Estimates for the X-ray transform

Richard Oberlin

Feb. 19
f - a function on \mathbb{R}^{d}
I - a line in \mathbb{R}^{d}

The X-ray transform of f at l :

$$
X[f](I)=\int_{I} f(y) d y
$$

Will assume f is supported on a fixed ball

Part 1: Unrestricted directions

\mathbb{S}^{d-1} - unit sphere in \mathbb{R}^{d}
$\xi \in \mathbb{S}^{d-1}, x \in \xi^{\perp}$
$I(\xi, x)=$ the line in the direction ξ passing through x
Mixed-norms:

$$
\|X[f]\|_{L^{q}\left(L^{r}\right)}:=\left(\int_{\mathbb{S}^{d-1}}\left(\int_{\xi^{\perp}}|X[f](I(\xi, x))|^{r} d x\right)^{\frac{q}{r}} d \xi\right)^{\frac{1}{q}}
$$

Want estimates:

$$
\|X[f]\|_{L^{q}\left(L^{r}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

Conjecture
If $1 \leq p<d, r=\frac{(d-1) p}{d-p}$, and $q \leq(d-1) p^{\prime}$

$$
\|X[f]\|_{L^{q}\left(L^{r}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

For local problem, may also interpolate with trivial $L^{\infty} \rightarrow L^{\infty}\left(L^{\infty}\right)$ estimate to obtain "non-sharp (p, r)" type estimates.

The (d, k) Kakeya problem

Definition

$E \subset \mathbb{R}^{d}$ is a (d, k) set if E contains a translate of every k-dimensional disc of diameter 1 .
$(d, 1)$ set \Leftrightarrow Kakeya set

Question
How small can (d, k) sets be?

Example
Any ball of diameter 1 is a (d, k) set for every d, k.

Besicovitch - There are $(d, 1)$ sets of Lebesgue measure zero.

Conjecture
Every $(d, 1)$ set has Minkowski/Hausdorff dimension d

Davies - true when $d=2$
Open for $d>2$ (WR - Katz/Łaba/Tao)

$k>1$

Conjecture
(d, k) sets have positive Lebesgue measure, $k>1$.
Marstrand $\quad(d, k)=(3,2)$
Falconer $d-k<k$
Bourgain $d-k \leq 2^{k-1}, \quad k \geq 2$.

L^{p} estimates vs. dimension

Would have:

$$
\|X[f]\|_{L^{q}\left(L^{\infty}\right)}^{\Downarrow} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

$(d, 1)$ sets have positive Lebesgue measure
$X_{\delta}[f](I):=$ average over δ-neighborhood of I

$$
\left\|X_{\delta}[f]\right\|_{L^{q}\left(L^{\infty}\right)} \underset{\Downarrow}{\lesssim} \delta^{-\frac{\alpha}{p}}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

$(d, 1)$ sets have $\operatorname{Hdim} \geq d-\alpha$

$r<\infty$

$$
\|X[f]\|_{L^{q}\left(L^{r}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

\Downarrow

$$
\begin{gathered}
\left\|X_{\delta}[f]\right\|_{L^{q}\left(L^{\infty}\right)} \lesssim \delta^{-\frac{\alpha}{\rho}}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)} \\
\alpha=(d-1)^{\frac{\rho}{r}}
\end{gathered}
$$

\Downarrow
$(d, 1)$ sets have $H \operatorname{dim} \geq d-(d-1) \frac{p}{r}$

Mixed-norm Kakeya sets

$$
0 \leq \gamma \leq d-1
$$

Definition
$E \subset \mathbb{R}^{d}$ is a γ-Kakeya set if for each $\xi \in \mathbb{S}^{d-1}$ there is a nonempty $H_{\xi} \subset \xi^{\perp}$ with $\operatorname{Hdim}\left(H_{\xi}\right) \geq \gamma$ such that for every $x \in H_{\xi}, E$ contains a segment of $I(\xi, x)$.

Then

$$
\left\|X_{\delta}[f]\right\|_{L^{q}\left(L^{r}\right)} \underset{\Downarrow}{\Downarrow} \delta^{-\frac{\alpha}{p}}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

γ-Kakeya sets have $\operatorname{Hdim} \geq d-(d-1-\gamma) \frac{p}{r}-\alpha$

Estimates for (d, k) sets

$$
\begin{gathered}
\|X[f]\|_{L^{q_{d}}\left(L^{r_{d}}\right)} \lesssim\|f\|_{L^{p_{d}\left(\mathbb{R}^{d}\right)}} \\
\frac{r_{d}}{p_{d}} \text { independent of } d
\end{gathered}
$$

$$
\Downarrow
$$

(d, k) sets have positive measure when

$$
d-k<\left(\frac{r}{p}\right)^{k-1}
$$

Proof by induction

$$
(d-(k-1), 1) \text { sets have } \operatorname{Hdim} \geq d-(k-1)-(d-k) \frac{p}{r}
$$

Suppose $(\tilde{d}-1, \tilde{k}-1)$ sets have $\operatorname{Hdim} \geq \tilde{d}-1-\beta$
Observe this implies (\tilde{d}, \tilde{k}) sets are γ-Kakeya sets with

$$
\gamma=\tilde{d}-1-\beta
$$

\Downarrow
(\tilde{d}, \tilde{k}) sets have $\mathrm{Hdim} \geq \tilde{d}-\beta \frac{p}{r}$

Known $L^{p} \rightarrow L^{q}\left(L^{r}\right)$ estimates

Drury/Christ:

$$
\begin{gathered}
\|X[f]\|_{L^{d+1}\left(L^{d+1}\right)} \lesssim\|f\|_{L^{\frac{d+1}{2}}\left(\mathbb{R}^{d}\right)} \\
\frac{r}{p}=2
\end{gathered}
$$

Łaba/Tao/Wolff:

$$
\begin{gathered}
\left\|X_{\delta}[f]\right\|_{L^{q}\left(L^{r}\right)} \lesssim \delta^{-\frac{\alpha}{p}}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)} \\
p=\frac{d+2}{2}, q=\frac{(d-1)(d+2)}{d}, r=2(d+2), \alpha=\frac{d-3}{4}+\epsilon
\end{gathered}
$$

Katz/Tao:

$$
\begin{gathered}
\left\|X_{\delta}[f]\right\|_{L^{q}\left(L^{\infty}\right)} \lesssim \delta^{-\frac{\alpha}{\rho}}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)} \\
p=\frac{4 d+3}{7}, q=\frac{4 d+3}{4}, \alpha=\frac{3(d-1)}{7}+\epsilon .
\end{gathered}
$$

Using method from Katz/Tao maximal operator bound:

$$
\begin{gathered}
\|X[f]\|_{L^{q}\left(L^{r}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)} \\
p=\frac{4 d+3}{7}, q=\frac{4 d+3}{4}, r=\frac{4 d+3}{3}-\epsilon
\end{gathered}
$$

Using method from Katz/Tao Hdim estimate:
Let $\epsilon>0$, then there exist $p_{\epsilon}, q_{\epsilon}, r_{\epsilon}$ such that

$$
\begin{gathered}
\|X[f]\|_{L_{q_{\epsilon}}\left(L^{r_{\epsilon}}\right)} \lesssim\|f\|_{L_{\epsilon \epsilon}\left(\mathbb{R}^{d}\right)} \\
\frac{r_{\epsilon}}{p_{\epsilon}} \geq 1+\sqrt{2}-\epsilon
\end{gathered}
$$

Corollary
(d, k) sets have positive measure if $d-k<(1+\sqrt{2})^{k-1}$

Part 2: Restricted directions

Joint work with Burak Erdoğan

$H \subset \mathbb{R}^{d}$ a hyperplane orthogonal to e_{d}

$$
1 \leq k<d-1
$$

$\theta(z): B \subset \mathbb{R}^{k} \rightarrow H$ parameterizes submanifold of H

$$
x \in H, z \in B
$$

$I(z, x):=$ the line in the direction $\theta(z)+e_{d}$, passing through the point x.

Restricted Mixed-Norms:

$$
\|X[f]\|_{L^{q}\left(L^{r}\right), \theta}:=\left(\int_{B \subset \mathbb{R}^{k}}\left(\int_{H}|X[f](/(z, x))|^{r} d x\right)^{\frac{q}{r}} d z\right)^{\frac{1}{q}}
$$

Question
For which p, q, r do we have

$$
\|X[f]\|_{L^{q}\left(L^{r}\right), \theta} \lesssim\|f\|_{L^{\rho}\left(\mathbb{R}^{d}\right)}
$$

To satisfy non-trivial estimates, θ should not be "flat"
i.e. should have $d-1$ linearly independent derivatives at each point.

Expect best possible estimates when θ is "well-curved"
(d -2)-surface, well-curved means non-vanishing Gaussian curvature

1-surface, well-curved means first $d-1$ derivatives lin. indep.
$1<k<d-2$, well-curved means ??

Wolff: $\theta=\mathbb{S}^{d-2}$

$$
\|X[f]\|_{L^{q}\left(L^{r}\right), \theta} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

$$
d=3,4:
$$

$$
1 \leq p \leq \frac{d^{2}-2 d+2}{d}, \frac{d}{p}-\frac{d-1}{r}<1, \frac{d-2}{q}>\frac{d}{p}-r
$$

$d \geq 5:$

$$
1 \leq p \leq \frac{d+1}{2}, q, r \text { as above }
$$

Almost sharp when $d=3,4$

Almost sharp in all dimensions would imply Kakeya

Erdoğan: $\theta(t)=\left(t, t^{2}, \ldots, t^{d-1}\right)$

$$
d=4,5: \text { Almost sharp range of } p, q, r
$$

Christ/Erdoğan: $\theta(t)=\left(t, t^{2}, \ldots, t^{d-1}\right)$
All d : Almost sharp range of p, q, r

Morally, these all use geometric combinatorial bush/hairbrush arguments

Wolff,Erdoğan: Discrete counting arguments
Christ/Erdoğan: Continuous counting argument via "iterated $T^{*} T^{\prime \prime}$ method. Intersections of lines controlled by analyzing sublevel sets of a certain Jacobian.

Wolff gets almost sharp result when \mathbb{S}^{d-2} is a 1 or 2-surface.

Question
Can these methods be used to give almost sharp results for 2-surfaces in higher dimensions?

Answer
At least sometimes.

First open case: $d=5$
θ is a 2 -surface in \mathbb{R}^{4}

$$
\begin{gathered}
\theta(u, v)=(u, v, \bar{\theta}(u, v)), \text { where } \bar{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
A=\operatorname{det}\left(\bar{\theta}_{u u}, \bar{\theta}_{u v}\right) \\
B=\operatorname{det}\left(\bar{\theta}_{u u}, \bar{\theta}_{v v}\right) \\
C=\operatorname{det}\left(\bar{\theta}_{u v}, \bar{\theta}_{v v}\right)
\end{gathered}
$$

Christ's codimension 2 curvature condition:
θ is nondegenerate if $B^{2}-4 A C \neq 0$ everywhere.
Example: $\theta(u, v)=\left(u, v, u^{2}-v^{2}, 2 u v\right)$

Theorem

Suppose the entries of $\bar{\theta}$ are quadratic polynomials and θ is nondegenerate. Then

$$
\|X[f]\|_{L^{q}\left(L^{r}\right), \theta} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

when

$$
1+\frac{4}{r}>\frac{5}{p}, \quad \frac{2}{q}+\frac{6}{r}>\frac{6}{p}, \quad \frac{6}{r}>\frac{4}{p} .
$$

Except for endpoints, no better $L^{p} \rightarrow L^{q}\left(L^{r}\right)$ estimates are satisified for any 2 -surface in \mathbb{R}^{4}.

Higher Dimensions

When $d=7,8,9$ we obtain similarly optimal $L^{p} \rightarrow L^{q}\left(L^{r}\right)$ estimates for the following surfaces:

d	$\theta(u, v)$
7	$\left(u, v, u^{2}, u v, v^{2}, u^{3}+v^{3}\right)$
8	$\left(u, v, u^{2}, u v, v^{2}, u^{2} v, u v^{2}\right)$
9	$\left(u, v, u^{2}, u v, v^{2}, u^{3}+v^{3}, u^{2} v, u v^{2}\right)$

When $d=6$ we obtain almost sharp $L^{p} \rightarrow L^{q}\left(L^{q}\right)$ estimates for

$$
\theta(u, v)=\left(u, v, u^{2}, u v, v^{2}\right)
$$

The iterated $T^{*} T$ method

$$
E \subset \mathbb{R}^{d}, \quad F \subset \mathbb{R}^{k} \times \mathbb{R}^{d-1}
$$

Want:

$$
\left\langle X\left[1_{E}\right], 1_{F}\right\rangle \lesssim|E|^{\frac{1}{\rho}}\left\|1_{F}\right\|_{L q^{\prime}\left(L^{\prime}\right), \theta}
$$

Important quantities:

$$
\alpha:=\frac{\left\langle X\left[1_{E}\right], 1_{F}\right\rangle}{|F|} \quad \beta:=\frac{\left\langle 1_{E}, X^{*}\left[1_{F}\right]\right\rangle}{|E|}
$$

$$
(z, x) \in \mathbb{R}^{k} \times \mathbb{R}^{d-1}, t \in \mathbb{R}
$$

set

$$
\gamma(z, x, t):=x+t\left(\theta(z)+e_{d}\right)
$$

so that

$$
X\left[1_{E}\right](z, x)=\int 1_{E}(\gamma(z, x, t)) d t
$$

$$
y \in \mathbb{R}^{d}, z \in \mathbb{R}^{k}
$$

set

$$
\gamma^{*}(y, z):=\left(z, y_{H}-y_{t} \theta(z)\right)
$$

so that

$$
X^{*}\left[1_{F}\right](y)=\int 1_{F}\left(\gamma^{*}(y, z)\right) d z
$$

Choose a typical $y_{0} \in E$
Should have $X^{*}\left[1_{F}\right]\left(y_{0}\right) \approx \beta$
i.e. \exists a measure β set of z^{\prime} s with $\gamma^{*}\left(y_{0}, z\right) \in F$

For each of these points $\gamma^{*}\left(y_{0}, z\right) \in F$
Expect $X\left[1_{E}\right]\left(\gamma^{*}\left(y_{0}, z\right)\right) \approx \alpha$
i.e. \exists a measure α set of t 's with $\gamma\left(\gamma^{*}\left(y_{0}, z\right), t\right) \in E$

Assume this point in E is typical and iterate

Obtain

$$
\Omega=\left\{\left(z_{1}, t_{1}, \ldots, z_{n}, t_{n}\right)\right\}
$$

for each $\left(z_{1}, t_{1}, \ldots, z_{i}\right),\left|\left\{t_{i}\right\}\right| \approx \alpha$
for each $\left(z_{1}, t_{1}, \ldots, z_{i}, t_{i}\right),\left|\left\{z_{i+1}\right\}\right| \approx \beta$
$\Gamma\left(z_{1}, t_{1}, \ldots, z_{n}, t_{n}\right):=\gamma\left(\gamma^{*}\left(\ldots \gamma\left(\gamma^{*}\left(y_{0}, z_{1}\right), t_{1} \ldots\right), z_{n}\right), t_{n}\right)$
$\Gamma(\Omega) \subset E$
Choose n so that $n(k+1)=d$ to obtain a lower bound for $|E|$

End up with

$$
|E| \gtrsim J|\Omega| \gtrsim J \alpha^{n} \beta^{n}
$$

where J is a lower bound for $\operatorname{det}\left(\frac{\partial \Gamma}{\partial z_{i}, t_{i}}\right)$ which holds on a refinement of Ω

Yields R.W.T. estimate

Finding lower bound for J

If each $\left\{t_{i}\right\}$ was evenly distributed over $[0,1]$ and each $\left\{z_{i}\right\}$ was evenly distributed over $B \subset \mathbb{R}^{k}$, then we would be in business.
$k=1$:
Tao/Wright-
Lemma
Suppose $S \subset[0,1], 0<\epsilon \ll 1$. Then there is an interval $I \subset[0,1]$ so that

$$
|S \cap I| \gtrsim|S|^{1+\epsilon}
$$

and

$$
|S \cap J| \lesssim\left(\frac{|J|}{|I|}\right)^{\epsilon}|S \cap I|
$$

for any interval J with $|J| \ll|I|$.

Replacement lemmas in higher dimensions

Would like to use Christ's:
Lemma
Suppose $S \subset B \subset \mathbb{R}^{k}$, and $0<\epsilon \ll 1$. Then there is a parallelotope P so that

$$
|S \cap P| \gtrsim|S|^{1+\epsilon}
$$

and

$$
|S \cap Q| \lesssim\left(\frac{|Q|}{|P|}\right)^{\epsilon}|S \cap P|
$$

for any parallelotope Q with $|Q| \ll|P|$

Above, the P's and Q's can have any orientation

Difficulty

P, P^{\prime} same size eccentricity, different orientations,
$P \cap P^{\prime} \neq \emptyset \nRightarrow P \subset C \cdot P^{\prime}$

Instead:

Lemma

Suppose $S \subset B \subset \mathbb{R}^{k}$, and $0<\epsilon \ll 1$. Fix axes w_{1}, \ldots, w_{k}. Then there is a parallelotope P with axes parallel to w_{1}, \ldots, w_{k} so that

$$
|S \cap P| \gtrsim|S|^{1+\epsilon}
$$

and

$$
|S \cap Q| \lesssim\left(\frac{|Q|}{|P|}\right)^{\epsilon}|S \cap P|
$$

for any parallelotope Q with $|Q| \ll|P|$ whose axes are parallel to w_{1}, \ldots, w_{k}.

