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CALDERON-ZYGMUND SINGULAR INTEGRALS

T(f)(z) = p.v. - K(z,y) f(y)dy
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CALDERON-ZYGMUND SINGULAR INTEGRALS

T(f)(z) = p.v. - K(x,y) f(y)dy

where the kernel satisfies the size condition:

K(z,y)| < Alz —y|™"
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CALDERON-ZYGMUND SINGULAR INTEGRALS

T(f)(z) = p.v. m}ﬂ%@f@ﬁw

where the kernel satisfies the size condition:

K(z,y)| < Alz —y|™"

and the smoothness condition (for some 6 > 0)

K(z.y) - Ky < — 2=V
(|Jz =yl + |z — ')

whenever |z—z'| < 3 max(|z—yl, |v'—y|). Assume that K*(xz, y) =

K (y, x) also satisfies the same condition.
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CALDERON-ZYGMUND THEOREM

Suppose that 1" is bounded on L" (usually r = 2).
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CALDERON-ZYGMUND THEOREM

Suppose that 1" is bounded on L" (usually r = 2).
Then T maps L' to weak L';
and is bounded on LP for all 1 < p < .
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CALDERON-ZYGMUND THEOREM

Suppose that 1" is bounded on L" (usually r = 2).

Then T"maps L' to weak L!;
and is bounded on LP? for all 1 < p < .

Same conclusion is valid if smoothness is replaced by the
weaker Hérmander condition

Sup/ K (x,y) — K(x,yp)|dr = A < 00
Y070 Jz—y[>2|y—yo|
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DUONG M°INTOSH CONDITION

More flexible condition that Hormander’s. Let A; be an
“approximate identity" in the following sense:
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DUONG M®INTOSH CONDITION

More flexible condition that Hormander’s. Let A; be an
“approximate identity" in the following sense:
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DUONG M®INTOSH CONDITION

More flexible condition that Hormander’s. Let A; be an
“approximate identity" in the following sense:

t—n/s
(1 + 75|z —y[)nte

a(z, y)| < hi(z,y) =

for some fixed s > 0.
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DUONG M®INTOSH CONDITION

More flexible condition that Hormander’s. Let A; be an
“approximate identity" in the following sense:

t—n/s
(1 + 75|z —y[)nte

a(z, y)| < hi(z,y) =

for some fixed s > 0.
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THEOREM OF DUONG AND M°INTOSH

- p.5/3



THEOREM OF DUONG AND M°INTOSH

Assume that for some ¢ > 0

sup/ K (x,y) — K(x,y)|dy < C.
t>0 J|z—y|>ctl/s

where K; is the kernel of T'A;.
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THEOREM OF DUONG AND MFINTOSH

Assume that for some ¢ > 0

Sup/ K (x,y) — K(x,y)|dy < C.
t>0 J|z—y|>ctl/s

where K; is the kernel of T'A;.

Theorem: If T" satisfies this generalized Hormander condition and
T is L? bounded, then it is of weak type (1, 1).
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APPLICATIONS
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APPLICATIONS

(a) Riesz transforms with respect to the sub-Laplacian on a
simply connected Lie group.
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APPLICATIONS

(a) Riesz transforms with respect to the sub-Laplacian on a
simply connected Lie group.

(b) Riesz transforms on Riemannian manifold with non-negative
Ricci curvature.
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APPLICATIONS

(a) Riesz transforms with respect to the sub-Laplacian on a
simply connected Lie group.

(b) Riesz transforms on Riemannian manifold with non-negative
Ricci curvature.

(c) Fefferman’s “Inequalities for Strongly Singular Convolution
Operators" Acta Math. 124 (1970), 9-36.
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MULTILINEAR CALDERON-ZYGMUND OPERATORS

T(fi,..., fm)(a / K (@Y1, -+, 4m) FL01) - - Fon ()l - - - i
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MULTILINEAR CALDERON-ZYGMUND OPERATORS

T(fi,..., fm)(a / K (@Y1, -+, 4m) FL01) - - Fon ()l - - - i

A
(=i 2y

K (@Y1, g Ym)| <
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MULTILINEAR CALDERON-ZYGMUND OPERATORS

T(f1,.--, fm)(z) = /K(az,yl,...,ym)fl(yl)...fm(ym)dyl...dym

A
(=i 2y

’K(xﬁyla"'aij")ym)‘ <

A\yl —ylﬂe
(lyo — 1| + - - + |yo — Yml|)™"Te

’K(yoayla ° 0 9 7ym)_K(y07y/17 I 7ym)‘ <

1
whenever |y; — y;| < 3 Wax o — 5l
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MULTILINEAR CALDERON-ZYGMUND THEOREM

Theorem: If T is bounded on some product of Lebesgue spaces,
then T is of weak type (1,1,...,1/m) and bounded on all
products of Lebesgue spaces (with R. Torres/Kenig and Stein).
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MULTILINEAR CALDERON-ZYGMUND THEOREM

Theorem: If T is bounded on some product of Lebesgue spaces,
then T is of weak type (1,1,...,1/m) and bounded on all
products of Lebesgue spaces (with R. Torres/Kenig and Stein).
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MULTILINEAR CALDERON-ZYGMUND THEOREM

Theorem: If T is bounded on some product of Lebesgue spaces,
then T is of weak type (1,1,...,1/m) and bounded on all
products of Lebesgue spaces (with R. Torres/Kenig and Stein).

OPEN QUESTION ON THE SUBJECT:
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MULTILINEAR CALDERON-ZYGMUND THEOREM

Theorem: If T is bounded on some product of Lebesgue spaces,
then T is of weak type (1,1,...,1/m) and bounded on all
products of Lebesgue spaces (with R. Torres/Kenig and Stein).

OPEN QUESTION ON THE SUBJECT:

Whether the smoothness condition can be replaced by a
Hormander-type condition.
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DUONG AND M°INTOSH m-LINEAR SETTING
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DUONG AND M°INTOSH m-LINEAR SETTING

Assume there exist A;, t > 0 with kernels a;(z, y) such that

t—’n
(1 + = o —y[)n+e

la(z, y)| < hi(z,y) =

and also if Kt(j) is the kernel of T o; A;
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DUONG AND M°INTOSH m-LINEAR SETTING

Assume there exist A;, t > 0 with kernels a;(z, y) such that

t—’l’b
T+ T =y

la(z, y)| < hi(z,y) =

and also if K7 is the kernel of 7 o; A,

K(z,y1, - um) — K2 (@01, ym)

m
< A Z (\?Jg—yk‘)
~ (’x_y1‘+...+‘x_ym‘)mnk_l ¢

k]

Ate

_|_
(Iz = yil 4+ |z = ym|)m e

for some A > 0, whenever ¢t < |x — y;|/2; supp(¢) C [-1,1].
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DUONG AND M°INTOSH m-LINEAR SETTING
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DUONG AND M°INTOSH m-LINEAR SETTING

Theorem: (with X. T. Duong and L. X. Yan) Under preceding
conditions, T is of weak type (1,1,...,1,1/m) provided it maps
L% x -.. x L% to L? for some choice of indices with 1 < ¢; < oo.

-p.10/3



DUONG AND M°INTOSH m-LINEAR SETTING

Theorem: (with X. T. Duong and L. X. Yan) Under preceding
conditions, T is of weak type (1,1,...,1,1/m) provided it maps
L% x -.. x L% to L? for some choice of indices with 1 < ¢; < oo.

Fundamental example: Commutators of Calderon:

Crsilfranssan)@) = [ [T A2 5y

R ‘5 (z —y)mtt

where z € R and A’ = a;.

-p.10/3



KERNEL OF THE COMMUTATOR
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KERNEL OF THE COMMUTATOR

(—1) XYm41>90

(yo o ym+1)m—|—1 51_[1 X mln(yo Ym+1),max (Yo, ym-l-l)) (yE)

K(y07°'° 7ym—{—1) =
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KERNEL OF THE COMMUTATOR

(1)

(yo - ym+1)m—|—1 51_[1 X mln(yo Ym+1),max (Yo, ym-l-l)) (yZ)

K (Yo, Ymt1) =

Observation: there is a lot of nonsmoothness in the kernel (bad)
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KERNEL OF THE COMMUTATOR

(1)
)m—l—l

H X(min(ymymﬂ),max(yo,ymﬂ)) (yﬁ)

K(y())' . 7ym—|—1) — (
/=1

Yo — Ym+1

Observation: there is a lot of nonsmoothness in the kernel (bad)

Observation: there is some symmetry in the kernel (good)
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KERNEL OF THE COMMUTATOR

(1)

H X(min(ymymﬂ),max(yo,ymﬂ)) (yﬁ)

K(y())' . 7ym—|—1) — (
/=1

Yo — Ym+1 )m+1

Observation: there is a lot of nonsmoothness in the kernel (bad)

Observation: there is some symmetry in the kernel (good)

Let p € C°(R) beeven, 0 < ¢ <1, ¢(0) =1and
supp(¢) C [—1,1]. We set & = ¢/ and &;(z) =t~ *®(z/t). Define,

A(f)@) = /R as(,y)f(y)dy where ar(z,y) = Bo(& — 1)X(o00) ()
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ENDPOINT ESTIMATE FOR THE COMMUTATOR
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ENDPOINT ESTIMATE FOR THE COMMUTATOR

Theorem: The operator C,,, maps

(@) L' x --- x L' to weak L1/™.

(b) LPr x --- x LP~ to weak LP if some p; = 1.
(c) LP* x --- x LP~ to LP if all p; > 1.

Here, 1 < p; < oo and
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ENDPOINT ESTIMATE FOR THE COMMUTATOR

Theorem: The operator C,,, maps

(@) L' x --- x L' to weak L1/™.

(b) LPr x --- x LP~ to weak LP if some p; = 1.
(c) LP* x --- x LP~ to LP if all p; > 1.

Here, 1 < p; < oo and

History: m = 1: C. Calderon
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ENDPOINT ESTIMATE FOR THE COMMUTATOR

Theorem: The operator C,,, maps

(@) L' x --- x L' to weak L1/™.

(b) LPr x --- x LP~ to weak LP if some p; = 1.
(c) LP* x --- x LP~ to LP if all p; > 1.

Here, 1 < p; < oo and

History: m = 1: C. Calderon
History: m = 2, 3: Coifman and Meyer

-p.12/3



IDEAS OF PROOF OF MAIN THEOREM
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IDEAS OF PROOF OF MAIN THEOREM

Based on Calderon-Zygmund decomposition
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IDEAS OF PROOF OF MAIN THEOREM

Based on Calderdon-Zygmund decomposition

We want to estimate

{ITCf1, -5 fm) > AR

Apply the CZ decomposition on each f; at height (a\)!/™ for
some « to be chosen.
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IDEAS OF PROOF OF MAIN THEOREM

Based on Calderdon-Zygmund decomposition

We want to estimate

{ITCf1, -5 fm) > AR

Apply the CZ decomposition on each f; at height (a\)!/™ for
some « to be chosen.

Writefor j =1,...,m
fi=9; +b
and assume that || f;||.: = 1 (by scaling).
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ESTIMATES TO PROVE
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ESTIMATES TO PROVE

B\ = (zeR":|T(g1,92, . gm)(@)| > A/2"

EY = {zeR:|T (b1, g2, .., gm) ()| > X/2™

EYT) =

Y

N——— —— N

{
{

E® = {xeR”: T(g1, b, .oy ) ()] > A/2™
{

x e R": |T(b1,b2, ,bm)($)| > )\/Zm
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ESTIMATES TO PROVE

EY = 2 eR":|T(g1,92, -, gm)(@)| > X/2"

EY = {zeR":|T(g1,b2, .., gm) ()| > X/2™
EC" = {2 eR":|T(by,by, ..., by) ()] > A/27

{ |
E§\2> — {fEEan T(b1,92, s gm ) () >)\/2m}
{ |
{ }

We need to show that |E\"| < C (A + B) A=1/m.
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ESTIMATES TO PROVE

reR": T(917927 ,gm)(a:)\ > )\/Qm

reR": T(b17927 7gm)($) > )\/2771

{ |
{ |
Eg\g) — {:BER”: T(91,b2, .-, gm ) () >)\/2m}
{ }

EC" = {2 eR":|T(by,by, ..., by) ()] > A/27

We need to show that |E\"| < C (A + B) A=1/m.

The idea is better presented when m = 2.
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CALDERON-ZYGMUND DECOMPOSITION
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CALDERON-ZYGMUND DECOMPOSITION

For linear operators, one writes T'(f) = T'(g) + T'(b)

T(g)
T'(b)

good term
bad term
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CALDERON-ZYGMUND DECOMPOSITION

For linear operators, one writes T'(f) = T'(g) + T'(b)

T(g) = good term
T(b) = badterm

Here (say in the case m = 2)

T(g1,92) = good
T(b1,92), T(g1,b2) = bad
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CALDERON-ZYGMUND DECOMPOSITION

For linear operators, one writes T'(f) = T'(g) + T'(b)

T(g) = good term
T(b) = badterm

Here (say in the case m = 2)

T(g1,92) = good
T(b1,92), T(g1,b2) = bad

But there is also the

T(bh bz) — Ugly
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THE UGLY TERM
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THE UGLY TERM

5

Write T'(by, by) = Zblk,szj Z (b1,bs), where

=1
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THE UGLY TERM

5

Write T'(b1, by) = Z b1k, Z b.; ) Z (b1,b2), where
Tl (bh b2> — T Z Atl,k (bl k Z At? o b27]
k

Ty(bi,bo) = . T(Atl,k(bl,k) baj — A, (b2)
ko jil(Q1,6)<l(Q2,;)

Ts(bi,ba) = > T(bik — Ag,, (br), b2j)
k j:E(Ql k>§€(Q2 J)

T4(b1, bg) = Z Z T(bl,k - At1,k(b1,k) ) At2,j (bg,j))
ko 3 0(Q1,1)>4(Q2,5)

Ts(b1,bg) = Z T(bik, boj — A, (b2,5)),
ko 3:0(Q1,e)>4(Q2,5)

where t; . = ¢(Q1 k) and b; i is supported in Q; x, ¢ = 1, 2.
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THE MARCINKIEWICZ FUNCTION
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THE MARCINKIEWICZ FUNCTION

The Marcinkiewicz function associated with {Q; « } -

0(Qix)" e

o ®) =2 Gy + la g

i=12

where z, , is the center of Q; ;.
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THE MARCINKIEWICZ FUNCTION
The Marcinkiewicz function associated with {Q; « } -

0(Qix)" e
2 @) + o — 7,

*77376(37) — 1= 17 27
where z, , is the center of Q; ;.

Fefferman and Stein proved that for n/(n + ¢€) < p < oo we have

HJL.,EHLP(RTL) S CTL,S,p(Z ‘Ql,k’)l/p S Cn’g,p (Oé)\)_l/Qp.
k
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THE MARCINKIEWICZ FUNCTION
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THE MARCINKIEWICZ FUNCTION

The Marcinkiewicz function comes appears as follows:

U(Q1,)"
PIERURIEINENED Y Y oy +|x_y‘)n+€\bl,k<y>rdy
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THE MARCINKIEWICZ FUNCTION

The Marcinkiewicz function comes appears as follows:

U(Q1,)"
PIERURIEINENED Y Y oy +|x_y‘)n+€\bl,k<y>rdy

< C(aA)1/2J1,e(JJ),

This allows us to control terms of the form
T(ZAtl,k(bl,k)ng)a T(Ql)ZAtz,k(b2,k‘))
k k

and

T( Z A, (b1k), Z At , (bQ’k))
- k

- p.18/3



CONTROL OF THESE TERMS
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CONTROL OF THESE TERMS

VAN

I

VAN

IA

Hx c R"™: |T(;Atl,k(b1,k), g92)(z)] > %H

q

(4B)"\71| ZAtl,kwl,k)H 192118 s

La1(Rn)
4 RY q/2 2(1-2-)
CA 1B (aX)V=|| 7 EHqu Rn) (aX) 12

CA~7B(a))? ) (@) 373
C'BIN1/2p97 3,
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CONTROL OF THESE TERMS

Hx cR": \T(ZAtl,k(bl,k), g2) ()] > 2}|

VAN

(4B q)\ qH ZAtlk bl k)H HgQHLQQ (R")

La1(R™)

VAN

CA™ QBQ<aA>q/2HJuHLQ1 oy (022173

CA"1BY (o)) 2172 (o)) 273
C'BIN12q0 5,

IA

IA

Note that one needs here that ¢; < oo (analogously ¢» < o0).
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CONTROL OF THESE TERMS

Hx cR": \T(ZAtl,k(bl,k), g2) ()] > 2}|

VAN

(4B q)\ qH ZAtlk bl k)H HgQHLQQ (R")

La1(R™)

VAN

CA™ QBQ<aA>q/2\|Jle|\LQ1 oy (022173

CA"1BY (o)) 2172 (o)) 273
C'BIN12q0 5,

IA

IA

Note that one needs here that ¢; < oo (analogously ¢» < o0).

Note that o = (A + B)~! yields the claimed constant.

-p.19/3



TERMS CONTAINING >, (b1 — Ay, (b1 1))
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TERMS CONTAINING >, (b1x — Ay, (b1 1))

Recall

‘K(CU,yl,... 7y’m) — Kt(J)(ajayla"' 7ym)‘
- At
= e—ml s+ =g

A —  (ly; — vkl
i (|€U—y1!+“'+|w—ym!)mnz¢( t )

b

for some A > 0, whenever ¢t < |z — y;|/2; supp(¢) C [—1,1].
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TERMS CONTAINING >, (b1 — At (b1 )
Recall
‘K(xayla <. 7ym) — Kéj)(aj)yla c e 7ym)‘

Ate
<
(=l + o = g7

A —  (ly; — vkl
i (|$—y1!+“'+|x—ym|)mnz¢( t )

b

for some A > 0, whenever ¢t < |x — y;|/2; supp(¢) C [-1,1].

Take z ¢ |J,.(Q1.1)* UU,(Q2%)" = exceptional set.
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TERMS CONTAINING >, (b1 — Ay, (b1 1))




TERMS CONTAINING >, (b1 — Ay, (b1 1))

Consider for instance T( > (bl,k — Atl,k(bm)) : gz).
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TERMS CONTAINING >°, (b1 4 — Ay, , (b1x))

Consider for instance T( >op (b1 — Apy  (b1g)), gg).

Z/ . ) ‘T(bl,k — Ay, (b1 k), 92)($)’daj

SN

<CA Z/ [/R HQu) d ] 101,k (y1)]192(y2)|dy1dyo

o (Jo— g1 | +H0(Q1 k) +yr — y2|)?7Te

(x yl,yg)—Kt(il ($,y1,y2)\d$] 161 k(y1)]]g92(y2)|dy1 dy2

1 o — ey, dydyad
oAy / -~ i gy ) bk lox(ve)ldyrdyda

—I+H.
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TERMS CONTAINING >, (b1 — Ay, (b1 1))




TERMS CONTAINING >, (b1x — Ay, (b1 1))

I

<

INA

I

CALQ1 k)"

> fr @

0(Q1k) + ly1 — y2|)re

01,1 (y1) 192 (y2) |[dy1 dy2

CAL(Q1x)S

..

CA(a\)!/?

Qlk T |xQ1k

Rn

) 101,k (y1) 192 (y2) |dy1 dy2

192(y2) | Tn.e(y2)dya < CA(aN)'/?.
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TERMS CONTAINING >°, (b1 4 — Ay, , (b1x))

CALQ
S o @) o s oo

I

<

INA

VAN

VAN

A

A\

U(Q1k) + ly1 —

o W@ gl i

U(Q1k) + g, , — Y2

CA(aX)? \92(y2)\j1 (y2)dys < CA(aN)!/2.

161 k(Y1) Y1 — 2
CAZ/n T )l ()

CA(aN)Y20(Q1 k)"
1 2)dyadx
Z/ n)2 Qlk _|_‘x_y2‘)2n‘ 2(y2)’ (Q1,x)* (yQ) Y2

CA(aN) 2 / 192(12) [ 1 (0, - (92) o

n

CA(0N)"?|gall 2| Uk (Qua)'|'* < CA(aN)'/2.

dydysdx
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RETURN TO THE UGLY PART
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RETURN TO THE UGLY PART

Consider for instance 75(by, b2)(x) for = ¢ the exceptional set:

| T5(b1, b2)())

<> > [l

k]€Q1k<£Q23

<CA) > / = HQur) o 101,k (y1)b2,5(y2)|dy1dys

+ | —
ko 50(Qr ) <0(@s,)” ¢ yi| + | Y2

101,k (y1)b2,5 (y2)] Y1 — 2| )
FOA2L 2 /R - e (i) )

ko 5:0(Q1.r)<l(Qa.;) (|2 — y1| + |z — yo
=T31(b1,b2)(z) + T32(b1, b2)(

K(z yla92)_K£il(xaylay2)}bl,k(y1>b2,j(y2)|dy1dy2
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RETURN TO THE UGLY PART

Consider for instance 75(by, b2)(x) for = ¢ the exceptional set:

| T5(b1, b2)())

<> > [l

k]€Q1k<£Q23

<CA) > / = HQur) o 101,k (y1)b2,5(y2)|dy1dys

+ | —
ko 50(Qr ) <0(@s,)” ¢ yi| + | Y2

101,k (y1)b2,5 (y2)] Y1 — 2| )
FOA2L 2 /R - e (i) )

ko 5:0(Q1.r)<l(Qa.;) (|2 — y1| + |z — yo
=T31(b1,b2)(z) + T32(b1, b2)(

K(z yla92)_K£il(xaylay2)}bl,k(y1>b2,j(y2)|dy1dy2

Use that | Ty, (b, b2)(2)] < C (o) Tr.ca(2) Joc 2 ()
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RETURN TO THE UGLY PART

Consider for instance 75(by, b2)(x) for = ¢ the exceptional set:

| T5(b1, b2)())

<> > [l

k]€Q1k<£Q23

<CA) > / = HQur) o 101,k (y1)b2,5(y2)|dy1dys

+ | —
ko 50(Qr ) <0(@s,)” ¢ yi| + | Y2

101,k (y1)b2,5 (y2)] ly1 — 2|
FOA2L 2 / - e (i) )

ko 5:0(Q1.r)<l(Qa.;) (|2 — y1| + |z — yo
=T31(b1,b2)(z) + T32(b1, b2)(

K(z yla92)_K§il(xaylay2)}bl,k<y1>b2,j(y2)|dy1dy2

Use that | Ty (b1, b2) ()] < C (a\) T1.eja(@)Ta.cso(x) which
implies that HTgl(bl, bQ)HLl < (Oé)\)l/2.
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RETURN TO THE UGLY PART: TERM T35(b1, bs)
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RETURN TO THE UGLY PART: TERM T35(b1, bs)
/

We use that ¢ is supported in [—1, 1], and 4(Q1 %) < £(Q2,5), tO
deduce for z ¢ J Q71 , UU Q3 ; that
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RETURN TO THE UGLY PART: TERM T35(b1, bo)
/

We use that ¢ is supported in [—1, 1], and 4(Q1 %) < £(Q2,5), tO
deduce for z ¢ (J Q7 , UU Q5 ; that

T32(b1, b2) ()
CA||b1 Kl ®e)

=) / PENEIET 02,5 (42)11(@ )~ (y2)dy2
ko 7:0(Q1,1)<l(Q2,;)
CA(aN)20(Qa )"
< ) b 1 d
- Z/n Q2] —|—‘CC— ‘)277, ‘ 2](y2)| Uk Ql k) (y2) Y2
< C

1/2 QQ]
MY, ) + o s a0
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RETURN TO THE UGLY PART: TERM T35(b1, bs)
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RETURN TO THE UGLY PART: TERM T35(b1, bs)

This gives

/ Tao (b1, by) (2| da
(2,00

QQJ)
122: bo i (y2)|dyadz
< CA(al) / /n)2 (0(Qa) + ‘x_yQDQn‘ 2,5 (y2)]

< CA(ai 1/22 \bzg Yy2)|dy2

< CA(aN)V/2.
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The Marcinkiewicz integral is not bounded on L°°. Thus this
argument cannot work when some ¢; = oo.
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holds for some ¢; = oo, then it also holds for some ¢; < ooc.

To get the claimed growth in the constant take o = (A + B) 1.
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IMPORTANT REMARKS

The Marcinkiewicz integral is not bounded on L°°. Thus this
argument cannot work when some ¢; = oo.

In this case, we use interpolation to prove that if hypothesis
holds for some ¢; = oo, then it also holds for some ¢; < ooc.

To get the claimed growth in the constant take o = (A + B) 1.

Argument has a straightforward extension to all m € Z*. The
algebraic identities used in the ugly part are also valid for m > 3;
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IMPORTANT REMARKS

The Marcinkiewicz integral is not bounded on L°°. Thus this
argument cannot work when some ¢; = oo.

In this case, we use interpolation to prove that if hypothesis
holds for some ¢; = oo, then it also holds for some ¢; < ooc.

To get the claimed growth in the constant take o = (A + B) 1.

Argument has a straightforward extension to all m € Z*. The
algebraic identities used in the ugly part are also valid for m > 3;

This term is uglier!
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HIGHER-DIMENSIONAL COMMUTATORS (Rougher)
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HIGHER-DIMENSIONAL COMMUTATORS (Rougher)

The higher dimensional commutator is defined as

(n) _ 1
e (fa)w) = [ K- [ a1 tarw)ar) f) dy

where K(x) is a Calderdon-Zygmund kernel in dimension n and
f, a are functions on R".

- p.27/3



HIGHER-DIMENSIONAL COMMUTATORS (Rougher)

The higher dimensional commutator is defined as

(n) _ 1
e (fa)w) = [ K- [ a1 tarw)ar) f) dy

where K(x) is a Calderdon-Zygmund kernel in dimension n and
f, a are functions on R".

Christ and Journé proved that Cén) IS bounded from
LP(R™) x L>®(R™) to LP(R™) for 1 < p < cc.
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HIGHER-DIMENSIONAL COMMUTATORS (Rougher)

The higher dimensional commutator is defined as

(n) _ 1
e (fa)w) = [ K- [ a1 tarw)ar) f) dy

where K(x) is a Calderdon-Zygmund kernel in dimension n and
f, a are functions on R".

Christ and Journé proved that Cén) IS bounded from
LP(R™) x L>®(R™) to LP(R™) for 1 < p < cc.

We discuss some off-diagonal bounds LP x LY — L", whenever
l/p+1/g=1/rand 1 < p,q,r < co.
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USE BILINEAR HILBERT TRANSFORMS

These are

—+ 00

Hosllg)) =pv. [ ft—as)gt-09"  teR

—Oo0

defined for functions on the line. (Lacey and Thiele)
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USE BILINEAR HILBERT TRANSFORMS

These are

—+ 00

Hosllg)) =pv. [ ft—as)gt-09"  teR

defined for functions on the line. (Lacey and Thiele)

It is easy to see that with e; = (1,0, ...,0)

e ds

H, 5(f,9)(x) = p.V./ f(x—asel)g(x—ﬁsel)? r € R"

— 00

defined for functions f, g on R" is bounded in the same range.
Here e; = (1,0,...,0).
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USE BILINEAR HILBERT TRANSFORMS

It follows that for all 6 € S*—1

0 o ds n
Hos(fo)a) =pv. [ fla—ast)go—5s0)T . zeR

oo S

defined for functions f, g on R™ is bounded in the same range.
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USE BILINEAR HILBERT TRANSFORMS

It follows that for all 6 € S*—1

0 o ds n
Hos(fo)a) =pv. [ fla—ast)go—5s0)T . zeR

oo S

defined for functions f, g on R™ is bounded in the same range.

Here we use that rotation by a matrix of the form (]\g ]\O4>

preserves boundedness.
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QUESTION

What if 01,05 € Sn_l, and 6, 7& 057

+00
HY o1, 9)(x) = pv. / o= coty)glo— ety =

— o0

—, xr € R"
S
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QUESTION

What if 6;,05 € S*~1, and 6; # 657

+o0
HY o1, 9)(x) = pv. / o= coty)glo— ety =

— o0

—, xr € R"
S

Is this operator bounded from LP*(R"™) x LP2(R™) — LP(R™) ?
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QUESTION

What if 6;,05 € S*~1, and 6; # 657

+o0
HY o1, 9)(x) = pv. / o= coty)glo— ety =

— o0

—, xr € R"
S

Is this operator bounded from LP*(R"™) x LP2(R™) — LP(R™) ?

This is not known (to me).
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QUESTION

What if 6;,05 € S*~1, and 6; # 657

ree ds

HY o(f,9)(x) = pv. / P — s 61)g(z— Bs6s)

— o0

—, xr € R"
S

Is this operator bounded from LP*(R"™) x LP2(R™) — LP(R™) ?
This is not known (to me).

However the case 6, = 0, is OK and suffices to treat the
higher-dimensional commutators.
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RELATION WITH nth DIM. COMMUTATOR

For K homogeneous of degree —n and odd we can write

(@) = [ K- [ a0 +ty)dt>f(y)dy

- 5[ & /H v)dtdo.
Sn—1
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RELATION WITH nth DIM. COMMUTATOR

For K homogeneous of degree —n and odd we can write

e(f,a)(@) = an— i [ a1 +ty>dt)f<y>dy

— = K(6 /H x)dtdf .
Snl

Thus C (f, a) is bounded whenever H, 3 are uniformly
bounded from LP x LP> — LP.
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RELATION WITH nth DIM. COMMUTATOR

For K homogeneous of degree —n and odd we can write

e(f,a)(@) = RnK(x— i [ a1 +ty)dt>f(y)dy

— = K(6 /H x)dtdf .
Snl

Thus C (f, a) is bounded whenever H, 3 are uniformly
bounded from LP x LP> — LP.

Use uniform bounds for H,, g in a hexagonal region that contains
the local L? triangle (X. Li).
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A=(1,1,2)

PICTURE

D=(1,1/2,3/2) E=(1/2,1,3/2)

F=(1/2,1/2,1
B=(1,0,1) (1/2,1/2,1) Cc=(0,1,1)

G=(1/2,0,1/2) M« 2 (H=(0,1/2,1/2)

0=(0,0,0)
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0
FOURIER MULTIPLIER OF H, 5(f, a)
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0
FOURIER MULTIPLIER OF H, 5(f, a)

It is m(fl,fg) = —iwsgn(afl -0+ B - 9)
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FOURIER MULTIPLIER OF HY, ;(f, a)
It is m(&,fg) = —fmsgn(afl -0+ B&s - 9)

or equivalently, the characteristic function of a half-space whose
elements are perpendicular to the vector (a8, 56) € R*"
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0
FOURIER MULTIPLIER OF H_, 4(f, a)

ltis m(&1,&) = —imsgn(aé; -0+ B& - 6)

or equivalently, the characteristic function of a half-space whose
elements are perpendicular to the vector (a8, 56) € R*"

Take for example the case n = 2. Characteristic functions of
half-planes of the form

{(m,m2,m3,m4) € R* : n1(ap1) +n2(ap2) + n3(Bp2) +na(Bp2) > 0}
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0
FOURIER MULTIPLIER OF H_, 4(f, a)

ltis m(&1,&) = —imsgn(aé; -0+ B& - 6)

or equivalently, the characteristic function of a half-space whose
elements are perpendicular to the vector (a8, 56) € R*"

Take for example the case n = 2. Characteristic functions of
half-planes of the form

{(m,m2,m3,m4) € R* : n1(ap1) +n2(ap2) + n3(Bp2) +na(Bp2) > 0}

Can we have general unit vectors (p1, p2, p3,ps) in R*?

{(m1,m2,m3,m1) € R* : mp1 + n2p2 + N3ps + naps > 0}
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OTHER GEOMETRIC FIGURES

Are the characteristic functions of balls, ellipsoids, or other
geometric figures in R* bounded bilinear Fourier multipliers?
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OTHER GEOMETRIC FIGURES

Are the characteristic functions of balls, ellipsoids, or other
geometric figures in R* bounded bilinear Fourier multipliers?

ANSWER:
(a) No for balls (with Diestel) outside local L? case.
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Are the characteristic functions of balls, ellipsoids, or other
geometric figures in R* bounded bilinear Fourier multipliers?

ANSWER:
(a) No for balls (with Diestel) outside local L? case.

ANSWER:
(b) No for other figures with curvature, such as ellipsoids,
paraboloids, etc, outside local L? case. (M. Reguera Rodriguez)
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OTHER GEOMETRIC FIGURES

Are the characteristic functions of balls, ellipsoids, or other
geometric figures in R* bounded bilinear Fourier multipliers?

ANSWER:
(a) No for balls (with Diestel) outside local L? case.

ANSWER:
(b) No for other figures with curvature, such as ellipsoids,
paraboloids, etc, outside local L? case. (M. Reguera Rodriguez)

Suitable adaptation of Fefferman’s counterexample based on
the Besicovitch construction of a Kakeya set.
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IDEA OF COUNTEREXAMPLES

Step 1: use bilinear de Leeuw’s theorem to reduce matters to
n = 2, i.e. to multipliers in R%.
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IDEA OF COUNTEREXAMPLES

Step 1: use bilinear de Leeuw’s theorem to reduce matters to
n = 2, i.e. to multipliers in R%.

Step 2: refute a vector-valued inequality of the form

(S wor)| =c|(Sir)] |[(Sla)

where U,, = {({,n) e R x R*: (£ +1n)-v; > 0}.

<C
LP

LP1 [,p2
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IDEA OF COUNTEREXAMPLES

Step 1: use bilinear de Leeuw’s theorem to reduce matters to
n = 2, i.e. to multipliers in R%.

Step 2: refute a vector-valued inequality of the form

<Zj:TUU" (fj’gj)‘zf (> 15F) (Z!gjf)%

J J

1
2

< C

Lr LP1

LP2
where U,, = {({,n) e R x R*: (£ +1n)-v; > 0}.

Step 3: Take f;, g; to be characteristic functions of suitable

rectangles R; that appear in the the Besicovitch construction of
a Kakeya set.
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IDEA OF COUNTEREXAMPLES

Step 1: use bilinear de Leeuw’s theorem to reduce matters to
n = 2, i.e. to multipliers in R%.

Step 2: refute a vector-valued inequality of the form

(S wor)| =c|(Sir)] |[(Sla)

where U,, = {({,n) e R x R*: (£ +1n)-v; > 0}.

<C

Lp Lr1 P2

Step 3: Take f;, g; to be characteristic functions of suitable
rectangles R; that appear in the the Besicovitch construction of
a Kakeya set.

Step 4: calculate in the case p1,p2,p > 2.
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IDEA OF COUNTEREXAMPLES

Step 1: use bilinear de Leeuw’s theorem to reduce matters to
n = 2, i.e. to multipliers in R%.

Step 2: refute a vector-valued inequality of the form

(S wor)| =c|(Sir)] |[(Sla)

where U,, = {({,n) e R x R*: (£ +1n)-v; > 0}.

<C

Lp Lr1 P2

Step 3: Take f;, g; to be characteristic functions of suitable
rectangles R; that appear in the the Besicovitch construction of
a Kakeya set.

Step 4: calculate in the case p1,p2,p > 2.

Step 5: use duality.
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