

‖T‖
Lp(w)

≤ cn,p[w]α
A1

(1)

Same approach as in the case p = 2 yields α = 1

when p > 2.

However, if 1 < p < 2

α ≤ 1/2 + 1/p

which is not sharp.

another drawback of the method: the approach works
only for smooth convolution classical singular integrals.
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First theorem: the sharp strong case

(with A. Lerner and S. Ombrosi)

Theorem 3 (the linear growth) Let w ∈ A1 and
1 < p < ∞. Then, there is a constant c = c(n, T ) such that:

‖T‖
Lp(w)

≤ c p′ [w]
A1

New approach that works for any 1 < p < ∞

Observe that the result is sharp in both p and [w]
A1

in the previous work we had obtained

p′ log p′

so the proof of the conjecture cannot follow from this.
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A consequence: the logarithmic growth in the weak case

The main result of the talk

Theorem 4 (the logarithmic growth)
Let w ∈ A1. Then, there is a constant c = c(n, T ) such
that:

‖T‖
L1(w)→L1,∞(w)

≤ c ϕ
(
[w]

A1

)

where ϕ(t) = t(1 + log+ t).

of course is related to the weak M-W conjecture.
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The behavior of ‖T‖
Lp(w)

Recall that he behavior of the constant

‖T‖
Lp(w)

≈ p′[w]
A1

as p → 1 turns out to be crucial, and it is reflected in the
function

ϕ(t) = t(1 + log+ t)

In the previous work we had obtained

‖T‖
Lp(w)

≈ p′ log p′[w]
A1

which was NOT SHARP by the unweighted theory

which leads to

‖T‖
L1(w)→L1,∞(w)

≤ c ϕ
(
[w]

A1

)

where ϕ(t) = t(1 + log+ t)(1 + log+ log+ t)
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A consequence for the Ap class

Recall that w ∈ Ap :

[w]
Ap
≡ sup

Q

(
1

|Q|
∫

Q
w(x)dx

) (
1

|Q|
∫

Q
w(x)−1/(p−1)dx

)p−1

Corollary 5 Let 1 < p < ∞ and w ∈ Ap

Then

‖T‖
Lp,∞(w)

≤ c ϕ(‖w‖
Ap

)

where ϕ(t) = t(1 + log+ t).
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conjecture

However, the conjecture is the following

Conjecture 6 (linear growth) Let 1 < p < ∞ and
w ∈ Ap Then

‖T‖
Lp,∞(w)

≤ c ‖w‖
Ap

This would follow from the weak M-W conjecture were
true, namely if we had ϕ(t) = t as well.

Compare with the strong case when: when 1 < p < 2:

‖H‖
Lp(w)

≤ c ‖w‖
1

p−1

Ap

(non linear growth). S. Petermichl
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Proof by “Extrapolation” ideas

Lemma 1 Let 1 < q < ∞ and let w ∈ Aq. Then there
exists a nonnegative sublinear operator D bounded on
Lq′(w) such that for any nonnegative h ∈ Lq′(w):
(a) h ≤ D(h)

(b) ‖D(h)‖
Lq′(w)

≤ 2 ‖h‖
Lq′(w)

(c) D(h) · w ∈ A1 with

[D(h) · w]
A1
≤ cn q ‖w‖

Aq

Idea of the Proof: “Rubio de Francia iteration scheme´´:

D(h) =
∞∑

k=0

1

2k

Sk
w(h)

‖Sw‖k
Lq′(w)

where

Sw(f) =
M(fw)

w

which is bounded on Lq′(w) by Muckenhoupt’s theorem.

However, we need the sharp version due to Buckley:

‖Sw‖
Lq′(w)

≤ cq ‖w1−q′‖q−1

Aq′
= cq ‖w‖

Aq

22



endpoint estimates for Calderón-Zygmund Operators Carlos Pérez

2o part of the proof

We linearize the problem Ωt = {x ∈ Rn : |Tf(x)| > t},

w(Ωt)
1/p = ‖χΩt

‖Lp(w) =
∫

Ωt

h wdx.

where h ∈ Lp′(w) such that ‖h‖
Lp′(w)

= 1.

Hence by the lemma and the hypothesis

w(Ωt)
1/p ≤

∫

Ωt

D(h)w dx = (D(h)w)(Ωt)

≤ c ϕ([D(h)w]A1
)

∫

Rn

|f |
t

D(h)w dx

≤ c

t
ϕ(p[w]Ap)

( ∫

Rn
|f |p w dx

)1/p( ∫

Rn
D(h)p′w dx

) 1
p′

≤ c

t
ϕ([w]Ap)

( ∫

Rn
|f |p w dx

)1/p
.

This completes the proof.
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THE A2 CONJECTURE

Suppose that the weak M-W conjecture holds, hence as
consequence we have





‖T‖
Lp,∞(w)

≤ c [w]
Ap

‖T‖
Lp′,∞(σ)

≤ c [σ]
Ap′

= c [w]
1

p−1

Ap
,

here as usual σ = w1−p′

Hence, we can state a “metatheorem”:

The worst of both exponents: max{1, 1
p−1}

is governing the strong case:

Conjecture 7 (the A2 conjecture)

‖T‖
Lp(w)

≤ c ‖w‖max{1, 1
p−1}

Ap

Important reduction: it is enough to take p = 2

Thanks to the sharp extrapolation theorem due to by Dragičević,
Grafakos, Pereyra, and Petermichl.
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The sharp Reverse Hölder reverse inequality

Classical situation:

Let w ∈ A1, then there is r > 1 such that
(

1

|Q|
∫

Q
wr

)1/r

≤ c

|Q|
∫

Q
w

problem: there is a bad dependence on the constant
c = c(r, [w]A1

)

Lemma. Let w ∈ A1, then
(

1

|Q|
∫

Q
wrw

)1/rw

≤ 2

|Q|
∫

Q
w

i.e.

M
rw

(w) ≤ 2 [w]A1
w

where

rw = 1 +
1

2n+1[w]A1

as usual Mrw = M(wr)1/r
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The key (tricky) lemma

Classical situation: Theorem of Coifman-Fefferman

Let 0 < p < ∞ and w ∈ A∞. Then, there is a
constant c depending of the A∞ constant of w such that

‖Tf‖
Lp(w)

≤ c ‖Mf‖
Lp(w)

However, we need a more precise result for very specific
weights

Lemma 2 (tricky) Let w be any weight and let 1 ≤
p, r < ∞. Then, there is a constant c = c(n, T ) such that:

‖Tf‖
Lp((Mrw)1−p)

≤ cp ‖Mf‖
Lp((Mrw)1−p)

In the previous paper we had obtained logarithmic growth:

C(p) ≈ p log p
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observations

The classical proof by good λ Coifman-Fefferman is not
sharp i.e gives:

C(p) ≈ 2p

because

[(Mrw)1−p)]
Ap
≈ (r′)p−1

The proof by Bagby-Kurtz (with rearrangements) given in
the mid 80’s is more optimal from the point of view of the
Lp constant but NOT in terms of the weight constant..
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proof

The proof is tricky, it uses another variation of Rubio de
Francia algorithm and relies surprisingly on a sharp L1

Coifman-Fefferman estimate

Lemma
Let w ∈ Aq, 1 ≤ q < ∞. Then, there is a dimensional
constant c such that:

‖Tf‖L1(w) ≤ c[w]Aq‖Mf‖L1(w)

The original proof we had was based on an idea by Fefferman-
Pipher using a sharp version of the good-λ inequality of
S. Buckley

However we have a better proof

‖f‖Lp(w) ≤ cp[w]Aq‖M#
δ f‖Lp(w)
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Main lemma

Lemma
Let w be any weight and let 1 < p < ∞, 1 < r < 2.
Then, there is a c = cn such that:

‖Tf‖
Lp(w)

≤ cp′
(

1

r − 1

)1−1/pr
‖f‖

Lp(Mrw)

The proof is by duality:

‖T ∗f‖
Lp′(Mrw)1−p′) ≤ cp′

(
1

r − 1

)1−1/pr
‖f‖

Lp′(w1−p′)

then use the key lemma

‖T ∗f‖
Lp′(Mrw)1−p′) ≤ p′ c ‖Mf‖

Lp′(Mrw)1−p′)
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skecth of the proof

Applying the Calderón-Zygmund decomposition to f at
level λ,

f = g + b

usually, g is the “good” part and b is the “bad” part,

However, b is “excellent”

but g is really “ugly´´.

Applying as usual Chebyshev for the bad part, for any
p > 1 we have

‖Tg‖
Lp(w)

≤ cp′
(

1

r − 1

)1− 1
pr‖g‖

Lp(Mrw)
,

Choosing here, the r optimal, namely r ≈ 1 + 1
[w]A1

we

have

‖Tg‖
Lp(w)

≤ cp′ [w]A1
‖g‖

Lp(w)

Raising the power p and if we pick p = 1+ 1
log(1+‖w‖A1

)

we have finally

w{x ∈ (Ω̃)c : |Tg(x)| > λ/2} ≤ cϕ(‖w‖A1
)

λ

∫

Rn
|f |wdx
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Final conjecture

If we could prove the following weak type (p, p) estimate

‖Tf‖
Lp,∞(w)

≤ cn p [w]A1
‖f‖

Lp(w)
,

then we could prove the weak M-W conjecture

The version of the ”tricky” lemma for these weak norms
does exist

∥∥∥∥
Tf

Mrw

∥∥∥∥
Lp,∞(Mrw))

≤ cp′
∥∥∥∥

Mf

Mrw

∥∥∥∥
Lp,∞(Mrw)

The proof is even trickier, but it is useless for the problem
because of the bad constant p′
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THANK YOU VERY
MUCH
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