Workshop on Harmonic Analysis, Toronto, Canada

Higher order elliptic boundary value problems in non-smooth domains

Vladimir Maz'ya
(joint work with Svitlana Mayboroda)

The Ohio State University

February 22, 2008

Statement of the problem

Ω is an arbitrary bounded domain in $\mathbb{R}^{n}, f \in C_{0}^{\infty}(\Omega)$.
We say that u is a variational solution of the Dirichlet problem if

$$
(-\Delta)^{m} u=f, \quad u \in \mathscr{W}^{m, 2}(\Omega)
$$

where $W^{m, 2}(\Omega)$ be the completion of $C_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\|u\|_{W^{m, 2}(\Omega)}=\left(\sum_{|\alpha| \leq m}\left\|D^{\alpha} u\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

How smooth is the solution?

Arbitrary domain

Question 1: Let Ω be an arbitrary domain in \mathbb{R}^{n}. Is $\left|\nabla^{m-1} u\right|$ bounded in Ω ?

- $n \geq 4 \mathrm{NO}$

$$
\begin{aligned}
& \Omega=B(O, 1) \backslash\{O\} \subset \mathbb{R}^{4} \\
& u(x):=\eta(x) \sum_{|\alpha|=m-3} c_{\alpha} D^{\alpha}\left(|x|^{2 m-4} \log |x|\right) \\
& \text { where } \eta \in C_{0}^{\infty}(B(O, 1 / 2)) \\
& \text { and } \eta=1 \text { in } B(O, 1 / 4) \text {. } \\
& \text { Then } u \text { satisfies } \\
& (-\Delta)^{m} u=f \in C_{0}^{\infty}(\Omega), u \in \dot{W}^{m, 2}(\Omega) \text {. } \\
& \text { But }\left|\nabla^{m-1} u\right| \sim \log |x| \notin L^{\infty}(\Omega)
\end{aligned}
$$

Arbitrary domain

Question 1: Let Ω be an arbitrary domain in \mathbb{R}^{n}. Is $\left|\nabla^{m-1} u\right|$ bounded in Ω ?

- $n \geq 4 \mathrm{NO}$
- $n=2,3$ YES

Theorem
Let Ω be an arbitrary domain in \mathbb{R}^{3} or \mathbb{R}^{2} and u be a solution of the Dirichlet problem for the polyharmonic equation with $f \in C_{0}^{\infty}(\Omega)$. Then

$$
\left|\nabla^{m-1} u\right| \in L^{\infty}(\Omega) .
$$

Green function on an arbitrary 3-dim domain

Theorem

Let Ω be an arbitrary domain in \mathbb{R}^{3}. Then for every $x, y \in \Omega$

$$
\left|\nabla_{x}^{m-1} \nabla_{y}^{m-1}(G(x, y)-\Gamma(x-y))\right| \leq \frac{C}{\max \{|x-y|, d(x), d(y)\}}
$$

where $\Gamma(x-y)=C_{m}|x-y|^{2 m-3}$ is the fundamental solution for $(-\Delta)^{m}, d(x)$ is the distance from x to the boundary. In particular,

$$
\left|\nabla_{x}^{m-1} \nabla_{y}^{m-1} G(x, y)\right| \leq C|x-y|^{-1} \quad \forall x, y \in \Omega
$$

where G is the Green function for biharmonic equation and C is an absolute constant.

Dirichlet problem

Theorem
Let Ω be an arbitrary domain in \mathbb{R}^{3} and

$$
\Delta^{m} u=\sum_{|\alpha|=m-1} D^{\alpha} f_{\alpha}, \quad u \in \grave{W}^{m, 2}(\Omega)
$$

Then

$$
\left|\nabla^{m-1} u(x)\right| \leq C \int_{\Omega} \frac{|\mathbf{f}(y)|}{|x-y|} d y, \quad x \in \Omega
$$

Corollary

$$
\left\|\nabla^{m-1} u\right\|_{L^{\infty}(\Omega)} \leq C\|f\|_{L^{p}(\Omega)}, \quad p>3 / 2
$$

Continuity of $\nabla^{m-1} u$

$$
\Omega=B(O, 1) \backslash\{O\} \subset \mathbb{R}^{3}
$$

Consider

$$
\begin{aligned}
& \qquad u(x):=\eta(x) \sum_{|\alpha|=m-2} c_{\alpha} D^{\alpha}|x|^{2 m-3} \\
& \text { where } \eta \in C_{0}^{\infty}(B(O, 1 / 2)) \\
& \text { and } \eta=1 \text { in } B(O, 1 / 4) \text {. }
\end{aligned}
$$

Then u satisfies

$$
(-\Delta)^{m} u=f \in C_{0}^{\infty}(\Omega), u \in \dot{W}^{m, 2}(\Omega) .
$$

The assertion $\nabla^{m-1} u \in L^{\infty}(\Omega)$ is sharp in the sense that it cannot be replaced by $\nabla^{m-1} u \in C(\bar{\Omega})$.

Question 2: Conditions on Ω ensuring the continuity of $\nabla^{m-1} u$ at a boundary point?

Theorem
Let $\Omega \subset \mathbb{R}^{3}$ be a $C^{0, \omega}$ domain and $m \geq 2$. If

$$
\int_{0}^{1} \frac{t d t}{\omega^{2}(t)}=\infty
$$

then every solution to the polyharmonic equation satisfies $\nabla^{m-1} u \in C(\bar{\Omega})$.
Conversely, for every ω such that

$$
\int_{0}^{1} \frac{t d t}{\omega^{2}(t)}<\infty
$$

there exists a $C^{0, \omega}$ domain and a solution u of the polyharmonic equation such that $\nabla^{m-1} u \notin C(\bar{\Omega})$.

Wiener regularity for $-\Delta$

Let Ω be a bounded domain in \mathbb{R}^{n},

$$
-\Delta u=f \text { in } \Omega, \quad f \in C_{0}^{\infty}(\Omega), \quad u \in \mathscr{W}^{1,2}(\Omega)
$$

Definition
We say that a point $O \in \partial \Omega$ is regular if $u(x) \rightarrow 0$ as $x \rightarrow O$ for any $f \in C_{0}^{\infty}(\Omega)$.
Theorem (Wiener, 1924)
The point $O \in \partial \Omega$ is regular if and only if

$$
\int_{0}^{1} \operatorname{cap}\left(B_{\sigma} \backslash \Omega\right) \sigma^{1-n} d \sigma=\infty
$$

where

$$
\operatorname{cap}(K)=\inf \left\{\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x: u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), u>1 \text { on } K\right\}
$$

is the Wiener (harmonic) capacity of a set $K(n>2)$.

Regularity with respect to $(-\Delta)^{m}$

Let Ω be a bounded domain in \mathbb{R}^{n},

$$
(-\Delta)^{m} u=f \text { in } \Omega, \quad f \in C_{0}^{\infty}(\Omega), \quad u \in \mathscr{W}^{m, 2}(\Omega)
$$

A point $O \in \partial \Omega$ is regular with respect to $(-\Delta)^{m}$ if $u(x) \rightarrow 0$ as $x \rightarrow O$ for any $f \in C_{0}^{\infty}(\Omega)$.
Theorem (V.M., 2002)
Let $m=2$ and $n=4,5,6,7$,
or $m \geq 3$ and $n=2 m, 2 m+1,2 m+2$.
The point $O \in \partial \Omega$ is regular with respect to $(-\Delta)^{m}$ if and only if

$$
\int_{0}^{1} \operatorname{cap}\left(B_{\sigma} \backslash \Omega\right) \sigma^{2 m-n-1} d \sigma=\infty
$$

where

$$
\operatorname{cap}(K)=\inf \left\{\int_{\mathbb{R}^{n}}\left|\nabla^{m} u\right|^{2} d x: u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), u>1 \text { on } K\right\}, n>2 m
$$

New polyharmonic capacity

Denote by Y_{ℓ}^{k} the spherical harmonics of degree $\ell, \ell \geq 0,|k| \leq \ell$. Let Π denote the space of functions

$$
P(x)=\sum_{\ell=0}^{m-1} \sum_{k=-\ell}^{\ell} b_{\ell}^{k} Y_{\ell}^{k}(x), \quad b_{\ell}^{k} \in \mathbb{R}
$$

equipped with the norm $\|P\|_{\square}=\sqrt{\sum\left(b_{\ell}^{k}\right)^{2}}$.
Then for a compactum $K \subset \mathbb{R}^{3} \backslash\{O\}$ and $P \in \Pi$ we define the polyharmonic capacity of K by

$$
\operatorname{Cap}_{m, P}(K)=\inf \left\|\nabla^{m} u\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

where the infimum is taken over $u \in \mathcal{W}^{m, 2}\left(\mathbb{R}^{3} \backslash\{O\}\right)$ such that $u=P$ in a neighborhood of K.

Continuity of $\nabla^{m-1} u$

Let Ω be a bounded domain in $\mathbb{R}^{3}, O \in \partial \Omega$ and

$$
(-\Delta)^{m} u=f \text { in } \Omega, \quad f \in C_{0}^{\infty}(\Omega), \quad u \in \mathscr{W}^{m, 2}(\Omega)
$$

We say that $O \in \partial \Omega$ is $(m-1)$-regular with respect to $(-\Delta)^{m}$ if $\nabla^{m-1} u(x) \rightarrow 0$ as $x \rightarrow O, x \in \Omega$.

Theorem (S. Mayboroda, V.M.)

- $\int_{0}^{1} \inf _{P \in \Pi:\|P\|=1} \operatorname{Cap}_{m, P}\left(\overline{C_{s}} \backslash \Omega\right) d s=+\infty \Longrightarrow(m-1)$-regularity
- $\inf _{P \in \Pi:\|P\|=1} \int_{0}^{1} \operatorname{Cap}_{m, P}\left(\overline{C_{s}} \backslash \Omega\right) d s=+\infty \Longleftarrow(m-1)$-regularity

Here $C_{s}=\left\{x \in \mathbb{R}^{n}: s<|x|<2 s\right\}$.

Exterior of a cusp

$\Omega \cap B(O, 1)=\{x \in B(O, 1): \theta>h(r)\}$
h is nondecreasing, $h(2 r) \leq c h(r)$ (Ω is exterior of a cusp in a neighborhood of O)
O is $m-1$-regular if and only if

$$
\int_{0}^{1} h(s)^{2} \frac{d s}{s}=+\infty
$$

Compare to Wiener condition for $-\Delta$: the point O is regular if and only if

$$
\int_{0}^{1}|\log h(s)|^{-1} \frac{d s}{s}=+\infty
$$

Example

The complement of Ω is a compactum of zero harmonic capacity situated on a circular cone
O is not 1-regular with respect to Δ^{2}
(e.g. consider the solution
$u(x)=|x| \cos \alpha-x_{3}$ on the cone $\left\{x: x_{3}=|x| \cos \alpha\right\}$)

Instability of irregularity for Δ^{2}

The complement of Ω is a compactum given by the points

$$
\begin{aligned}
& D_{k}\left(z^{\left.-n^{-r}, \beta_{4}, 0\right)}\right. \\
& A_{k}=\left(2^{-k}, \alpha, \pi / 2\right), \quad B_{k}=\left(2^{-k}, \alpha, \pi\right) \\
& C_{k}=\left(2^{-k}, \alpha, 3 \pi / 2\right), \quad D_{k}=\left(2^{-k}, \beta_{k}, 0\right)
\end{aligned}
$$

in spherical coordinates. They do NOT belong to a common circular cone.
$\sum_{k}\left(\beta_{k}-\alpha\right)^{2}=+\infty \Longrightarrow O$ is 1-regular, for example, if $\beta_{k}=\beta \neq \alpha \Longrightarrow O$ is 1-regular but if $\beta_{k}=\alpha \Longrightarrow O$ is not 1-regular.

Therefore, irregularity is not stable under affine transformations

Convex domain

Let Ω be an arbitrary convex domain in $\mathbb{R}^{n}, f \in C_{0}^{\infty}(\Omega)$ and $u \in \mathscr{W}^{2,2}(\Omega)$ be a solution of the Dirichlet problem for the biharmonic equation. Let $\nabla^{2} u$ denote the vector of all second derivatives.

Question 4: Is $\left|\nabla^{2} u\right|$ bounded in Ω ?

- $n=2$ YES V. Kozlov, V.M., 2004
- $n \geq 3$?

Convex domain

Let Ω be an arbitrary convex domain in $\mathbb{R}^{n}, f \in C_{0}^{\infty}(\Omega)$ and $u \in \dot{W}^{2,2}(\Omega)$ be a solution of the Dirichlet problem for the biharmonic equation. Let $\nabla^{2} u$ denote the vector of all second derivatives.

Question 4: Is $\left|\nabla^{2} u\right|$ bounded in Ω ?

- $n=2$ YES V. Kozlov, V.M., 2004
- $n \geq 3$ YES S. Mayboroda, V.M., 2007

Theorem

Let Ω be a convex domain in \mathbb{R}^{n} and u be a solution of the Dirichlet problem for the biharmonic equation with $f \in C_{0}^{\infty}(\Omega)$. Then

$$
\left|\nabla^{2} u\right| \in L^{\infty}(\Omega)
$$

Identity

Let Ω be an arbitrary domain in $\mathbb{R}^{3}, u \in C_{0}^{\infty}(\Omega)$ and $v=e^{t}\left(u \circ \varkappa^{-1}\right)$. Then for every function g

$$
\begin{aligned}
\int_{\mathbb{R}^{3}} & \Delta u(x) \Delta\left(u(x)|x|^{-1} g\left(\log |x|^{-1}\right)\right) d x \\
& =\int_{\mathbb{R}} \int_{S^{2}}\left[\left(\delta_{\omega} v\right)^{2} g+2\left(\partial_{t} \nabla_{\omega} v\right)^{2} g+\left(\partial_{t}^{2} v\right)^{2} g\right. \\
& -\left(\nabla_{\omega} v\right)^{2}\left(\partial_{t}^{2} g+\partial_{t} g+2 g\right)-\left(\partial_{t} v\right)^{2}\left(2 \partial_{t}^{2} g+3 \partial_{t} g-g\right) \\
& \left.+\frac{1}{2} v^{2}\left(\partial_{t}^{4} g+2 \partial_{t}^{3} g-\partial_{t}^{2} g-2 \partial_{t} g\right)\right] d \omega d t
\end{aligned}
$$

Lemmas

Lemma

A bounded solution of the equation

$$
\frac{d^{4} g}{d t^{4}}+2 \frac{d^{3} g}{d t^{3}}-\frac{d^{2} g}{d t^{2}}-2 \frac{d g}{d t}=\delta(t)
$$

subject to the restriction $g(t) \rightarrow 0$ as $t \rightarrow+\infty$, is the function

$$
g(t)=-\frac{1}{6} \begin{cases}e^{t}-3, & t<0 \\ e^{-2 t}-3 e^{-t}, & t>0\end{cases}
$$

Lemma

For Ω, u, v, g as above and $\xi \in \Omega, \tau=\log |\xi|^{-1}$

$$
\frac{1}{2} \int_{S^{n-1}} v^{2}(\tau, \omega) d \omega \leq \int_{\mathbb{R}^{n}} \Delta u(x) \Delta\left(u(x)|x|^{-1} g(\log (|\xi| /|x|))\right) d x
$$

Theorem

Theorem
Let Ω be an arbitrary bounded domain in $\mathbb{R}^{3}, O \in \partial \Omega$, $R \in\left(0, \frac{1}{4} \operatorname{diam} \Omega\right)$. Let

$$
\Delta^{2} u=f \text { in } \Omega, \quad f \in C_{0}^{\infty}\left(\Omega \backslash B_{4 R}\right), \quad u \in \grave{W}_{2}^{2}(\Omega)
$$

Then

$$
|\nabla u(x)| \leq \frac{C}{R}\left(f_{\left(B_{R} \backslash B_{R / 4}\right) \cap \Omega}|u(y)|^{2} d y\right)^{1 / 2} \quad \text { for every } \quad x \in B_{R / 8}
$$

Convex domains: Identity 1

Let Ω be an arbitrary bounded domain in $\mathbb{R}^{n}, O \in \mathbb{R}^{n} \backslash \Omega$ and $u \in C^{2}(\bar{\Omega}),\left.\quad u\right|_{\partial \Omega}=0,\left.\quad \nabla u\right|_{\partial \Omega}=0, \quad v=e^{2 t}\left(u \circ \varkappa^{-1}\right)$, where $\mathbb{R}^{n} \ni x \xrightarrow{\varkappa}(t, \omega) \in \mathbb{R} \times S^{n-1}$.

Then for every function g

$$
\begin{aligned}
& \int_{\Omega} \Delta u(x) \Delta\left(\frac{u(x) g\left(\log |x|^{-1}\right)}{|x|^{n}}\right) d x \\
& \quad=\int_{\varkappa(\Omega)}\left[\left(\delta_{\omega} v\right)^{2} g+2\left(\partial_{t} \nabla_{\omega} v\right)^{2} g+\left(\partial_{t}^{2} v\right)^{2} g\right. \\
& \quad-\left(\nabla_{\omega} v\right)^{2}\left(\partial_{t}^{2} g+n \partial_{t} g+2 n g\right)-\left(\partial_{t} v\right)^{2}\left(2 \partial_{t}^{2} g+3 n \partial_{t} g+\left(n^{2}+2 n-4\right) g\right) \\
& \left.\quad+\frac{1}{2} v^{2}\left(\partial_{t}^{4} g+2 n \partial_{t}^{3} g+\left(n^{2}+2 n-4\right) \partial_{t}^{2} g+2 n(n-2) \partial_{t} g\right)\right] d \omega d t .
\end{aligned}
$$

Convex domains: additional estimates

For every $v \in \grave{W}_{2}^{2}\left(S_{+}^{n-1}\right)$,

$$
\frac{1}{2 n} \int_{S_{+}^{n-1}}\left|\delta_{\omega} v\right|^{2} d \omega \geq \int_{S_{+}^{n-1}}\left|\nabla_{\omega} v\right|^{2} d \omega \geq(n-1) \int_{S_{+}^{n-1}}|v|^{2} d \omega
$$

Therefore, for any convex domain Ω and any function $g \geq 0$ with $\partial_{t}^{2} g+n \partial_{t} g \leq 0$

$$
\begin{aligned}
& \int_{\Omega} \Delta u(x) \Delta\left(\frac{u(x) g\left(\log |x|^{-1}\right)}{|x|^{n}}\right) d x \\
& \quad \geq \int_{\varkappa(\Omega)}\left[-\left(\partial_{t} v\right)^{2}\left(2 \partial_{t}^{2} g+3 n \partial_{t} g+\left(n^{2}-2\right) g\right)\right. \\
& \left.\quad+\frac{1}{2} v^{2}\left(\partial_{t}^{4} g+2 n \partial_{t}^{3} g+\left(n^{2}-2\right) \partial_{t}^{2} g-2 n \partial_{t} g\right)\right] d \omega d t .
\end{aligned}
$$

Convex domains: choice of g

A bounded solution of the equation

$$
\frac{d^{4} g}{d t^{4}}+2 n \frac{d^{3} g}{d t^{3}}+\left(n^{2}-2\right) \frac{d^{2} g}{d t^{2}}-2 n \frac{d g}{d t}=\delta(t)
$$

subject to $g(t) \rightarrow 0$ as $t \rightarrow+\infty$, is

$$
g(t)=-\frac{1}{2 n \sqrt{n^{2}+8}} \begin{cases}n e^{-1 / 2\left(n-\sqrt{n^{2}+8}\right) t}-\sqrt{n^{2}+8}, & t<0, \\ n e^{-1 / 2\left(n+\sqrt{n^{2}+8}\right) t}-\sqrt{n^{2}+8} e^{-n t}, & t>0 .\end{cases}
$$

Then for g as above and for every $\xi \in \Omega, \tau=e^{-|\xi|}$

$$
\begin{aligned}
& \int_{\Omega} \Delta u(x) \Delta\left(\frac{u(x) g(\log (|\xi| /|x|))}{|x|^{n}}\right) d x \geq \frac{1}{2} \int_{\varkappa(\Omega) \cap S^{n-1}} v^{2}(\tau, \omega) d \omega \\
& +\int_{\varkappa(\Omega)}\left(-2 \partial_{t}^{2} g(t-\tau)-3 n \partial_{t} g(t-\tau)-\left(n^{2}-2\right) g(t-\tau)\right)\left(\partial_{t} v\right)^{2} d \omega d t
\end{aligned}
$$

Convex domains: Identity 2

Suppose Ω is a bounded Lipschitz domain in $\mathbb{R}^{n}, O \in \mathbb{R}^{n} \backslash \Omega$, and $u \in C^{4}(\bar{\Omega}),\left.\quad u\right|_{\partial \Omega}=0,\left.\quad \nabla u\right|_{\partial \Omega}=0, \quad v=e^{2 t}\left(u \circ \varkappa^{-1}\right)$.
Then

$$
\begin{aligned}
& 2 \int_{\Omega} \Delta u(x) \Delta\left(\frac{u(x) g\left(\log |x|^{-1}\right)}{|x|^{n}}\right) d x-\int_{\Omega} \Delta^{2} u(x)\left(\frac{(x \cdot \nabla u(x)) g\left(\log |x|^{-1}\right)}{|x|^{n}}\right) d x \\
& =\int_{\varkappa(\Omega)}\left(-\frac{1}{2}\left(\delta_{\omega} v\right)^{2} \partial_{t} g+\left(\partial_{t} \nabla_{\omega} v\right)^{2}\left(\partial_{t} g+2 n g\right)\right. \\
& \quad+\left(\partial_{t}^{2} v\right)^{2}\left(\frac{3}{2} \partial_{t} g+2 n g\right)+n\left(\nabla_{\omega} v\right)^{2} \partial_{t} g \\
& \left.\quad+\left(\partial_{t} v\right)^{2}\left(-\frac{1}{2} \partial_{t}^{3} g-n \partial_{t}^{2} g-\frac{1}{2}\left(n^{2}+2 n-4\right) \partial_{t} g-2 n(n-2) g\right)\right) d \omega d t \\
& \quad-\frac{1}{2} \int_{\varkappa(\partial \Omega)}\left(\left(\delta_{\omega} v\right)^{2}+2\left(\partial_{t} \nabla_{\omega} v\right)^{2}+\left(\partial_{t}^{2} v\right)^{2}\right) g \cos (\nu, t) d \sigma_{\omega, t},
\end{aligned}
$$

Convex domains: global estimates

Suppose Ω is a smooth convex domain in $\mathbb{R}^{n}, O \in \partial \Omega$, $u \in C^{4}(\bar{\Omega}),\left.\quad u\right|_{\partial \Omega}=0,\left.\quad \nabla u\right|_{\partial \Omega}=0, \quad v=e^{2 t}\left(u \circ \varkappa^{-1}\right)$. Let $\xi \in \Omega, \tau=e^{-|\xi|}$. Combining Identities 1 and 2 implies

$$
\begin{aligned}
\frac{1}{2} \int_{\varkappa(\Omega) \cap S^{n-1}} & v^{2}(\tau, \omega) d \omega \\
& \leq(n+1) \int_{\Omega} \Delta^{2} u(x)\left(\frac{u(x) g(\log |\xi| /|x|)}{|x|^{n}}\right) d x \\
& -\frac{n}{2} \int_{\Omega} \Delta^{2} u(x)\left(\frac{(x \cdot \nabla u(x)) g(\log |\xi| /|x|)}{|x|^{n}}\right) d x
\end{aligned}
$$

Convex domains: local estimates

Theorem
Let Ω be a convex domain on $\mathbb{R}^{n}, O \in \partial \Omega$ and $R \in(0, \operatorname{diam}(\Omega) / 5)$. Suppose

$$
\Delta^{2} u=f \text { in } \Omega, \quad f \in C_{0}^{\infty}\left(\Omega \backslash B_{5 R}\right), \quad u \in \grave{W}_{2}^{2}(\Omega)
$$

Then

$$
\frac{1}{\rho^{4}} f_{\partial B_{\rho} \cap \Omega}|u(x)|^{2} d \sigma_{x} \leq \frac{C}{R^{4}} f_{\left(B_{4 R} \backslash B_{R}\right) \cap \Omega}|u(x)|^{2} d x \quad \forall \rho<R,
$$

where the constant C depends on the dimension only.

Convex domains: local estimates

Theorem

Let Ω be a convex domain on $\mathbb{R}^{n}, O \in \partial \Omega$ and $R \in(0, \operatorname{diam}(\Omega) / 5)$. Suppose

$$
\Delta^{2} u=f \text { in } \Omega, \quad f \in C_{0}^{\infty}\left(\Omega \backslash B_{5 R}\right), \quad u \in \dot{W}_{2}^{2}(\Omega)
$$

Then

$$
\frac{1}{\rho^{4}} f_{\partial B_{\rho} \cap \Omega}|u(x)|^{2} d \sigma_{x} \leq \frac{C}{R^{4}} f_{\left(B_{4 R} \backslash B_{R}\right) \cap \Omega}|u(x)|^{2} d x \quad \forall \rho<R,
$$

where the constant C depends on the dimension only.

We use the previous estimates in \mathbb{R}^{n}, localization procedure and

$$
\int_{B_{R} \cap \Omega}\left|\nabla^{2} u\right|^{2} d x+\frac{1}{R^{2}} \int_{B_{R} \cap \Omega}|\nabla u|^{2} d x \leq \frac{C}{R^{4}} \int_{\left(B_{2 R} \backslash B_{R}\right) \cap \Omega}|u|^{2} d x
$$

Convex domains: main result

Let Ω be a convex domain in $\mathbb{R}^{n}, O \in \partial \Omega$, and fix some $R \in(0, \operatorname{diam}(\Omega) / 10)$. Suppose u is a solution of the Dirichlet problem (*) with $f \in C_{0}^{\infty}\left(\Omega \backslash B_{10 R}\right)$. Then

$$
\left|\nabla^{2} u(x)\right| \leq \frac{C}{R^{2}}\left(f_{\left(B_{5 R} \backslash B_{R}\right) \cap \Omega}|u(y)|^{2} d y\right)^{1 / 2} \quad \text { for every } x \in B_{R / 5} \cap \Omega
$$

In particular,

$$
\left|\nabla^{2} u\right| \in L^{\infty}(\Omega)
$$

