Sum-Product Theory in Finite Fields

Derrick Hart
(Joint work with Alex losevich)

University of Missouri

Sums and Products

- Let $A \subset \mathbb{Z}$, finite, and define

$$
A+A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\} \quad A \cdot A=\left\{a a^{\prime}: a, a^{\prime} \in A\right\} .
$$

Sums and Products

- Let $A \subset \mathbb{Z}$, finite, and define

$$
A+A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\} \quad A \cdot A=\left\{a a^{\prime}: a, a^{\prime} \in A\right\} .
$$

- Can $|A+A|$ and $|A \cdot A|$ both be small?

Sums and Products

- Let $A \subset \mathbb{Z}$, finite, and define

$$
A+A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\} \quad A \cdot A=\left\{a a^{\prime}: a, a^{\prime} \in A\right\} .
$$

- Can $|A+A|$ and $|A \cdot A|$ both be small?
- Consider the examples

$$
A=\{1,2, \ldots, N\} \quad A=\left\{2,2^{2}, \ldots, 2^{N}\right\} .
$$

Sums and Products

- Let $A \subset \mathbb{Z}$, finite, and define

$$
A+A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\} \quad A \cdot A=\left\{a a^{\prime}: a, a^{\prime} \in A\right\} .
$$

- Can $|A+A|$ and $|A \cdot A|$ both be small?
- Consider the examples

$$
A=\{1,2, \ldots, N\} \quad A=\left\{2,2^{2}, \ldots, 2^{N}\right\} .
$$

- A conjecture due to Erdős and Szemeredi says that the answer is no.

Conjecture

With the notation above,

$$
\max \{|A+A|,|A \cdot A|\} \gtrsim|A|^{2-\epsilon}
$$

Sums and Products

- The best known result in this direction is due to Solymosi who proved that

$$
\max \{|A+A|,|A \cdot A|\} \gtrsim|A|^{\frac{14}{11}-\epsilon}
$$

based partly on the idea to Elekes using the Szemeredi-Trotter Incidence Theorem, who proved the same estimate with a slightly worse exponent $\frac{5}{4}$.

Sums and Products

- The best known result in this direction is due to Solymosi who proved that

$$
\max \{|A+A|,|A \cdot A|\} \gtrsim|A|^{\frac{14}{11}-\epsilon}
$$

based partly on the idea to Elekes using the Szemeredi-Trotter Incidence Theorem, who proved the same estimate with a slightly worse exponent $\frac{5}{4}$.

- Finite Field Case

Theorem (Bourgain-Katz-Tao)

If $A \subset \mathbb{Z}_{p}, p$ a prime, and $p^{\epsilon} \lesssim|A| \lesssim p^{1-\epsilon}$, for some $\epsilon>0$, then there exists $\delta>0$ such that

$$
\max \{|A+A|,|A \cdot A|\} \gtrsim|A|^{1+\delta}
$$

Explicit Bounds

- Using incidences between points and hyperbolae in the plane the author along with Alex losevich and Joszef Solymosi proved that if $A \subset \mathbb{F}_{q}$, a finite field with q elements, then

$$
\max \{|A+A|,|A \cdot A|\} \gtrsim \min \left\{|A|^{\frac{3}{2}} q^{-\frac{1}{4}},|A|^{\frac{2}{3}} q^{\frac{1}{3}}\right\}
$$

Explicit Bounds

- Using incidences between points and hyperbolae in the plane the author along with Alex losevich and Joszef Solymosi proved that if $A \subset \mathbb{F}_{q}$, a finite field with q elements, then

$$
\max \{|A+A|,|A \cdot A|\} \gtrsim \min \left\{|A|^{\frac{3}{2}} q^{-\frac{1}{4}},|A|^{\frac{2}{3}} q^{\frac{1}{3}}\right\}
$$

- This has been improved and generalized in many ways recently, The current best result is due to Garaev which is

$$
\max \{|A+A|,|A \cdot A|\} \gtrsim \min \left\{|A|^{2} q^{-\frac{1}{2}},|A|^{\frac{1}{2}} q^{\frac{1}{2}}\right\}
$$

Explicit Bounds

- Using incidences between points and hyperbolae in the plane the author along with Alex losevich and Joszef Solymosi proved that if $A \subset \mathbb{F}_{q}$, a finite field with q elements, then

$$
\max \{|A+A|,|A \cdot A|\} \gtrsim \min \left\{|A|^{\frac{3}{2}} q^{-\frac{1}{4}},|A|^{\frac{2}{3}} q^{\frac{1}{3}}\right\}
$$

- This has been improved and generalized in many ways recently, The current best result is due to Garaev which is

$$
\max \{|A+A|,|A \cdot A|\} \gtrsim \min \left\{|A|^{2} q^{-\frac{1}{2}},|A|^{\frac{1}{2}} q^{\frac{1}{2}}\right\}
$$

- The above results yield non-trivial results only in the case that $|A|>q^{1 / 2}$ as one would expect with the existence of subfields of size $q^{1 / 2}$. In the case of prime fields however, one may get results in the lower range. The current best result due to Katz and Shen based on an improvement of a method of Garaev yields the for $|A|<q^{1 / 2}$,

$$
\max \{|A+A|,|A \cdot A|\} \gtrsim|A|^{\frac{14}{13}-\epsilon}
$$

Sum-product basis in Finite Fields

- Let \mathbb{F}_{q} be the finite field with q elements. How large does $A \subset \mathbb{F}_{q}$ need to be so that

$$
\mathbb{F}_{q}=d A^{2}=A \cdot A+A \cdot A \cdots+A \cdot A ?
$$

Sum-product basis in Finite Fields

- Let \mathbb{F}_{q} be the finite field with q elements. How large does $A \subset \mathbb{F}_{q}$ need to be so that

$$
\mathbb{F}_{q}=d A^{2}=A \cdot A+A \cdot A \cdots+A \cdot A ?
$$

- Many results pertaining to this and related questions, under a variety of assumptions, have been published in recent years by Bourgain, Croot, Glibichuk, Konyagin, Shkredov, Tao, Vu and others. For $d \geq 8$ the problem was solved recently by Glibichuk extending earlier results of Glibichuk and Konyagin for prime fields.

Theorem (Glibichuk)

If $A \subset \mathbb{F}_{q}^{*}$, then

$$
\mathbb{F}_{q}=8 A^{2} \text { if }|A|>\sqrt{2} q^{\frac{1}{2}}
$$

Short Sum-product basis

- What about when d is small?

Short Sum-product basis

- What about when d is small?
- Bourgain proved(specifically with $\mathrm{d}=3$) using one-dimensional exponential sums that if q is prime and $A \subset \mathbb{F}_{q}^{*}$, then

$$
\mathbb{F}_{q}=d A^{2} \text { if }|A|>q^{\frac{1}{2}+\frac{1}{2(d-1)}}
$$

Short Sum-product basis

- What about when d is small?
- Bourgain proved(specifically with $\mathrm{d}=3$) using one-dimensional exponential sums that if q is prime and $A \subset \mathbb{F}_{q}^{*}$, then

$$
\mathbb{F}_{q}=d A^{2} \text { if }|A|>q^{\frac{1}{2}+\frac{1}{2(d-1)}} .
$$

- The author and Alex losevich recently proved the stronger result that if $A \subset \mathbb{F}_{q}^{*}$, then

$$
\mathbb{F}_{q}^{*} \subset d A^{2} \text { if }|A|>q^{\frac{1}{2}+\frac{1}{2 d}}, \quad \text { and } \quad\left|d A^{2}\right|>\frac{q}{2} \text { if }|A|>q^{\frac{1}{2}+\frac{1}{2(2 d-1)}}
$$

Sums and products-higher dimensional perspective

- Our idea is to take a higher dimensional perspective. Let $E \subset \mathbb{F}_{q}^{d}$, the d-dimensional vector space over \mathbb{F}_{q}. Define

$$
\Pi(E)=\{x \cdot y: x, y \in E\} .
$$

In this context we ask how large does E need to be to assure that $\Pi(E)$ is large?

Sums and products-higher dimensional perspective

- Our idea is to take a higher dimensional perspective. Let $E \subset \mathbb{F}_{q}^{d}$, the d-dimensional vector space over \mathbb{F}_{q}. Define

$$
\Pi(E)=\{x \cdot y: x, y \in E\} .
$$

In this context we ask how large does E need to be to assure that $\Pi(E)$ is large?

- Our main result is the following:

Theorem

Let $E \subset \mathbb{F}_{q}^{d}$. Then

$$
\mathbb{F}_{q}^{*} \subset \Pi(E) \text { if }|E|>q^{\frac{d+1}{2}},
$$

and if E is a product set,

$$
|\Pi(E)|>\frac{q}{2} \quad \text { if }|E|>q^{\frac{d^{2}}{2 d-1}} .
$$

Sums and products-higher dimensional perspective

- Our idea is to take a higher dimensional perspective. Let $E \subset \mathbb{F}_{q}^{d}$, the d-dimensional vector space over \mathbb{F}_{q}. Define

$$
\Pi(E)=\{x \cdot y: x, y \in E\} .
$$

In this context we ask how large does E need to be to assure that $\Pi(E)$ is large?

- Our main result is the following:

Theorem

Let $E \subset \mathbb{F}_{q}^{d}$. Then

$$
\mathbb{F}_{q}^{*} \subset \Pi(E) \text { if }|E|>q^{\frac{d+1}{2}}
$$

and if E is a product set,

$$
|\Pi(E)|>\frac{q}{2} \quad \text { if }|E|>q^{\frac{d^{2}}{2 d-1}} .
$$

- Taking $E=A \times A \ldots \times A$ yields the arithmetic result.

Radon transforms make an appearance

- An inevitable way to study the dot product problem above is by considering the incidence function

$$
\nu(t)=|\{(x, y) \in E \times E: x \cdot y=t\}|
$$

Radon transforms make an appearance

- An inevitable way to study the dot product problem above is by considering the incidence function

$$
\begin{gathered}
\nu(t)=|\{(x, y) \in E \times E: x \cdot y=t\}| \\
=\sum_{x \cdot y=t} E(x) E(y)
\end{gathered}
$$

Radon transforms make an appearance

- An inevitable way to study the dot product problem above is by considering the incidence function

$$
\begin{gathered}
\nu(t)=|\{(x, y) \in E \times E: x \cdot y=t\}| \\
=\sum_{x \cdot y=t} E(x) E(y) \\
=\sum_{x} E(x) \mathcal{R} E(x)
\end{gathered}
$$

Radon transforms make an appearance

- An inevitable way to study the dot product problem above is by considering the incidence function

$$
\begin{aligned}
& \nu(t)=|\{(x, y) \in E \times E: x \cdot y=t\}| \\
&=\sum_{x \cdot y=t} E(x) E(y) \\
&=\sum_{x} E(x) \mathcal{R} E(x),
\end{aligned}
$$

- where

$$
\mathcal{R} E(x)=\sum_{x \cdot y=t} E(y)
$$

the Radon transform of E.

Why is it good to have a Radon transform around?

- In the Euclidean setting ($\mathbb{R}^{d}, d \geq 2$), consider

$$
\mathcal{R} f(x)=\int_{x \cdot y=t} f(y) \psi(y) d y
$$

Why is it good to have a Radon transform around?

- In the Euclidean setting $\left(\mathbb{R}^{d}, d \geq 2\right)$, consider

$$
\mathcal{R} f(x)=\int_{x \cdot y=t} f(y) \psi(y) d y
$$

- In this case:

$$
\mathcal{R}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L_{\frac{d-1}{2}}^{2}\left(\mathbb{R}^{d}\right)
$$

and a suitable analog holds in the finite field setting.

Resulting geometric incidence estimates

- Using the Radon transform, we establish the following incidence estimates:

Resulting geometric incidence estimates

- Using the Radon transform, we establish the following incidence estimates:

$$
\nu(t)=|E|^{2} q^{-1}+R(t), \text { where }|R(t)| \leq|E| q^{\frac{d-1}{2}}
$$

Resulting geometric incidence estimates

- Using the Radon transform, we establish the following incidence estimates:

$$
\nu(t)=|E|^{2} q^{-1}+R(t), \text { where }|R(t)| \leq|E| q^{\frac{d-1}{2}}
$$

- and

$$
\sum_{t} \nu^{2}(t)=|E|^{4} q^{-1}+|E| q^{2 d-1} \sum_{k \neq \overrightarrow{0}}|\widehat{E}(k)|^{2}\left|E \cap I_{k}\right|
$$

Resulting geometric incidence estimates

- Using the Radon transform, we establish the following incidence estimates:

$$
\nu(t)=|E|^{2} q^{-1}+R(t), \text { where }|R(t)| \leq|E| q^{\frac{d-1}{2}}
$$

- and

$$
\sum_{t} \nu^{2}(t)=|E|^{4} q^{-1}+|E| q^{2 d-1} \sum_{k \neq \overrightarrow{0}}|\widehat{E}(k)|^{2}\left|E \cap I_{k}\right|
$$

- where

$$
I_{k}=\left\{t k: t \in \mathbb{F}_{q}\right\}, \text { the line generated by } k .
$$

Resulting geometric incidence estimates

- Using the Radon transform, we establish the following incidence estimates:

$$
\nu(t)=|E|^{2} q^{-1}+R(t), \text { where }|R(t)| \leq|E| q^{\frac{d-1}{2}}
$$

- and

$$
\sum_{t} \nu^{2}(t)=|E|^{4} q^{-1}+|E| q^{2 d-1} \sum_{k \neq \overrightarrow{0}}|\widehat{E}(k)|^{2}\left|E \cap I_{k}\right|
$$

- where

$$
I_{k}=\left\{t k: t \in \mathbb{F}_{q}\right\}, \text { the line generated by } k .
$$

- Simple but important observation: if $E=A \times \ldots \times A$,

$$
\left|E \cap I_{k}\right| \leq|A|
$$

Open question

- It is possible to sharpen the positive proportion result. For example

$$
\begin{aligned}
& \text { Theorem (Shparlinski) } \\
& \text { Let } A \subset F_{q}^{*} \text { then } \\
& \qquad|A \cdot A+A|>\frac{q}{2}, \text { for }|A|>q^{\frac{2}{3}} .
\end{aligned}
$$

Open question

- It is possible to sharpen the positive proportion result. For example

Theorem (Shparlinski)

Let $A \subset F_{q}^{*}$ then

$$
|A \cdot A+A|>\frac{q}{2}, \text { for }|A|>q^{\frac{2}{3}} .
$$

Question

Let $A \subset F_{q}^{*}$ then does there exist an $1 / 2>\epsilon>0$ such that

$$
\mathbb{F}_{q}^{*} \subseteq A \cdot A+A, \text { for }|A|>q^{1-\epsilon}
$$

