WORKSHOP ON HARMONIC ANALYSIS

February 19-23, 2008

Rough and Rougher Singular Integrals

Loukas Grafakos

University of Missouri Columbia, Missouri USA

http://www.math.missouri.edu/ \sim loukas

$$T(f)(x) = \text{p.v.} \int_{\mathbf{R}^n} K(x,y) \, f(y) \, dy$$

$$T(f)(x) = \text{p.v.} \int_{\mathbf{R}^n} K(x,y) \, f(y) \, dy$$

where the kernel satisfies the *size condition*:

$$|K(x,y)| \le A|x-y|^{-n}$$

$$T(f)(x) = \text{p.v.} \int_{\mathbf{R}^n} K(x,y) \, f(y) \, dy$$

where the kernel satisfies the *size condition*:

$$|K(x,y)| \le A|x-y|^{-n}$$

and the *smoothness condition* (for some $\delta > 0$)

$$|K(x,y) - K(x,y')| \le \frac{|y - y'|^{\delta}}{(|x - y| + |x - y'|)^{n + \delta}}$$

whenever $|x-x'| \leq \frac{1}{2} \max(|x-y|, |x'-y|)$. Assume that $K^t(x,y) = K(y,x)$ also satisfies the same condition.

Suppose that T is bounded on L^r (usually r=2).

Suppose that T is bounded on L^r (usually r=2). Then T maps L^1 to weak L^1 ; and is bounded on L^p for all 1 .

Suppose that T is bounded on L^r (usually r=2). Then T maps L^1 to weak L^1 ; and is bounded on L^p for all 1 .

Same conclusion is valid if smoothness is replaced by the weaker *Hörmander condition*

$$\sup_{y_0 \neq 0} \int_{|x-y| \geq 2|y-y_0|} |K(x,y) - K(x,y_0)| \, dx = A < \infty$$

More flexible condition that Hörmander's. Let A_t be an "approximate identity" in the following sense:

More flexible condition that Hörmander's. Let A_t be an "approximate identity" in the following sense:

$$A_t(u)(x) = \int_{\mathbf{R}^n} a_t(x, y) u(y) dy$$

More flexible condition that Hörmander's. Let A_t be an "approximate identity" in the following sense:

$$A_t(u)(x) = \int_{\mathbf{R}^n} a_t(x, y) u(y) dy$$

$$|a_t(x,y)| \le h_t(x,y) = \frac{t^{-n/s}}{(1+t^{-1/s}|x-y|)^{n+\varepsilon}}$$

for some fixed s > 0.

More flexible condition that Hörmander's. Let A_t be an "approximate identity" in the following sense:

$$A_t(u)(x) = \int_{\mathbf{R}^n} a_t(x, y) u(y) dy$$

$$|a_t(x,y)| \le h_t(x,y) = \frac{t^{-n/s}}{(1+t^{-1/s}|x-y|)^{n+\varepsilon}}$$

for some fixed s > 0.

THEOREM OF DUONG AND M°INTOSH

THEOREM OF DUONG AND M°INTOSH

Assume that for some c > 0

$$\sup_{t>0} \int_{|x-y| \ge ct^{1/s}} |K(x,y) - K_t(x,y)| \, dy \le C.$$

where K_t is the kernel of TA_t .

THEOREM OF DUONG AND M°INTOSH

Assume that for some c > 0

$$\sup_{t>0} \int_{|x-y| \ge c t^{1/s}} |K(x,y) - K_t(x,y)| \, dy \le C.$$

where K_t is the kernel of TA_t .

Theorem: If T satisfies this generalized Hörmander condition and T is L^2 bounded, then it is of weak type (1,1).

(a) Riesz transforms with respect to the sub-Laplacian on a simply connected Lie group.

(a) Riesz transforms with respect to the sub-Laplacian on a simply connected Lie group.

(b) Riesz transforms on Riemannian manifold with non-negative Ricci curvature.

(a) Riesz transforms with respect to the sub-Laplacian on a simply connected Lie group.

(b) Riesz transforms on Riemannian manifold with non-negative Ricci curvature.

(c) Fefferman's "Inequalities for Strongly Singular Convolution Operators" Acta Math. 124 (1970), 9–36.

$$T(f_1, \dots, f_m)(x) = \int K(x, y_1, \dots, y_m) f_1(y_1) \dots f_m(y_m) dy_1 \dots dy_m$$

$$T(f_1, \dots, f_m)(x) = \int K(x, y_1, \dots, y_m) f_1(y_1) \dots f_m(y_m) dy_1 \dots dy_m$$

$$|K(x, y_1, \dots, y_j, \dots, y_m)| \le \frac{A}{(|x - y_1| + \dots + |x - y_m|)^{mn}}$$

$$T(f_1, \dots, f_m)(x) = \int K(x, y_1, \dots, y_m) f_1(y_1) \dots f_m(y_m) dy_1 \dots dy_m$$

$$|K(x, y_1, \dots, y_j, \dots, y_m)| \le \frac{A}{(|x - y_1| + \dots + |x - y_m|)^{mn}}$$

$$|K(y_0, y_1, \dots, y_m) - K(y_0, y'_1, \dots, y_m)| \le \frac{A|y_1 - y'_1|^{\epsilon}}{(|y_0 - y_1| + \dots + |y_0 - y_m|)^{mn + \epsilon}}$$

whenever
$$|y_1 - y_1'| \le \frac{1}{2} \max_{1 \le j \le m} |y_0 - y_j|$$

Theorem: If T is bounded on some product of Lebesgue spaces, then T is of weak type $(1, 1, \ldots, 1/m)$ and bounded on all products of Lebesgue spaces (with R. Torres/Kenig and Stein).

Theorem: If T is bounded on some product of Lebesgue spaces, then T is of weak type $(1, 1, \ldots, 1/m)$ and bounded on all products of Lebesgue spaces (with R. Torres/Kenig and Stein).

Theorem: If T is bounded on some product of Lebesgue spaces, then T is of weak type $(1, 1, \ldots, 1/m)$ and bounded on all products of Lebesgue spaces (with R. Torres/Kenig and Stein).

OPEN QUESTION ON THE SUBJECT:

Theorem: If T is bounded on some product of Lebesgue spaces, then T is of weak type $(1, 1, \ldots, 1/m)$ and bounded on all products of Lebesgue spaces (with R. Torres/Kenig and Stein).

OPEN QUESTION ON THE SUBJECT:

Whether the smoothness condition can be replaced by a Hörmander-type condition.

Assume there exist A_t , t > 0 with kernels $a_t(x, y)$ such that

$$|a_t(x,y)| \le h_t(x,y) = \frac{t^{-n}}{(1+t^{-1}|x-y|)^{n+\varepsilon}}$$

and also if $K_t^{(j)}$ is the kernel of $T \circ_j A_t$

Assume there exist A_t , t > 0 with kernels $a_t(x, y)$ such that

$$|a_t(x,y)| \le h_t(x,y) = \frac{t^{-n}}{(1+t^{-1}|x-y|)^{n+\varepsilon}}$$

and also if $K_t^{(j)}$ is the kernel of $T \circ_j A_t$

$$|K(x, y_{1}, \dots, y_{m}) - K_{t}^{(j)}(x, y_{1}, \dots, y_{m})|$$

$$\leq \frac{A}{(|x - y_{1}| + \dots + |x - y_{m}|)^{mn}} \sum_{\substack{k=1 \ k \neq j}}^{m} \phi\left(\frac{|y_{j} - y_{k}|}{t}\right)$$

$$+ \frac{A t^{\epsilon}}{(|x - y_{1}| + \dots + |x - y_{m}|)^{mn + \epsilon}}$$

for some A > 0, whenever $t \leq |x - y_j|/2$; $supp(\phi) \subset [-1, 1]$.

Theorem: (with X. T. Duong and L. X. Yan) Under preceding conditions, T is of weak type $(1,1,\ldots,1,1/m)$ provided it maps $L^{q_1}\times\cdots\times L^{q_m}$ to L^q for *some choice* of indices with $1\leq q_j\leq\infty$.

Theorem: (with X. T. Duong and L. X. Yan) Under preceding conditions, T is of weak type $(1,1,\ldots,1,1/m)$ provided it maps $L^{q_1}\times\cdots\times L^{q_m}$ to L^q for *some choice* of indices with $1\leq q_j\leq\infty$.

Fundamental example: Commutators of Calderón:

$$C_{m+1}(f, a_1, \dots, a_m)(x) = \int_{\mathbb{R}} \left[\prod_{j=1}^m \frac{A_j(x) - A_j(y)}{(x-y)^{m+1}} \right] f(y) \, dy$$

where $x \in \mathbf{R}$ and $A'_j = a_j$.

KERNEL OF THE COMMUTATOR

$$K(y_0, \dots, y_{m+1}) = \frac{(-1)^{m\chi_{y_{m+1} > y_0}}}{(y_0 - y_{m+1})^{m+1}} \prod_{\ell=1}^m \chi_{\left(\min(y_0, y_{m+1}), \max(y_0, y_{m+1})\right)}(y_\ell)$$

$$K(y_0, \dots, y_{m+1}) = \frac{(-1)^{m\chi_{y_{m+1} > y_0}}}{(y_0 - y_{m+1})^{m+1}} \prod_{\ell=1}^{m} \chi_{\left(\min(y_0, y_{m+1}), \max(y_0, y_{m+1})\right)}(y_\ell)$$

Observation: there is a lot of nonsmoothness in the kernel (bad)

$$K(y_0, \dots, y_{m+1}) = \frac{(-1)^{m\chi_{y_{m+1} > y_0}}}{(y_0 - y_{m+1})^{m+1}} \prod_{\ell=1}^m \chi_{\min(y_0, y_{m+1}), \max(y_0, y_{m+1})}(y_\ell)$$

Observation: there is a lot of nonsmoothness in the kernel (bad)

Observation: there is some symmetry in the kernel (good)

$$K(y_0, \dots, y_{m+1}) = \frac{(-1)^{m\chi_{y_{m+1} > y_0}}}{(y_0 - y_{m+1})^{m+1}} \prod_{\ell=1}^{m} \chi_{\left(\min(y_0, y_{m+1}), \max(y_0, y_{m+1})\right)}(y_\ell)$$

Observation: there is a lot of nonsmoothness in the kernel (bad)

Observation: there is some symmetry in the kernel (good)

Let
$$\phi \in C^{\infty}(\mathbb{R})$$
 be even, $0 \le \phi \le 1$, $\phi(0) = 1$ and $\operatorname{supp}(\phi) \subset [-1,1]$. We set $\Phi = \phi'$ and $\Phi_t(x) = t^{-1}\Phi(x/t)$. Define,

$$A_t(f)(x) = \int_{\mathbb{R}} a_t(x,y)f(y)dy$$
 where $a_t(x,y) = \Phi_t(x-y)\chi_{(x,\infty)}(y)$

Theorem: The operator C_m maps

- (a) $L^1 \times \cdots \times L^1$ to weak $L^{1/m}$.
- (b) $L^{p_1} \times \cdots \times L^{p_m}$ to weak L^p if some $p_j = 1$.
- (c) $L^{p_1} \times \cdots \times L^{p_m}$ to L^p if all $p_j > 1$.

Here, $1 \leq p_j \leq \infty$ and

$$\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_m} \, .$$

Theorem: The operator C_m maps

- (a) $L^1 \times \cdots \times L^1$ to weak $L^{1/m}$.
- (b) $L^{p_1} \times \cdots \times L^{p_m}$ to weak L^p if some $p_j = 1$.
- (c) $L^{p_1} \times \cdots \times L^{p_m}$ to L^p if all $p_j > 1$.

Here, $1 \leq p_j \leq \infty$ and

$$\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_m} \, .$$

History: m = 1: C. Calderón

Theorem: The operator C_m maps

- (a) $L^1 \times \cdots \times L^1$ to weak $L^{1/m}$.
- (b) $L^{p_1} \times \cdots \times L^{p_m}$ to weak L^p if some $p_j = 1$.
- (c) $L^{p_1} \times \cdots \times L^{p_m}$ to L^p if all $p_j > 1$.

Here, $1 \leq p_j \leq \infty$ and

$$\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_m} \, .$$

History: m = 1: C. Calderón

History: m = 2, 3: Coifman and Meyer

Based on Calderón-Zygmund decomposition

Based on Calderón-Zygmund decomposition

We want to estimate

$$|\{|T(f_1,\ldots,f_m)|>\lambda\}|.$$

Apply the CZ decomposition on each f_j at height $(\alpha \lambda)^{1/m}$ for some α to be chosen.

Based on Calderón-Zygmund decomposition

We want to estimate

$$|\{|T(f_1,\ldots,f_m)|>\lambda\}|.$$

Apply the CZ decomposition on each f_j at height $(\alpha \lambda)^{1/m}$ for some α to be chosen.

Write for $j = 1, \dots, m$

$$f_j = g_j + b_j$$

and assume that $||f_j||_{L^1} = 1$ (by scaling).

$$E_{\lambda}^{(1)} = \left\{ x \in \mathbb{R}^{n} : |T(g_{1}, g_{2}, ..., g_{m})(x)| > \lambda/2^{m} \right\}$$

$$E_{\lambda}^{(2)} = \left\{ x \in \mathbb{R}^{n} : |T(b_{1}, g_{2}, ..., g_{m})(x)| > \lambda/2^{m} \right\}$$

$$E_{\lambda}^{(3)} = \left\{ x \in \mathbb{R}^{n} : |T(g_{1}, b_{2}, ..., g_{m})(x)| > \lambda/2^{m} \right\}$$
.....
$$E_{\lambda}^{(2^{m})} = \left\{ x \in \mathbb{R}^{n} : |T(b_{1}, b_{2}, ..., b_{m})(x)| > \lambda/2^{m} \right\},$$

$$E_{\lambda}^{(1)} = \left\{ x \in \mathbb{R}^{n} : |T(g_{1}, g_{2}, ..., g_{m})(x)| > \lambda/2^{m} \right\}$$

$$E_{\lambda}^{(2)} = \left\{ x \in \mathbb{R}^{n} : |T(b_{1}, g_{2}, ..., g_{m})(x)| > \lambda/2^{m} \right\}$$

$$E_{\lambda}^{(3)} = \left\{ x \in \mathbb{R}^{n} : |T(g_{1}, b_{2}, ..., g_{m})(x)| > \lambda/2^{m} \right\}$$
.....
$$E_{\lambda}^{(2^{m})} = \left\{ x \in \mathbb{R}^{n} : |T(b_{1}, b_{2}, ..., b_{m})(x)| > \lambda/2^{m} \right\},$$

We need to show that $|E_{\lambda}^{(r)}| \leq C (A+B) \lambda^{-1/m}$.

$$E_{\lambda}^{(1)} = \left\{ x \in \mathbb{R}^{n} : |T(g_{1}, g_{2}, ..., g_{m})(x)| > \lambda/2^{m} \right\}$$

$$E_{\lambda}^{(2)} = \left\{ x \in \mathbb{R}^{n} : |T(b_{1}, g_{2}, ..., g_{m})(x)| > \lambda/2^{m} \right\}$$

$$E_{\lambda}^{(3)} = \left\{ x \in \mathbb{R}^{n} : |T(g_{1}, b_{2}, ..., g_{m})(x)| > \lambda/2^{m} \right\}$$
.....
$$E_{\lambda}^{(2^{m})} = \left\{ x \in \mathbb{R}^{n} : |T(b_{1}, b_{2}, ..., b_{m})(x)| > \lambda/2^{m} \right\},$$

We need to show that $|E_{\lambda}^{(r)}| \leq C (A+B) \lambda^{-1/m}$.

The idea is better presented when m=2.

For linear operators, one writes T(f) = T(g) + T(b)

$$T(g) = good term$$

$$T(b) = \mathsf{bad} \mathsf{term}$$

For linear operators, one writes T(f) = T(g) + T(b)

$$T(g) = good term$$

$$T(b) = \text{bad term}$$

Here (say in the case m=2)

$$T(g_1,g_2) = \mathsf{good}$$
 $T(b_1,g_2), \quad T(g_1,b_2) = \mathsf{bad}$

For linear operators, one writes T(f) = T(g) + T(b)

$$T(g) = good term$$

$$T(b) = \mathsf{bad} \mathsf{term}$$

Here (say in the case m=2)

$$T(g_1,g_2) = \operatorname{good}$$
 $T(b_1,g_2), \quad T(g_1,b_2) = \operatorname{bad}$

But there is also the

$$T(b_1,b_2) = \operatorname{ugly}$$

THE UGLY TERM

THE UGLY TERM

Write
$$T(b_1, b_2) = T(\sum_k b_{1,k}, \sum_j b_{2,j}) = \sum_{i=1}^{3} T_i(b_1, b_2)$$
, where

THE UGLY TERM

Write
$$T(b_1, b_2) = T\left(\sum_k b_{1,k}, \sum_j b_{2,j}\right) = \sum_{i=1}^3 T_i(b_1, b_2)$$
, where $T_1(b_1, b_2) = T\left(\sum_k A_{t_{1,k}}(b_{1,k}), \sum_j A_{t_{2,j}}(b_{2,j})\right)$
$$T_2(b_1, b_2) = \sum_k \sum_{j: \ell(Q_{1,k}) \le \ell(Q_{2,j})} T\left(A_{t_{1,k}}(b_{1,k}), b_{2,j} - A_{t_{2,j}}(b_{2,j})\right)$$

$$T_3(b_1, b_2) = \sum_k \sum_{j: \ell(Q_{1,k}) \le \ell(Q_{2,j})} T\left(b_{1,k} - A_{t_{1,k}}(b_{1,k}), b_{2,j}\right)$$

$$T_4(b_1, b_2) = \sum_k \sum_{j: \ell(Q_{1,k}) > \ell(Q_{2,j})} T\left(b_{1,k} - A_{t_{1,k}}(b_{1,k}), A_{t_{2,j}}(b_{2,j})\right)$$

$$T_5(b_1, b_2) = \sum_k \sum_{j: \ell(Q_{1,k}) > \ell(Q_{2,j})} T\left(b_{1,k}, b_{2,j} - A_{t_{2,j}}(b_{2,j})\right),$$

where $t_{1,k} = \ell(Q_{1,k})$ and $b_{i,k}$ is supported in $Q_{i,k}$, i = 1, 2.

The Marcinkiewicz function associated with $\{Q_{i,k}\}_k$.

$$\mathcal{J}_{i,\epsilon}(x) = \sum_{k} \frac{\ell(Q_{i,k})^{n+\epsilon}}{(\ell(Q_{i,k}) + |x - x_{Q_{i,k}}|)^{n+\epsilon}}, \quad i = 1, 2,$$

where $x_{Q_{i,k}}$ is the center of $Q_{i,k}$.

The Marcinkiewicz function associated with $\{Q_{i,k}\}_k$.

$$\mathcal{J}_{i,\epsilon}(x) = \sum_{k} \frac{\ell(Q_{i,k})^{n+\epsilon}}{(\ell(Q_{i,k}) + |x - x_{Q_{i,k}}|)^{n+\epsilon}}, \quad i = 1, 2,$$

where $x_{Q_{i,k}}$ is the center of $Q_{i,k}$.

Fefferman and Stein proved that for $n/(n+\epsilon) we have$

$$\|\mathcal{J}_{i,\epsilon}\|_{L^p(\mathbb{R}^n)} \le C_{n,\varepsilon,p}(\sum_k |Q_{i,k}|)^{1/p} \le C_{n,\varepsilon,p}(\alpha\lambda)^{-1/2p}.$$

The Marcinkiewicz function comes appears as follows:

$$|\sum_{k} A_{t_{1,k}}(b_{1,k})(x)| \leq C \sum_{k} \int_{\mathbb{R}^{n}} \frac{\ell(Q_{1,k})^{\epsilon}}{(\ell(Q_{1,k}) + |x - y|)^{n + \epsilon}} |b_{1,k}(y)| dy$$

$$\leq C \sum_{k} \frac{\ell(Q_{1,k})^{\epsilon}}{(\ell(Q_{1,k}) + |x - x_{Q_{1,k}}|)^{n + \epsilon}} ||b_{1,k}||_{L^{1}(\mathbb{R}^{n})}$$

$$\leq C(\alpha \lambda)^{1/2} \mathcal{J}_{1,\epsilon}(x),$$

The Marcinkiewicz function comes appears as follows:

$$|\sum_{k} A_{t_{1,k}}(b_{1,k})(x)| \leq C \sum_{k} \int_{\mathbb{R}^{n}} \frac{\ell(Q_{1,k})^{\epsilon}}{(\ell(Q_{1,k}) + |x - y|)^{n + \epsilon}} |b_{1,k}(y)| dy$$

$$\leq C \sum_{k} \frac{\ell(Q_{1,k})^{\epsilon}}{(\ell(Q_{1,k}) + |x - x_{Q_{1,k}}|)^{n + \epsilon}} ||b_{1,k}||_{L^{1}(\mathbb{R}^{n})}$$

$$\leq C(\alpha \lambda)^{1/2} \mathcal{J}_{1,\epsilon}(x),$$

This allows us to control terms of the form

$$T\left(\sum_{k} A_{t_{1,k}}(b_{1,k}), g_2\right), \quad T\left(g_1, \sum_{k} A_{t_{2,k}}(b_{2,k})\right)$$

and

$$T\left(\sum_{k} A_{t_{1,k}}(b_{1,k}), \sum_{k} A_{t_{2,k}}(b_{2,k})\right)$$

$$\left| \left\{ x \in \mathbb{R}^{n} : \left| T\left(\sum_{k} A_{t_{1,k}}(b_{1,k}), g_{2} \right)(x) \right| > \frac{\lambda}{4} \right\} \right|$$

$$\leq (4B)^{q} \lambda^{-q} \left\| \sum_{k} A_{t_{1,k}}(b_{1,k}) \right\|_{L^{q_{1}}(\mathbb{R}^{n})}^{q} \|g_{2}\|_{L^{q_{2}}(\mathbb{R}^{n})}^{q}$$

$$\leq C\lambda^{-q} B^{q}(\alpha\lambda)^{q/2} \|\mathcal{J}_{1,\epsilon}\|_{L^{q_{1}}(\mathbb{R}^{n})}^{q} (\alpha\lambda)^{\frac{q}{2}(1-\frac{1}{q_{2}})}$$

$$\leq C\lambda^{-q} B^{q}(\alpha\lambda)^{\frac{q}{2}(1-\frac{1}{q_{1}})} (\alpha\lambda)^{\frac{q}{2}(1-\frac{1}{q_{2}})}$$

$$\leq C' B^{q} \lambda^{-1/2} \alpha^{q-\frac{1}{2}}.$$

$$\left| \left\{ x \in \mathbb{R}^{n} : |T\left(\sum_{k} A_{t_{1,k}}(b_{1,k}), g_{2}\right)(x)| > \frac{\lambda}{4} \right\} \right|$$

$$\leq (4B)^{q} \lambda^{-q} \left\| \sum_{k} A_{t_{1,k}}(b_{1,k}) \right\|_{L^{q_{1}}(\mathbb{R}^{n})}^{q} \|g_{2}\|_{L^{q_{2}}(\mathbb{R}^{n})}^{q}$$

$$\leq C\lambda^{-q} B^{q}(\alpha\lambda)^{q/2} \|\mathcal{J}_{1,\epsilon}\|_{L^{q_{1}}(\mathbb{R}^{n})}^{q}(\alpha\lambda)^{\frac{q}{2}(1-\frac{1}{q_{2}})}$$

$$\leq C\lambda^{-q} B^{q}(\alpha\lambda)^{\frac{q}{2}(1-\frac{1}{q_{1}})} (\alpha\lambda)^{\frac{q}{2}(1-\frac{1}{q_{2}})}$$

$$\leq C' B^{q} \lambda^{-1/2} \alpha^{q-\frac{1}{2}}.$$

Note that one needs here that $q_1 < \infty$ (analogously $q_2 < \infty$).

$$\left| \left\{ x \in \mathbb{R}^{n} : |T\left(\sum_{k} A_{t_{1,k}}(b_{1,k}), g_{2}\right)(x)| > \frac{\lambda}{4} \right\} \right|$$

$$\leq (4B)^{q} \lambda^{-q} \left\| \sum_{k} A_{t_{1,k}}(b_{1,k}) \right\|_{L^{q_{1}}(\mathbb{R}^{n})}^{q} \|g_{2}\|_{L^{q_{2}}(\mathbb{R}^{n})}^{q}$$

$$\leq C\lambda^{-q} B^{q}(\alpha\lambda)^{q/2} \|\mathcal{J}_{1,\epsilon}\|_{L^{q_{1}}(\mathbb{R}^{n})}^{q} (\alpha\lambda)^{\frac{q}{2}(1-\frac{1}{q_{2}})}$$

$$\leq C\lambda^{-q} B^{q}(\alpha\lambda)^{\frac{q}{2}(1-\frac{1}{q_{1}})} (\alpha\lambda)^{\frac{q}{2}(1-\frac{1}{q_{2}})}$$

$$\leq C' B^{q} \lambda^{-1/2} \alpha^{q-\frac{1}{2}}.$$

Note that one needs here that $q_1 < \infty$ (analogously $q_2 < \infty$).

Note that $\alpha = (A + B)^{-1}$ yields the claimed constant.

TERMS CONTAINING $\sum_{k} \left(b_{1,k} - A_{t_{1,k}}(b_{1,k})\right)$

TERMS CONTAINING $\sum_{k} \left(b_{1,k} - A_{t_{1,k}}(b_{1,k})\right)$

Recall

$$|K(x, y_{1}, \dots, y_{m}) - K_{t}^{(j)}(x, y_{1}, \dots, y_{m})|$$

$$\leq \frac{A t^{\epsilon}}{(|x - y_{1}| + \dots + |x - y_{m}|)^{mn + \epsilon}}$$

$$+ \frac{A}{(|x - y_{1}| + \dots + |x - y_{m}|)^{mn}} \sum_{\substack{k=1 \ k \neq j}}^{m} \phi\left(\frac{|y_{j} - y_{k}|}{t}\right)$$

for some A > 0, whenever $t \leq |x - y_j|/2$; $supp(\phi) \subset [-1, 1]$.

TERMS CONTAINING $\sum_{k} \left(b_{1,k} - A_{t_{1,k}}(b_{1,k})\right)$

Recall

$$|K(x, y_{1}, \dots, y_{m}) - K_{t}^{(j)}(x, y_{1}, \dots, y_{m})|$$

$$\leq \frac{A t^{\epsilon}}{(|x - y_{1}| + \dots + |x - y_{m}|)^{mn + \epsilon}}$$

$$+ \frac{A}{(|x - y_{1}| + \dots + |x - y_{m}|)^{mn}} \sum_{\substack{k=1 \ k \neq j}}^{m} \phi\left(\frac{|y_{j} - y_{k}|}{t}\right)$$

for some A > 0, whenever $t \leq |x - y_j|/2$; $supp(\phi) \subset [-1, 1]$.

Take $x \notin \bigcup_k (Q_{1,k})^* \cup \bigcup_k (Q_{2,k})^* = \text{exceptional set.}$

Consider for instance $T\Big(\sum_{k} \big(b_{1,k} - A_{t_{1,k}}(b_{1,k})\big), g_2\Big)$.

Consider for instance $T\Big(\sum_{k} \big(b_{1,k} - A_{t_{1,k}}(b_{1,k})\big), g_2\Big)$.

$$\begin{split} & \sum_{k} \int_{(Q_{1,k}^*)^c} \left| T(b_{1,k} - A_{t_{1,k}}(b_{1,k}), g_2)(x) \right| dx \\ & \leq \sum_{k} \int_{(\mathbb{R}^n)^2} \left[\int_{(Q_{1,k}^*)^c} \left| K(x,y_1,y_2) - K_{t_{1,k}}^{(1)}(x,y_1,y_2) \right| dx \right] |b_{1,k}(y_1)| |g_2(y_2)| dy_1 dy_2 \\ & \leq CA \sum_{k} \int_{(\mathbb{R}^n)^2} \left[\int_{\mathbb{R}^n} \frac{\ell(Q_{1,k})^\epsilon dx}{(|x-y_1| + \ell(Q_{1,k}) + |y_1-y_2|)^{2n+\epsilon}} \right] |b_{1,k}(y_1)| |g_2(y_2)| dy_1 dy_2 \\ & + CA \sum_{k} \int_{(\mathbb{R}^n)^3} \frac{1}{(|x-y_2| + \ell(Q_{1,k}))^{2n}} \phi\left(\frac{|y_1-y_2|}{\ell(Q_{1,k})}\right) |b_{1,k}(y_1)| |g_2(y_2)| dy_1 dy_2 dx \\ & = I + II. \end{split}$$

$$I \leq \sum_{k} \int_{(\mathbb{R}^{n})^{2}} \frac{CA \ell(Q_{1,k})^{\epsilon}}{(\ell(Q_{1,k}) + |y_{1} - y_{2}|)^{n+\epsilon}} |b_{1,k}(y_{1})| |g_{2}(y_{2})| dy_{1} dy_{2}$$

$$\leq \sum_{k} \int_{(\mathbb{R}^{n})^{2}} \frac{CA \ell(Q_{1,k})^{\epsilon}}{(\ell(Q_{1,k}) + |x_{Q_{1,k}} - y_{2}|)^{n+\epsilon}} |b_{1,k}(y_{1})| |g_{2}(y_{2})| dy_{1} dy_{2}$$

$$\leq CA(\alpha\lambda)^{1/2} \int_{\mathbb{R}^{n}} |g_{2}(y_{2})| \mathcal{J}_{1,\epsilon}(y_{2}) dy_{2} \leq CA(\alpha\lambda)^{1/2}.$$

$$\begin{split} I & \leq \sum_{k} \int_{(\mathbb{R}^{n})^{2}} \frac{CA \ell(Q_{1,k})^{\epsilon}}{(\ell(Q_{1,k}) + |y_{1} - y_{2}|)^{n+\epsilon}} |b_{1,k}(y_{1})| |g_{2}(y_{2})| dy_{1} dy_{2} \\ & \leq \sum_{k} \int_{(\mathbb{R}^{n})^{2}} \frac{CA \ell(Q_{1,k})^{\epsilon}}{(\ell(Q_{1,k}) + |x_{Q_{1,k}} - y_{2}|)^{n+\epsilon}} |b_{1,k}(y_{1})| |g_{2}(y_{2})| dy_{1} dy_{2} \\ & \leq CA (\alpha \lambda)^{1/2} \int_{\mathbb{R}^{n}} |g_{2}(y_{2})| \mathcal{J}_{1,\epsilon}(y_{2}) dy_{2} \leq CA (\alpha \lambda)^{1/2}. \\ II & \leq CA \sum_{k} \int_{(\mathbb{R}^{n})^{2}} \frac{|b_{1,k}(y_{1})|}{(\ell(Q_{1,k}) + |x - y_{2}|)^{2n}} |g_{2}(y_{2})| \phi\left(\frac{|y_{1} - y_{2}|}{\ell(Q_{1,k})}\right) dy_{1} dy_{2} dx \\ & \leq \sum_{k} \int_{(\mathbb{R}^{n})^{2}} \frac{CA (\alpha \lambda)^{1/2} \ell(Q_{1,k})^{n}}{(\ell(Q_{1,k}) + |x - y_{2}|)^{2n}} |g_{2}(y_{2})| \mathbb{1}_{(Q_{1,k})^{*}}(y_{2}) dy_{2} dx \\ & \leq CA (\alpha \lambda)^{1/2} \int_{\mathbb{R}^{n}} |g_{2}(y_{2})| \mathbb{1}_{\cup_{k}(Q_{1,k})^{*}}(y_{2}) dy_{2} \\ & \leq CA (\alpha \lambda)^{1/2} |g_{2}|_{L^{2}(\mathbb{R}^{n})} |\cup_{k} (Q_{1,k})^{*}|^{1/2} \leq CA (\alpha \lambda)^{1/2}. \end{split}$$

Consider for instance $T_3(b_1,b_2)(x)$ for $x \notin \text{the exceptional set:}$

$$|T_{3}(b_{1},b_{2})(x)|$$

$$\leq \sum_{k} \sum_{j:\ell(Q_{1,k}) \leq \ell(Q_{2,j})} \int_{(\mathbb{R}^{n})^{2}} \left| \left[K(x,y_{1},y_{2}) - K_{t_{1,k}}^{(1)}(x,y_{1},y_{2}) \right] b_{1,k}(y_{1}) b_{2,j}(y_{2}) \right| dy_{1} dy_{2}$$

$$\leq CA \sum_{k} \sum_{j:\ell(Q_{1,k}) \leq \ell(Q_{2,j})} \int_{(\mathbb{R}^{n})^{2}} \frac{\ell(Q_{1,k})^{\epsilon}}{(|x-y_{1}|+|x-y_{2}|)^{2n+\epsilon}} |b_{1,k}(y_{1}) b_{2,j}(y_{2})| dy_{1} dy_{2}$$

$$+ CA \sum_{k} \sum_{j:\ell(Q_{1,k}) \leq \ell(Q_{2,j})} \int_{(\mathbb{R}^{n})^{2}} \frac{|b_{1,k}(y_{1}) b_{2,j}(y_{2})|}{(|x-y_{1}|+|x-y_{2}|)^{2n}} \phi\left(\frac{|y_{1}-y_{2}|}{\ell(Q_{1,k})}\right) dy_{1} dy_{2}$$

$$= T_{31}(b_{1},b_{2})(x) + T_{32}(b_{1},b_{2})(x).$$

Consider for instance $T_3(b_1,b_2)(x)$ for $x \notin \text{the exceptional set:}$

$$|T_{3}(b_{1},b_{2})(x)|$$

$$\leq \sum_{k} \sum_{j:\ell(Q_{1,k}) \leq \ell(Q_{2,j})} \int_{(\mathbb{R}^{n})^{2}} \left| \left[K(x,y_{1},y_{2}) - K_{t_{1,k}}^{(1)}(x,y_{1},y_{2}) \right] b_{1,k}(y_{1}) b_{2,j}(y_{2}) \right| dy_{1} dy_{2}$$

$$\leq CA \sum_{k} \sum_{j:\ell(Q_{1,k}) \leq \ell(Q_{2,j})} \int_{(\mathbb{R}^n)^2} \frac{\ell(Q_{1,k})^{\epsilon}}{(|x-y_1|+|x-y_2|)^{2n+\epsilon}} |b_{1,k}(y_1)b_{2,j}(y_2)| dy_1 dy_2$$

$$+ CA \sum_{k} \sum_{j: \ell(Q_{1,k}) \le \ell(Q_{2,j})} \int_{(\mathbb{R}^n)^2} \frac{|b_{1,k}(y_1)b_{2,j}(y_2)|}{(|x-y_1|+|x-y_2|)^{2n}} \,\phi\Big(\frac{|y_1-y_2|}{\ell(Q_{1,k})}\Big) dy_1 dy_2$$

$$=T_{31}(b_1,b_2)(x)+T_{32}(b_1,b_2)(x).$$

Use that $|T_{31}(b_1, b_2)(x)| \leq C(\alpha \lambda) \mathcal{J}_{1,\epsilon/2}(x) \mathcal{J}_{2,\epsilon/2}(x)$

Consider for instance $T_3(b_1,b_2)(x)$ for $x \notin \text{the exceptional set:}$

$$|T_3(b_1,b_2)(x)|$$

$$\leq \sum_{k} \sum_{j:\ell(Q_{1,k}) \leq \ell(Q_{2,j})} \int_{(\mathbb{R}^n)^2} \left| \left[K(x, y_1, y_2) - K_{t_{1,k}}^{(1)}(x, y_1, y_2) \right] b_{1,k}(y_1) b_{2,j}(y_2) \right| dy_1 dy_2$$

$$\leq CA \sum_{k} \sum_{j:\ell(Q_{1,k}) \leq \ell(Q_{2,j})} \int_{(\mathbb{R}^n)^2} \frac{\ell(Q_{1,k})^{\epsilon}}{(|x-y_1|+|x-y_2|)^{2n+\epsilon}} |b_{1,k}(y_1)b_{2,j}(y_2)| dy_1 dy_2$$

$$+ CA \sum_{k} \sum_{j: \ell(Q_{1,k}) \le \ell(Q_{2,j})} \int_{(\mathbb{R}^n)^2} \frac{|b_{1,k}(y_1)b_{2,j}(y_2)|}{(|x-y_1|+|x-y_2|)^{2n}} \,\phi\Big(\frac{|y_1-y_2|}{\ell(Q_{1,k})}\Big) dy_1 dy_2$$

$$=T_{31}(b_1,b_2)(x)+T_{32}(b_1,b_2)(x).$$

Use that $|T_{31}(b_1,b_2)(x)| \leq C(\alpha\lambda) \, \mathcal{J}_{1,\epsilon/2}(x) \mathcal{J}_{2,\epsilon/2}(x)$ which implies that $||T_{31}(b_1,b_2)||_{L^1} \leq (\alpha\lambda)^{1/2}$.

We use that ϕ is supported in [-1,1], and $\ell(Q_{1,k}) \leq \ell(Q_{2,j})$, to deduce for $x \notin \bigcup Q_{1,k}^* \cup \bigcup Q_{2,j}^*$ that

We use that ϕ is supported in [-1,1], and $\ell(Q_{1,k}) \leq \ell(Q_{2,j})$, to deduce for $x \notin \bigcup Q_{1,k}^* \cup \bigcup Q_{2,j}^*$ that

$$|T_{32}(b_{1},b_{2})(x)|$$

$$\leq \sum_{k} \sum_{j:\ell(Q_{1,k}) \leq \ell(Q_{2,j})} \int_{\mathbb{R}^{n}} \frac{CA||b_{1,k}||_{L^{1}(\mathbb{R}^{n})}}{(\ell(Q_{2,j}) + |x - y_{2}|)^{2n}} |b_{2,j}(y_{2})| \mathbf{1}_{(Q_{1,k})^{*}}(y_{2}) dy_{2}$$

$$\leq \sum_{j} \int_{\mathbb{R}^{n}} \frac{CA(\alpha\lambda)^{1/2} \ell(Q_{2,j})^{n}}{(\ell(Q_{2,j}) + |x - y_{2}|)^{2n}} |b_{2,j}(y_{2})| \mathbf{1}_{\bigcup_{k}(Q_{1,k})^{*}}(y_{2}) dy_{2}$$

$$\leq CA(\alpha\lambda)^{1/2} \sum_{j} \int_{\mathbb{R}^{n}} \frac{\ell(Q_{2,j})^{n}}{(\ell(Q_{2,j}) + |x - y_{2}|)^{2n}} |b_{2,j}(y_{2})| dy_{2}.$$

This gives

$$\int_{(\cup_{i=1}^{2}\Omega_{i}^{*})^{c}} |T_{32}(b_{1}, b_{2})(x)| dx$$

$$\leq CA(\alpha\lambda)^{1/2} \sum_{j} \int_{(\mathbb{R}^{n})^{2}} \frac{\ell(Q_{2,j})^{n}}{(\ell(Q_{2,j}) + |x - y_{2}|)^{2n}} |b_{2,j}(y_{2})| dy_{2} dx$$

$$\leq CA(\alpha\lambda)^{1/2} \sum_{j} \int_{\mathbb{R}^{n}} |b_{2,j}(y_{2})| dy_{2}$$

$$\leq CA(\alpha\lambda)^{1/2}.$$

The Marcinkiewicz integral is not bounded on L^{∞} . Thus this argument cannot work when some $q_j = \infty$.

The Marcinkiewicz integral is not bounded on L^{∞} . Thus this argument cannot work when some $q_j = \infty$.

In this case, we use interpolation to prove that if hypothesis holds for some $q_j = \infty$, then it also holds for some $q_i^* < \infty$.

The Marcinkiewicz integral is not bounded on L^{∞} . Thus this argument cannot work when some $q_j = \infty$.

In this case, we use interpolation to prove that if hypothesis holds for some $q_j = \infty$, then it also holds for some $q_j^* < \infty$.

To get the claimed growth in the constant take $\alpha = (A + B)^{-1}$.

The Marcinkiewicz integral is not bounded on L^{∞} . Thus this argument cannot work when some $q_i = \infty$.

In this case, we use interpolation to prove that if hypothesis holds for some $q_j = \infty$, then it also holds for some $q_i^* < \infty$.

To get the claimed growth in the constant take $\alpha = (A + B)^{-1}$.

Argument has a straightforward extension to all $m \in \mathbb{Z}^+$. The algebraic identities used in the ugly part are also valid for $m \geq 3$;

The Marcinkiewicz integral is not bounded on L^{∞} . Thus this argument cannot work when some $q_i = \infty$.

In this case, we use interpolation to prove that if hypothesis holds for some $q_j = \infty$, then it also holds for some $q_j^* < \infty$.

To get the claimed growth in the constant take $\alpha = (A + B)^{-1}$.

Argument has a straightforward extension to all $m \in \mathbb{Z}^+$. The algebraic identities used in the ugly part are also valid for $m \geq 3$;

This term is uglier!

The higher dimensional commutator is defined as

$$C_2^{(n)}(f,a)(x) = \int_{\mathbb{R}^n} K(x-y) \left(\int_0^1 a((1-t)x + ty) \, dt \right) f(y) \, dy$$

where K(x) is a Calderón-Zygmund kernel in dimension n and f, a are functions on \mathbb{R}^n .

The higher dimensional commutator is defined as

$$C_2^{(n)}(f,a)(x) = \int_{\mathbb{R}^n} K(x-y) \left(\int_0^1 a((1-t)x + ty) \, dt \right) f(y) \, dy$$

where K(x) is a Calderón-Zygmund kernel in dimension n and f, a are functions on \mathbb{R}^n .

Christ and Journé proved that $C_2^{(n)}$ is bounded from $L^p(\mathbb{R}^n) \times L^\infty(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ for 1 .

The higher dimensional commutator is defined as

$$C_2^{(n)}(f,a)(x) = \int_{\mathbb{R}^n} K(x-y) \left(\int_0^1 a((1-t)x + ty) \, dt \right) f(y) \, dy$$

where K(x) is a Calderón-Zygmund kernel in dimension n and f, a are functions on \mathbb{R}^n .

Christ and Journé proved that $\mathcal{C}_2^{(n)}$ is bounded from $L^p(\mathbb{R}^n) \times L^\infty(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ for 1 .

We discuss some off-diagonal bounds $L^p \times L^q \to L^r$, whenever 1/p+1/q=1/r and $1< p,q,r<\infty$.

These are

$$H_{\alpha,\beta}(f,g)(t) = \text{p.v.} \int_{-\infty}^{+\infty} f(t-\alpha s)g(t-\beta s) rac{ds}{s} \qquad t \in \mathbb{R}$$

defined for functions on the line. (Lacey and Thiele)

These are

$$H_{\alpha,\beta}(f,g)(t) = \text{p.v.} \int_{-\infty}^{+\infty} f(t-\alpha s)g(t-\beta s) rac{ds}{s} \qquad t \in \mathbb{R}$$

defined for functions on the line. (Lacey and Thiele)

It is easy to see that with $e_1 = (1, 0, \dots, 0)$

$$\mathcal{H}_{\alpha,\beta}^{e_1}(f,g)(x) = \text{p.v.} \int_{-\infty}^{+\infty} f(x - \alpha s \, e_1) g(x - \beta s \, e_1) \frac{ds}{s} \qquad x \in \mathbb{R}^n$$

defined for functions f, g on \mathbb{R}^n is bounded in the same range. Here $e_1 = (1, 0, \dots, 0)$.

It follows that for all $\theta \in \mathbb{S}^{n-1}$

$$\mathcal{H}^{\theta}_{\alpha,\beta}(f,g)(x) = \text{p.v.} \int_{-\infty}^{+\infty} f(x - \alpha s \, \theta) g(x - \beta s \, \theta) \frac{ds}{s} \,, \qquad x \in \mathbb{R}^n$$

defined for functions f, g on \mathbb{R}^n is bounded in the same range.

It follows that for all $\theta \in \mathbb{S}^{n-1}$

$$\mathcal{H}^{\theta}_{\alpha,\beta}(f,g)(x) = \text{p.v.} \int_{-\infty}^{+\infty} f(x - \alpha s \, \theta) g(x - \beta s \, \theta) \frac{ds}{s} \,, \qquad x \in \mathbb{R}^n$$

defined for functions f, g on \mathbb{R}^n is bounded in the same range.

Here we use that rotation by a matrix of the form $\begin{pmatrix} M & O \\ O & M \end{pmatrix}$ preserves boundedness.

What if $\theta_1, \theta_2 \in \mathbb{S}^{n-1}$, and $\theta_1 \neq \theta_2$?

$$\mathcal{H}^{\theta}_{\alpha,\beta}(f,g)(x) = \text{p.v.} \int_{-\infty}^{+\infty} f(x - \alpha s \, \theta_1) g(x - \beta s \, \theta_2) rac{ds}{s} \,, \qquad x \in \mathbb{R}^n$$

What if $\theta_1, \theta_2 \in \mathbb{S}^{n-1}$, and $\theta_1 \neq \theta_2$?

$$\mathcal{H}^{\theta}_{\alpha,\beta}(f,g)(x) = \text{p.v.} \int_{-\infty}^{+\infty} f(x - \alpha s \, \theta_1) g(x - \beta s \, \theta_2) \frac{ds}{s} \,, \qquad x \in \mathbb{R}^n$$

Is this operator bounded from $L^{p_1}(\mathbf{R}^n) \times L^{p_2}(\mathbf{R}^n) \to L^p(\mathbf{R}^n)$?

What if $\theta_1, \theta_2 \in \mathbb{S}^{n-1}$, and $\theta_1 \neq \theta_2$?

$$\mathcal{H}^{\theta}_{\alpha,\beta}(f,g)(x) = \text{p.v.} \int_{-\infty}^{+\infty} f(x - \alpha s \, \theta_1) g(x - \beta s \, \theta_2) \frac{ds}{s} \,, \qquad x \in \mathbb{R}^n$$

Is this operator bounded from $L^{p_1}(\mathbf{R}^n) \times L^{p_2}(\mathbf{R}^n) \to L^p(\mathbf{R}^n)$?

This is not known (to me).

What if $\theta_1, \theta_2 \in \mathbb{S}^{n-1}$, and $\theta_1 \neq \theta_2$?

$$\mathcal{H}^{\theta}_{\alpha,\beta}(f,g)(x) = \text{p.v.} \int_{-\infty}^{+\infty} f(x - \alpha s \, \theta_1) g(x - \beta s \, \theta_2) \frac{ds}{s} \,, \qquad x \in \mathbb{R}^n$$

Is this operator bounded from $L^{p_1}({\bf R}^n) \times L^{p_2}({\bf R}^n) \to L^p({\bf R}^n)$?

This is not known (to me).

However the case $\theta_1 = \theta_2$ is OK and suffices to treat the higher-dimensional commutators.

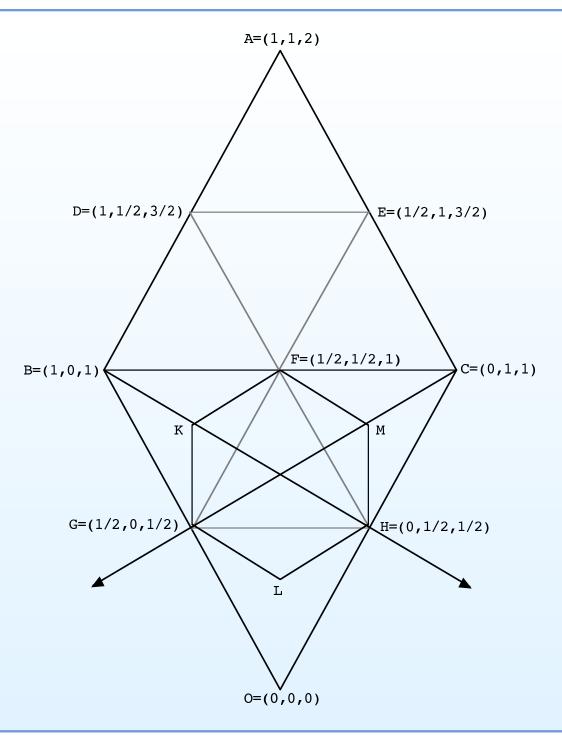
For K homogeneous of degree -n and odd we can write

$$C_2^{(n)}(f,a)(x) = \int_{\mathbb{R}^n} K(x-y) \left(\int_0^1 a((1-t)x + ty) dt \right) f(y) dy$$
$$= \frac{1}{2} \int_{\mathbb{S}^{n-1}} K(\theta) \int_0^1 \mathcal{H}_{1,t}^{\theta}(f,a)(x) dt d\theta.$$

For K homogeneous of degree -n and odd we can write

$$C_2^{(n)}(f,a)(x) = \int_{\mathbb{R}^n} K(x-y) \left(\int_0^1 a((1-t)x + ty) dt \right) f(y) dy$$
$$= \frac{1}{2} \int_{\mathbb{S}^{n-1}} K(\theta) \int_0^1 \mathcal{H}_{1,t}^{\theta}(f,a)(x) dt d\theta.$$

Thus $C_2^{(n)}(f,a)$ is bounded whenever $H_{\alpha,\beta}$ are uniformly bounded from $L^{p_1}\times L^{p_2}\to L^p$.


For K homogeneous of degree -n and odd we can write

$$C_2^{(n)}(f,a)(x) = \int_{\mathbb{R}^n} K(x-y) \left(\int_0^1 a((1-t)x + ty) dt \right) f(y) dy$$
$$= \frac{1}{2} \int_{\mathbb{S}^{n-1}} K(\theta) \int_0^1 \mathcal{H}_{1,t}^{\theta}(f,a)(x) dt d\theta.$$

Thus $C_2^{(n)}(f,a)$ is bounded whenever $H_{\alpha,\beta}$ are uniformly bounded from $L^{p_1}\times L^{p_2}\to L^p$.

Use uniform bounds for $H_{\alpha,\beta}$ in a hexagonal region that contains the local L^2 triangle (X. Li).

PICTURE

FOURIER MULTIPLIER OF $\mathcal{H}^{\theta}_{lpha,eta}(f,a)$

FOURIER MULTIPLIER OF $\mathcal{H}^{\theta}_{\alpha,\beta}(f,a)$

It is
$$m(\xi_1, \xi_2) = -i \pi \operatorname{sgn}(\alpha \xi_1 \cdot \theta + \beta \xi_2 \cdot \theta)$$

FOURIER MULTIPLIER OF $\mathcal{H}_{\alpha,\beta}^{\theta}(f,a)$

It is
$$m(\xi_1, \xi_2) = -i \pi \operatorname{sgn} (\alpha \xi_1 \cdot \theta + \beta \xi_2 \cdot \theta)$$

or equivalently, the characteristic function of a half-space whose elements are perpendicular to the vector $(\alpha\theta, \beta\theta) \in \mathbb{R}^{2n}$

FOURIER MULTIPLIER OF $\mathcal{H}^{\theta}_{\alpha,\beta}(f,a)$

It is
$$m(\xi_1, \xi_2) = -i \pi \operatorname{sgn} (\alpha \xi_1 \cdot \theta + \beta \xi_2 \cdot \theta)$$

or equivalently, the characteristic function of a half-space whose elements are perpendicular to the vector $(\alpha\theta, \beta\theta) \in \mathbb{R}^{2n}$

Take for example the case n=2. Characteristic functions of half-planes of the form

$$\{(\eta_1, \eta_2, \eta_3, \eta_4) \in \mathbb{R}^4 : \eta_1(\alpha p_1) + \eta_2(\alpha p_2) + \eta_3(\beta p_2) + \eta_4(\beta p_2) > 0\}$$

FOURIER MULTIPLIER OF $\mathcal{H}^{\theta}_{\alpha,\beta}(f,a)$

It is
$$m(\xi_1, \xi_2) = -i \pi \operatorname{sgn} (\alpha \xi_1 \cdot \theta + \beta \xi_2 \cdot \theta)$$

or equivalently, the characteristic function of a half-space whose elements are perpendicular to the vector $(\alpha\theta, \beta\theta) \in \mathbb{R}^{2n}$

Take for example the case n=2. Characteristic functions of half-planes of the form

$$\{(\eta_1, \eta_2, \eta_3, \eta_4) \in \mathbb{R}^4: \ \eta_1(\alpha p_1) + \eta_2(\alpha p_2) + \eta_3(\beta p_2) + \eta_4(\beta p_2) > 0\}$$

Can we have general unit vectors (p_1, p_2, p_3, p_4) in \mathbb{R}^4 ?

$$\{(\eta_1, \eta_2, \eta_3, \eta_4) \in \mathbb{R}^4 : \eta_1 p_1 + \eta_2 p_2 + \eta_3 p_3 + \eta_4 p_4 > 0\}$$

Are the characteristic functions of balls, ellipsoids, or other geometric figures in \mathbb{R}^4 bounded bilinear Fourier multipliers?

Are the characteristic functions of balls, ellipsoids, or other geometric figures in \mathbb{R}^4 bounded bilinear Fourier multipliers?

ANSWER:

(a) No for balls (with Diestel) outside local L^2 case.

Are the characteristic functions of balls, ellipsoids, or other geometric figures in \mathbb{R}^4 bounded bilinear Fourier multipliers?

ANSWER:

(a) No for balls (with Diestel) outside local L^2 case.

ANSWER:

(b) No for other figures with curvature, such as ellipsoids, paraboloids, etc, outside local L^2 case. (M. Reguera Rodríguez)

Are the characteristic functions of balls, ellipsoids, or other geometric figures in \mathbb{R}^4 bounded bilinear Fourier multipliers?

ANSWER:

(a) No for balls (with Diestel) outside local L^2 case.

ANSWER:

(b) No for other figures with curvature, such as ellipsoids, paraboloids, etc, outside local L^2 case. (M. Reguera Rodríguez)

Suitable adaptation of Fefferman's counterexample based on the Besicovitch construction of a Kakeya set.

Step 1: use bilinear de Leeuw's theorem to reduce matters to n=2, i.e. to multipliers in \mathbb{R}^4 .

Step 1: use bilinear de Leeuw's theorem to reduce matters to n=2, i.e. to multipliers in \mathbb{R}^4 .

Step 2: refute a vector-valued inequality of the form

$$\left\| \left(\sum_{j} |T_{U_{v_j}}(f_j, g_j)|^2 \right)^{\frac{1}{2}} \right\|_{L^p} \le C \left\| \left(\sum_{j} |f_j|^2 \right)^{\frac{1}{2}} \right\|_{L^{p_1}} \left\| \left(\sum_{j} |g_j|^2 \right)^{\frac{1}{2}} \right\|_{L^{p_2}}$$

where $U_{v_j} = \{(\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : (\xi + \eta) \cdot v_j \geq 0\}.$

Step 1: use bilinear de Leeuw's theorem to reduce matters to n=2, i.e. to multipliers in \mathbb{R}^4 .

Step 2: refute a vector-valued inequality of the form

$$\left\| \left(\sum_{j} |T_{U_{v_j}}(f_j, g_j)|^2 \right)^{\frac{1}{2}} \right\|_{L^p} \le C \left\| \left(\sum_{j} |f_j|^2 \right)^{\frac{1}{2}} \right\|_{L^{p_1}} \left\| \left(\sum_{j} |g_j|^2 \right)^{\frac{1}{2}} \right\|_{L^{p_2}}$$

where $U_{v_j} = \{(\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : (\xi + \eta) \cdot v_j \geq 0\}.$

Step 3: Take f_j, g_j to be characteristic functions of suitable rectangles R_j that appear in the Besicovitch construction of a Kakeya set.

Step 1: use bilinear de Leeuw's theorem to reduce matters to n=2, i.e. to multipliers in \mathbb{R}^4 .

Step 2: refute a vector-valued inequality of the form

$$\left\| \left(\sum_{j} |T_{U_{v_j}}(f_j, g_j)|^2 \right)^{\frac{1}{2}} \right\|_{L^p} \le C \left\| \left(\sum_{j} |f_j|^2 \right)^{\frac{1}{2}} \right\|_{L^{p_1}} \left\| \left(\sum_{j} |g_j|^2 \right)^{\frac{1}{2}} \right\|_{L^{p_2}}$$

where $U_{v_j} = \{(\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : (\xi + \eta) \cdot v_j \geq 0\}.$

Step 3: Take f_j, g_j to be characteristic functions of suitable rectangles R_j that appear in the Besicovitch construction of a Kakeya set.

Step 4: calculate in the case $p_1, p_2, p > 2$.

Step 1: use bilinear de Leeuw's theorem to reduce matters to n=2, i.e. to multipliers in \mathbb{R}^4 .

Step 2: refute a vector-valued inequality of the form

$$\left\| \left(\sum_{j} |T_{U_{v_j}}(f_j, g_j)|^2 \right)^{\frac{1}{2}} \right\|_{L^p} \le C \left\| \left(\sum_{j} |f_j|^2 \right)^{\frac{1}{2}} \right\|_{L^{p_1}} \left\| \left(\sum_{j} |g_j|^2 \right)^{\frac{1}{2}} \right\|_{L^{p_2}}$$

where $U_{v_j} = \{(\xi, \eta) \in \mathbb{R}^2 \times \mathbb{R}^2 : (\xi + \eta) \cdot v_j \geq 0\}.$

Step 3: Take f_j, g_j to be characteristic functions of suitable rectangles R_j that appear in the Besicovitch construction of a Kakeya set.

Step 4: calculate in the case $p_1, p_2, p > 2$.

Step 5: use duality.