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Quantitative Estimates of Uniform Distribution

[0, (x1, . . . , xd)] =
d∏

t=1

[0, xt ]

Definition

The Discrepancy Function of PN = {x1, . . . , xN} ⊂ [0, 1]d is

DN(x) = ](P ∩ [0, x]) − N[0, x] .

Koksma-Hlawka Inequality

For any function f : [0, 1]d −→ R of bounded variation V(f) in the
sense of Hardy, then∣∣∣∣∣∣

∫
[0,1]d

f(y) dy − N−1
N∑

j=1

f(xj)

∣∣∣∣∣∣ ≤ V(f) ·
‖DN‖∞

N
.
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Lattices are Not Extremal Point Distributions

The area of the rectangle is tiny,
but contains 1/15 of all the
rectangles.

Bilyk & et. al Small Ball Problems



Lattices are Not Extremal Point Distributions

The area of the rectangle is tiny,
but contains 1/15 of all the
rectangles.

Bilyk & et. al Small Ball Problems



Random Selection is Bad

CLT: For measurable f , random Xn,

1
N

N∑
n=1

f(Xn) =

∫
[0,1]d

f(x) dx + O(N−1/2) .

They cluster, and have gaps.
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Examples of Low Discrepancy Set
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Roth’s Theorem
For any choice of PN we have

‖DN‖2 & (log N)(d−1)/2
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Two Giants: Klaus Roth and Wolfgang Schmidt
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Roth Heuristic
For extremal distributions, one expects that each dyadic rectangle
with volume N−1 has one point in it.

Hyperbolic Haar Reduction

Consider dyadic rectangles of volume (2N)−1; at least one-half of
these must not contain any point in PN. Call these the good
rectangles. And consider the Haar function associated to these
dyadic rectangles.

hI1×···×Id (x1, . . . , xd) =
d∏

j=1

{
−1Ij,left(xj) + 1Ij,right (xj)

}
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One Dimensional Haar Functions

hJhI
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Two Dimensional Haar Functions

hR

hS

A product rule holds.

hR · hS = −hR∩S
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Proof of Roth Theorem

Lemma

If R ∩ PN = ∅, then 〈hR ,DN〉 < −cN|R |2.

Proof.

‖DN‖
2
2 ≥

∑
R good

|R |−1|DN , hR |
2

& N2
∑

R good

|R |3 & (log N)d−1 .

�
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Theorem
For any choice of point distribution PN we have

‖DN‖p & (log N)(d−1)/2 , 1 < p < ∞ .

There is however a ‘kink’ at L∞ in Dimension d = 2.

Schmidt’s Theorem (d = 2!)

‖DN‖L∞([0,1]2) & log N

A gain of
√

log N over the average case bound.
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Conjecture: Discrepancy Function in L∞

For d ≥ 3,
‖DN‖∞ & (log N)d/2

Conjecture: Small Ball Inequality

For d ≥ 3, and generic choices of coefficients aR ∈ {−1, 0, 1},∥∥∥∥ ∑
|R |=2−n

aRhR(x)
∥∥∥∥
∞
& nd/2 .

d = 2 is a Theorem of Talagrand.

Both conjectures are a ‘gain of a square root’ over the
average case bounds.
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Theorem (Bilyk & L & Vagharshakyan)

In dimension d ≥ 3 there is a η = η(d) ≥ c/d2 > 0 for which we
have ∥∥∥∥ ∑

|R |=2−n

aRhR

∥∥∥∥
∞
& n(d−1)/2+η . (1)

Beck established a version of this Theorem with d = 3 and

nη ← (log n)1/8 .

József Beck, A two-dimensional van Aardenne-Ehrenfest theorem
in irregularities of distribution Compositio Math. 72 (1989)
269—339
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Other Applications of the Small Ball Inequality

Lower bounds on Packing Numbers of Unit Balls of certain
Mixed Derivative Sobolev Spaces.

For the Brownian Sheet B, upper bounds on

P(‖B‖C([0,1]d) < ε) , ε ↓ 0 .
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Talagrand’s Theorem–aprés Halasz, & Temlyakov

Talagrand’s Theorem

In dimension d = 2, for generic choices of
coefficients aR ∈ {−1, 0, 1}∥∥∥∥∥∥ ∑

|R |=2n

aR hR

∥∥∥∥∥∥
∞

& n .
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H =
∑
|R |=2−n

aR hR

f(k ,n−k) =
∑

|R1 |=2−k , |R2 |=2−n+k

sgn(aR) hR , 0 ≤ k ≤ n ,
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F =
n∏

k=1

(
1 + f(k ,n−k)

)
F ≥ 0 , EF = 1.

n∑
k=0

〈H, f(k ,n−k)〉 = 2−n
∑
|R |=2−n

|aR | ,

H is orthogonal to the higher products of the fk .

Note that the Riesz Product is

F =
n∏

k=0

(
1 + fk

)
= 2n1E ,

E = {x : all fk (x) equal one}
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The ‘Short’ Bernoulli Product

Set H =
∑
|R |=2−n aRhR .

Define sgn(0) = 1, and

f~r =
∑

R : |Rj |=2−rj ∀j

sgn(aR)hR

Set q = nε , this will be the length of our product.

Divide the integers {1, 2, . . . , n} into q disjoint intervals
I1, . . . , Iq, and let It

def
= {~r ∈ Nn : r1 ∈ It }.

We will define Ft as a poor man’s sgn
(∑
~r∈It f~r

)
.
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Ft = ρ̃
∑
~r∈It

f~r .

ρ =
q1/2

n(d−1)/2
, ρ̃ =

aq1/4

n(d−1)/2
.

Ψ
def
=

q∏
t=1

(1 + Ft) .

This tends to be large when the Ft are all positive.

EΨ = 1, as an easy conditional expectation argument shows,
but Ψ takes negative values.

And, Ψ can not be the test function since. . .
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Product Rule Fails in Three Dimensions
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Coincidences

Definition

Say that ~r , ~s have a coincidence if ~r and ~s agree in any one
coordinate.

Write Ψ = 1 + ΨNoCoin + ΨCoin

ΨNoCoin def
= All sums of products of ~r function in the

expansion of Ψ without a coincidence.

Most of the analysis takes place on ΨCoin.
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The Crucial Lemma of Beck—In the Simplest Case

Lemma
We have the estimate∥∥∥∥ ∑

~r,~s∈Nn
r1=s1

f~r · f~s
∥∥∥∥

p
. p 2d-3 /2+1n 2d-3 /2

There are 2d-3 ‘free’ parameters.
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The Number of Parameters

−1

−1 −1

~r ~s

No of Parameters

= 2d − 1 − 1 − 1
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Longer Products: Graphs as Bookkeeping Device

~r4

~r1

~r3

~r2 ~r6

~r5

~r8

~r7

A graph on eight vertices, with two different colors.

An edge means equality between the different vectors.

So the number of parameters decreases with the length of
spanning tree of the graph.

The Beck Gain reflects a full proportion of the loss of
parameters.
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An Example Inequality, using previous graph:

For absolute ζ > 0,

∥∥∥∥ ∑
~r1,...,~r8

satisfy ‘graph conditions’

8∏
j=1

f~rj

∥∥∥∥
p
. p4(d−1)n4(d−1)−8ζ ,
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