Discrepancy and Small Ball Inequalities

Dmitriy Bilyk \& Michael Lacey \& Armen Vagharshakyan

February 20, 2008

Quantitative Estimates of Uniform Distribution

$$
\left[0,\left(x_{1}, \ldots, x_{d}\right)\right]=\prod_{t=1}^{d}\left[0, x_{t}\right]
$$

Quantitative Estimates of Uniform Distribution

$$
\left[0,\left(x_{1}, \ldots, x_{d}\right)\right]=\prod_{t=1}^{d}\left[0, x_{t}\right]
$$

Definition

The Discrepancy Function of $\mathcal{P}_{N}=\left\{x_{1}, \ldots, x_{N}\right\} \subset[0,1]^{d}$ is

$$
D_{N}(x)=\sharp(\mathcal{P} \cap[0, x])-N[0, x] .
$$

Quantitative Estimates of Uniform Distribution

$$
\left[0,\left(x_{1}, \ldots, x_{d}\right)\right]=\prod_{t=1}^{d}\left[0, x_{t}\right]
$$

Definition

The Discrepancy Function of $\mathcal{P}_{N}=\left\{x_{1}, \ldots, x_{N}\right\} \subset[0,1]^{d}$ is

$$
D_{N}(x)=\sharp(\mathcal{P} \cap[0, x])-N[0, x] .
$$

Koksma-Hlawka Inequality
For any function $f:[0,1]^{d} \longrightarrow \mathbb{R}$ of bounded variation $\mathrm{V}(f)$ in the sense of Hardy, then

$$
\left|\int_{[0,1]^{d}} f(y) d y-N^{-1} \sum_{j=1}^{N} f\left(x_{j}\right)\right| \leq \mathrm{V}(f) \cdot \frac{\left\|D_{N}\right\|_{\infty}}{N} .
$$

Lattices are Not Extremal Point Distributions

Lattices are Not Extremal Point Distributions

The area of the rectangle is tiny, but contains $1 / 15$ of all the rectangles.

Random Selection is Bad

CLT: For measurable f, random X_{n},

$$
\frac{1}{N} \sum_{n=1}^{N} f\left(X_{n}\right)=\int_{[0,1]^{d}} f(x) d x+O\left(N^{-1 / 2}\right)
$$

Random Selection is Bad

CLT: For measurable f, random X_{n},

$$
\frac{1}{N} \sum_{n=1}^{N} f\left(X_{n}\right)=\int_{[0,1]^{d}} f(x) d x+O\left(N^{-1 / 2}\right)
$$

They cluster, and have gaps.

Examples of Low Discrepancy Set

Roth's Theorem

For any choice of \mathcal{P}_{N} we have

$$
\left\|D_{N}\right\|_{2} \gtrsim(\log N)^{(d-1) / 2}
$$

Two Giants: Klaus Roth and Wolfgang Schmidt

Roth Heuristic

For extremal distributions, one expects that each dyadic rectangle with volume N^{-1} has one point in it.

Roth Heuristic

For extremal distributions, one expects that each dyadic rectangle with volume N^{-1} has one point in it.

Hyperbolic Haar Reduction

Consider dyadic rectangles of volume $(2 N)^{-1}$; at least one-half of these must not contain any point in \mathcal{P}_{N}. Call these the good rectangles. And consider the Haar function associated to these dyadic rectangles.

$$
h_{l_{1} \times \cdots \times l_{d}}\left(x_{1}, \ldots, x_{d}\right)=\prod_{j=1}^{d}\left\{-\mathbf{1}_{l_{j, \text { left }}}\left(x_{j}\right)+\mathbf{1}_{l_{j, \text { right }}}\left(x_{j}\right)\right\}
$$

One Dimensional Haar Functions

Two Dimensional Haar Functions

Two Dimensional Haar Functions

h_{S}

Two Dimensional Haar Functions

A product rule holds.

$$
h_{R} \cdot h_{S}=-h_{R \cap S}
$$

Proof of Roth Theorem

Lemma

If $R \cap \mathcal{P}_{N}=\emptyset$, then $\left.\left\langle h_{R}, D_{N}\right\rangle\langle-c N| R\right|^{2}$.

Proof of Roth Theorem

Lemma

If $R \cap \mathcal{P}_{N}=\emptyset$, then $\left.\left\langle h_{R}, D_{N}\right\rangle\langle-c N| R\right|^{2}$.

Proof.

$$
\begin{aligned}
\left\|D_{N}\right\|_{2}^{2} & \geq \sum_{R \text { good }}|R|^{-1}\left|D_{N}, h_{R}\right|^{2} \\
& \gtrsim N^{2} \sum_{R \text { good }}|R|^{3} \gtrsim(\log N)^{d-1} .
\end{aligned}
$$

Theorem

For any choice of point distribution \mathcal{P}_{N} we have

$$
\left\|D_{N}\right\|_{p} \gtrsim(\log N)^{(d-1) / 2}, \quad 1<p<\infty .
$$

Theorem

For any choice of point distribution \mathcal{P}_{N} we have

$$
\left\|D_{N}\right\|_{p} \gtrsim(\log N)^{(d-1) / 2}, \quad 1<p<\infty
$$

There is however a 'kink' at L^{∞} in Dimension $d=2$.
Schmidt's Theorem ($d=2!$)

A gain of $\sqrt{\log N}$ over the average case bound.

Conjecture: Discrepancy Function in L^{∞}

For $d \geq 3$,
$\left\|D_{N}\right\|_{\infty} \gtrsim(\log N)^{d / 2}$

Conjecture: Discrepancy Function in L^{∞}

For $d \geq 3$,

$$
\left\|D_{N}\right\|_{\infty} \gtrsim(\log N)^{d / 2}
$$

Conjecture: Small Ball Inequality
For $d \geq 3$, and generic choices of coefficients $a_{R} \in\{-1,0,1\}$,

$$
\left\|\sum_{|R|=2^{-n}} a_{R} h_{R}(x)\right\|_{\infty} \gtrsim n^{d / 2} .
$$

Conjecture: Discrepancy Function in L^{∞}

For $d \geq 3$,

$$
\left\|D_{N}\right\|_{\infty} \gtrsim(\log N)^{d / 2}
$$

Conjecture: Small Ball Inequality
For $d \geq 3$, and generic choices of coefficients $a_{R} \in\{-1,0,1\}$,

$$
\left\|\sum_{|R|=2^{-n}} a_{R} h_{R}(x)\right\|_{\infty} \gtrsim n^{d / 2} .
$$

- $d=2$ is a Theorem of Talagrand.
- Both conjectures are a 'gain of a square root' over the average case bounds.

Theorem (Bilyk \& L \& Vagharshakyan)

In dimension $d \geq 3$ there is a $\eta=\eta(d) \geq c / d^{2}>0$ for which we have

$$
\begin{equation*}
\left\|\sum_{|R|=2^{-n}} a_{R} h_{R}\right\|_{\infty} \gtrsim n^{(d-1) / 2+\eta} . \tag{1}
\end{equation*}
$$

Beck established a version of this Theorem with $d=3$ and

$$
n^{\eta} \leftarrow(\log n)^{1 / 8} .
$$

József Beck, A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution Compositio Math. 72 (1989) 269-339

$$
4 \square>4 \text { 兯 } ا \text { 引 }
$$

Bilyk \& et. al

Other Applications of the Small Ball Inequality

- Lower bounds on Packing Numbers of Unit Balls of certain Mixed Derivative Sobolev Spaces.
- For the Brownian Sheet B, upper bounds on

$$
\mathbb{P}\left(\|B\|_{C\left([0,1]^{d}\right)}<\epsilon\right), \quad \epsilon \downarrow 0 .
$$

Talagrand's Theorem-aprés Halasz, \& Temlyakov

Talagrand's Theorem

In dimension $d=2$, for generic choices of coefficients $a_{R} \in\{-1,0,1\}$

$$
\left\|\sum_{R \mid=2^{n}} a_{R} h_{R}\right\|_{\infty} \gtrsim n
$$

$$
H=\sum_{|R|=2^{-n}} a_{R} h_{R}
$$

$$
\begin{aligned}
H & =\sum_{|R|=2^{-n}} a_{R} h_{R} \\
f_{(k, n-k)} & =\sum_{\left|R_{1}\right|=2^{-k},\left|R_{2}\right|=2^{-n+k}} \operatorname{sgn}\left(a_{R}\right) h_{R}, \quad 0 \leq k \leq n,
\end{aligned}
$$

$$
F=\prod_{k=1}^{n}\left(1+f_{(k, n-k)}\right) \quad F \geq 0, \quad \mathbb{E} F=1
$$

$$
\begin{aligned}
& F=\prod_{k=1}^{n}\left(1+f_{(k, n-k)}\right) \quad F \geq 0, \quad \mathbb{E} F=1 . \\
& \sum_{k=0}^{n}\left\langle H, f_{(k, n-k)}\right\rangle=2^{-n} \sum_{|R|=2^{-n}}\left|a_{R}\right|,
\end{aligned}
$$

$$
\begin{aligned}
& F=\prod_{k=1}^{n}\left(1+f_{(k, n-k)}\right) \quad F \geq 0, \quad \mathbb{E} F=1 . \\
& \sum_{k=0}^{n}\left\langle H, f_{(k, n-k)}\right\rangle=2^{-n} \sum_{|R|=2^{-n}}\left|a_{R}\right|,
\end{aligned}
$$

H is orthogonal to the higher products of the f_{k}.

$$
\begin{aligned}
& F=\prod_{k=1}^{n}\left(1+f_{(k, n-k)}\right) \quad F \geq 0, \quad \mathbb{E} F=1 . \\
& \sum_{k=0}^{n}\left\langle H, f_{(k, n-k)}\right\rangle=2^{-n} \sum_{|R|=2^{-n}}\left|a_{R}\right|,
\end{aligned}
$$

H is orthogonal to the higher products of the f_{k}.
Note that the Riesz Product is

$$
\begin{aligned}
& F=\prod_{k=0}^{n}\left(1+f_{k}\right)=2^{n} \mathbf{1}_{E} \\
& E=\left\{x: \text { all } f_{k}(x) \text { equal one }\right\}
\end{aligned}
$$

The 'Short’ Bernoulli Product

- Set $H=\sum_{|R|=2^{-n}} a_{R} h_{R}$.
- Set $H=\sum_{|R|=2^{-n}} a_{R} h_{R}$.
- Define $\operatorname{sgn}(0)=1$, and

$$
f_{\vec{r}}=\sum_{R:\left|R_{j}\right|=2^{-r_{j}} \forall j} \operatorname{sgn}\left(a_{R}\right) h_{R}
$$

The 'Short' Bernoulli Product

- Set $H=\sum_{|R|=2^{-n}} a_{R} h_{R}$.
- Define $\operatorname{sgn}(0)=1$, and

$$
f_{\vec{r}}=\sum_{R:\left|R_{j}\right|=2^{-r_{j}} \forall j} \operatorname{sgn}\left(a_{R}\right) h_{R}
$$

- Set $q=n^{\epsilon}$, this will be the length of our product.

The 'Short' Bernoulli Product

- Set $H=\sum_{|R|=2^{-n}} a_{R} h_{R}$.
- Define $\operatorname{sgn}(0)=1$, and

$$
f_{\vec{r}}=\sum_{R:\left|R_{j}\right|=2^{-r_{j}} \forall j} \operatorname{sgn}\left(a_{R}\right) h_{R}
$$

- Set $q=n^{\epsilon}$, this will be the length of our product.
- Divide the integers $\{1,2, \ldots, n\}$ into q disjoint intervals I_{1}, \ldots, I_{q}, and let $\mathbb{I}_{t} \stackrel{\text { def }}{=}\left\{\vec{r} \in \mathbb{N}_{n}: r_{1} \in I_{t}\right\}$.

The 'Short' Bernoulli Product

- Set $H=\sum_{|R|=2^{-n}} a_{R} h_{R}$.
- Define $\operatorname{sgn}(0)=1$, and

$$
f_{\vec{r}}=\sum_{R:\left|R_{j}\right|=2^{-r_{j}} \forall j} \operatorname{sgn}\left(a_{R}\right) h_{R}
$$

- Set $q=n^{\epsilon}$, this will be the length of our product.
- Divide the integers $\{1,2, \ldots, n\}$ into q disjoint intervals I_{1}, \ldots, I_{q}, and let $\mathbb{I}_{t} \stackrel{\text { def }}{=}\left\{\vec{r} \in \mathbb{N}_{n}: r_{1} \in I_{t}\right\}$.
- We will define F_{t} as a poor man's $\operatorname{sgn}\left(\sum_{\vec{r} \in I_{t}} f_{\vec{r}}\right)$.

$$
\begin{gathered}
F_{t}=\widetilde{\rho} \sum_{\vec{r} \in \mathbb{I}_{t}} f_{\vec{r}} \\
\rho=\frac{q^{1 / 2}}{n^{(d-1) / 2}}, \quad \widetilde{\rho}=\frac{a q^{1 / 4}}{n^{(d-1) / 2}}
\end{gathered}
$$

$$
\begin{gathered}
F_{t}=\widetilde{\rho} \sum_{\vec{r} \in \mathbb{I}_{t}} f_{\vec{r}} \\
\rho=\frac{q^{1 / 2}}{n^{(d-1) / 2}}, \quad \widetilde{\rho}=\frac{a q^{1 / 4}}{n^{(d-1) / 2}}
\end{gathered}
$$

$$
\Psi \stackrel{\text { def }}{=} \prod_{t=1}^{q}\left(1+F_{t}\right)
$$

This tends to be large when the F_{t} are all positive.

$$
\begin{gathered}
F_{t}=\widetilde{\rho} \sum_{\vec{r} \in \mathbb{I}_{t}} f_{\vec{r}} \\
\rho=\frac{q^{1 / 2}}{n^{(d-1) / 2}}, \quad \widetilde{\rho}=\frac{a q^{1 / 4}}{n^{(d-1) / 2}}
\end{gathered}
$$

$$
\Psi \stackrel{\text { def }}{=} \prod_{t=1}^{q}\left(1+F_{t}\right)
$$

This tends to be large when the F_{t} are all positive.

- $\mathbb{E} \Psi=1$, as an easy conditional expectation argument shows, but ψ takes negative values.

$$
\begin{gathered}
F_{t}=\widetilde{\rho} \sum_{\vec{r} \in \mathbb{I}_{t}} f_{\vec{r}} \\
\rho=\frac{q^{1 / 2}}{n^{(d-1) / 2}}, \quad \widetilde{\rho}=\frac{a q^{1 / 4}}{n^{(d-1) / 2}}
\end{gathered}
$$

$$
\Psi \stackrel{\text { def }}{=} \prod_{t=1}^{q}\left(1+F_{t}\right)
$$

This tends to be large when the F_{t} are all positive.

- $\mathbb{E} \Psi=1$, as an easy conditional expectation argument shows, but ψ takes negative values.
- And, Ψ can not be the test function since...

Product Rule Fails in Three Dimensions

Coincidences

Definition

Say that \vec{r}, \vec{s} have a coincidence if \vec{r} and \vec{s} agree in any one coordinate.

Coincidences

Definition

Say that \vec{r}, \vec{s} have a coincidence if \vec{r} and \vec{s} agree in any one coordinate.

- Write $\Psi=1+\Psi^{\text {NoCoin }}+\Psi^{\text {Coin }}$

Coincidences

Definition

Say that \vec{r}, \vec{s} have a coincidence if \vec{r} and \vec{s} agree in any one coordinate.

- Write $\Psi=1+\Psi^{\text {NoCoin }}+\Psi^{\text {Coin }}$
-

$$
\begin{aligned}
\Psi^{\text {NoCoin }} \stackrel{\text { def }}{=} & \text { All sums of products of } \vec{r} \text { function in the } \\
& \text { expansion of } \Psi \text { without a coincidence. }
\end{aligned}
$$

Coincidences

Definition

Say that \vec{r}, \vec{s} have a coincidence if \vec{r} and \vec{s} agree in any one coordinate.

- Write $\Psi=1+\Psi^{\text {NoCoin }}+\Psi^{\text {Coin }}$
-

$$
\begin{aligned}
\Psi^{\text {NoCoin }} \stackrel{\text { def }}{=} & \text { All sums of products of } \vec{r} \text { function in the } \\
& \text { expansion of } \psi \text { without a coincidence. }
\end{aligned}
$$

- Most of the analysis takes place on $\Psi^{\text {Coin }}$.

The Crucial Lemma of Beck-In the Simplest Case

Lemma

We have the estimate

$$
\left\|\sum_{\substack{\vec{r} \neq \vec{s} \in \mathbb{N}_{n} \\ r_{1}=s_{1}}} f_{\vec{r}} \cdot f_{\vec{s}}\right\|_{p} \leq p^{2 d-3 / 2+1} n^{2 d-3 / 2}
$$

The Crucial Lemma of Beck-In the Simplest Case

Lemma

We have the estimate

The Number of Parameters

No of Parameters
$=2 d-1-1-1$

Longer Products: Graphs as Bookkeeping Device

Longer Products: Graphs as Bookkeeping Device

Longer Products: Graphs as Bookkeeping Device

- A graph on eight vertices, with two different colors.
- An edge means equality between the different vectors.
- So the number of parameters decreases with the length of spanning tree of the graph.
- The Beck Gain reflects a full proportion of the loss of parameters.

An Example Inequality, using previous graph:

For absolute $\zeta>0$,

