A critical-exponent Balian-Low theorem

S. Zubin Gautam

UCLA

Workshop on Harmonic Analysis, February 2008

Operators on $L^2(\mathbb{R})$:

- Modulation $M_v f = e^{2\pi i y \cdot f}$
- Translation $T_x f = f(\cdot x)$

For $(x, y) \in \mathbb{R}^2$, define

$$\rho(x,y) = M_y T_x \in \mathcal{U}(L^2(\mathbb{R})).$$

Definition

For $\Lambda \subset \mathbb{R}^2$ and $f \in L^2(\mathbb{R})$, the associated Gabor system is

$$\mathcal{G}(f,\Lambda) := \rho(\Lambda)f \subset L^2(\mathbb{R})$$

Operators on $L^2(\mathbb{R})$:

- Modulation $M_V f = e^{2\pi i y \cdot f}$
- Translation $T_x f = f(\cdot x)$

For $(x, y) \in \mathbb{R}^2$, define

$$\rho(x,y) = \mathsf{M}_y \, \mathsf{T}_x \in \mathcal{U}\big(L^2(\mathbb{R})\big).$$

Definition

For $\Lambda \subset \mathbb{R}^2$ and $f \in L^2(\mathbb{R})$, the associated Gabor system is

$$\mathcal{G}(f,\Lambda) := \rho(\Lambda)f \subset L^2(\mathbb{R}).$$

Special case: $\Lambda = \alpha \mathbb{Z} \times \beta \mathbb{Z}$,

$$\mathcal{G}(f, \alpha \mathbb{Z} \times \beta \mathbb{Z}) = \{e^{2\pi i n\beta} \cdot f(\cdot - m\alpha)\}_{m,n \in \mathbb{Z}}$$
$$= \{\mathsf{M}_{n\beta} \mathsf{T}_{m\alpha} f\}$$

Question

Given lpha,eta, for which f is $\mathcal{G}(f,lpha\mathbb{Z} imeseta\mathbb{Z})$ a frame for $L^2(\mathbb{R})$?:

$$A^2 \|g\|_2^2 \leq \sum_{m,n \in \mathbb{Z}} |\langle g, \mathsf{M}_{n\beta} \mathsf{T}_{m\alpha} f \rangle|^2 \leq B^2 \|g\|_2^2,$$

some A, B > 0.

Special case: $\Lambda = \alpha \mathbb{Z} \times \beta \mathbb{Z}$,

$$\mathcal{G}(f, \alpha \mathbb{Z} \times \beta \mathbb{Z}) = \{e^{2\pi i n \beta \cdot f} (\cdot - m\alpha)\}_{m,n \in \mathbb{Z}}$$
$$= \{\mathsf{M}_{n\beta} \mathsf{T}_{m\alpha} f\}$$

Question

Given α, β , for which f is $\mathcal{G}(f, \alpha \mathbb{Z} \times \beta \mathbb{Z})$ a frame for $L^2(\mathbb{R})$?:

$$A^2\|g\|_2^2 \leq \sum_{m,n \in \mathbb{Z}} |\langle g, \mathsf{M}_{n\beta} \mathsf{T}_{m\alpha} f \rangle|^2 \leq B^2 \|g\|_2^2,$$

some A, B > 0.

Algebraic structure makes this especially tractable:

$$\mathsf{M}_y \, \mathsf{T}_x = e^{2\pi i x y} \, \mathsf{T}_x \, \mathsf{M}_y$$

- Basic von Neumann algebra methods \Rightarrow For $\alpha\beta > 1$, $\mathcal{G}(f, \alpha\mathbb{Z} \times \beta\mathbb{Z})$ is *never* a frame for $f \in L^2$.
- For $\alpha\beta < 1$, one can find $f \in C_c^{\infty}(\mathbb{R})$ for which $\mathcal{G}(f, \alpha\mathbb{Z} \times \beta\mathbb{Z})$ is a frame for L^2 (in fact an orthonormal basis).

Algebraic structure makes this especially tractable:

$$\mathsf{M}_y \, \mathsf{T}_x = e^{2\pi i x y} \, \mathsf{T}_x \, \mathsf{M}_y$$

- Basic von Neumann algebra methods \Rightarrow For $\alpha\beta > 1$, $\mathcal{G}(f, \alpha\mathbb{Z} \times \beta\mathbb{Z})$ is *never* a frame for $f \in L^2$.
- For $\alpha\beta < 1$, one can find $f \in C_c^{\infty}(\mathbb{R})$ for which $\mathcal{G}(f, \alpha\mathbb{Z} \times \beta\mathbb{Z})$ is a frame for L^2 (in fact an orthonormal basis).

Algebraic structure makes this especially tractable:

$$\mathsf{M}_y \, \mathsf{T}_x = e^{2\pi i x y} \, \mathsf{T}_x \, \mathsf{M}_y$$

- Basic von Neumann algebra methods \Rightarrow For $\alpha\beta > 1$, $\mathcal{G}(f, \alpha\mathbb{Z} \times \beta\mathbb{Z})$ is *never* a frame for $f \in L^2$.
- For $\alpha\beta < 1$, one can find $f \in C_c^{\infty}(\mathbb{R})$ for which $\mathcal{G}(f, \alpha\mathbb{Z} \times \beta\mathbb{Z})$ is a frame for L^2 (in fact an orthonormal basis).

Interesting case:

$$\alpha = \beta = 1$$

Easy example: $\alpha = \beta = 1$, $f = \chi_{[0,1]}$

$$\mathcal{G}(\chi_{[0,1]}, \mathbb{Z} \times \mathbb{Z}) = \{ \mathsf{M}_n \mathsf{T}_m \chi_{[0,1]} \}$$
$$= \{ e^{2\pi i n} \cdot \chi_{[m,m+1]} \}$$
$$=: \{ e_{m,n} \}$$

Orthonormal basis of $L^2(\mathbb{R})$.

Interesting case:

$$\alpha = \beta = 1$$

Easy example: $\alpha = \beta = 1$, $f = \chi_{[0,1]}$

$$\mathcal{G}(\chi_{[0,1]}, \mathbb{Z} \times \mathbb{Z}) = \{\mathsf{M}_n \mathsf{T}_m \chi_{[0,1]}\}$$

$$= \{e^{2\pi i n} \chi_{[m,m+1]}\}$$

$$=: \{e_{m,n}\}$$

Orthonormal basis of $L^2(\mathbb{R})$.

The Balian-Low Theorem

Uncertainty principle for Gabor frames:

Theorem (Balian–Low–Coifman–Semmes)

If $f \in H^1(\mathbb{R})$ and $\hat{f} \in H^1(\mathbb{R})$, then $\mathcal{G}(f, \mathbb{Z} \times \mathbb{Z})$ is not a frame for $L^2(\mathbb{R})$.

So if f is suitably well-localized in phase space, it cannot generate a Gabor frame.

From now on, we consider $f \in H^{p/2} \cap \mathcal{F}H^{q/2}(\mathbb{R})$.

Theorem (\sim Gröchenig '96)

If $\frac{1}{p} + \frac{1}{q} < 1$, then $\mathcal{G}(f, \mathbb{Z} \times \mathbb{Z})$ is not a frame for $L^2(\mathbb{R})$.

Theorem (Benedetto-Czaja-Gadziński-Powell '03)

If $\frac{1}{p} + \frac{1}{q} > 1$ then f may generate a Gabor frame.

Question

From now on, we consider $f \in H^{p/2} \cap \mathcal{F}H^{q/2}(\mathbb{R})$.

Theorem (∼ Gröchenig '96)

If $\frac{1}{p} + \frac{1}{q} < 1$, then $\mathcal{G}(f, \mathbb{Z} \times \mathbb{Z})$ is not a frame for $L^2(\mathbb{R})$.

Theorem (Benedetto–Czaja–Gadziński–Powell '03)

If $\frac{1}{p} + \frac{1}{q} > 1$ then f may generate a Gabor frame.

Question

From now on, we consider $f \in H^{p/2} \cap \mathcal{F}H^{q/2}(\mathbb{R})$.

Theorem (∼ Gröchenig '96)

If $\frac{1}{p} + \frac{1}{q} < 1$, then $\mathcal{G}(f, \mathbb{Z} \times \mathbb{Z})$ is not a frame for $L^2(\mathbb{R})$.

Theorem (Benedetto–Czaja–Gadziński–Powell '03)

If $\frac{1}{p} + \frac{1}{q} > 1$ then f may generate a Gabor frame.

Question

From now on, we consider $f \in H^{p/2} \cap \mathcal{F}H^{q/2}(\mathbb{R})$.

Theorem (\sim Gröchenig '96)

If $\frac{1}{p} + \frac{1}{q} < 1$, then $\mathcal{G}(f, \mathbb{Z} \times \mathbb{Z})$ is not a frame for $L^2(\mathbb{R})$.

Theorem (Benedetto–Czaja–Gadziński–Powell '03)

If $\frac{1}{p} + \frac{1}{q} > 1$ then f may generate a Gabor frame.

Question

Main Theorem

Theorem (G '07)

Let $1 . If <math>f \in H^{p/2} \cap \mathcal{F}H^{p'/2}(\mathbb{R})$, then $\mathcal{G}(f, \mathbb{Z} \times \mathbb{Z})$ is not a frame for $L^2(\mathbb{R})$.

Zak Transform

Key tool for detecting Gabor frames:

"Zak transform"
$$Z: L^2(\mathbb{R}) \to L^2_{loc}(\mathbb{R}^2)$$

Definition

$$Z f(x,y) = \sum_{\ell \in \mathbb{Z}} e^{2\pi i \ell y} f(x - \ell)$$

"Quasiperiodicity" (algebraic structure!)

•
$$Z f(x, y + 1) = Z f(x, y)$$

•
$$Z f(x + 1, y) = e^{2\pi i y} Z f(x, y)$$

Zak Transform

Key tool for detecting Gabor frames:

"Zak transform"
$$Z: L^2(\mathbb{R}) \to L^2_{loc}(\mathbb{R}^2)$$

Definition

$$Z f(x,y) = \sum_{\ell \in \mathbb{Z}} e^{2\pi i \ell y} f(x - \ell)$$

"Quasiperiodicity" (algebraic structure!)

- Z f(x, y + 1) = Z f(x, y)
- $Z f(x + 1, y) = e^{2\pi i y} Z f(x, y)$

Zak Transform

 $Z: L^2(\mathbb{R}) \to L^2(\mathbb{T}^2)$ unitary isomorphism:

Key properties of the Zak transform

- $\mathcal{G}(f, \mathbb{Z} \times \mathbb{Z})$ is an (A, B)-frame for L^2 if and only if $A \leq |Zf| \leq B$ a.e.
- Zf continuous $\Rightarrow Zf$ automatically has a zero.
 - Quasiperiodicity \Rightarrow Z $f(\partial([0,1]^2))$ has nonzero winding number about 0.

To get a Gabor frame obstruction result, it suffices to show

$$\operatorname{ess\,inf}|\operatorname{\mathsf{Z}} f|=0$$

under the assumption $Z f \in L^{\infty}$

Key properties of the Zak transform

- $\mathcal{G}(f, \mathbb{Z} \times \mathbb{Z})$ is an (A, B)-frame for L^2 if and only if $A \leq |Zf| \leq B$ a.e.
- Zf continuous $\Rightarrow Zf$ automatically has a zero.
 - Quasiperiodicity \Rightarrow Z $f(\partial([0,1]^2))$ has nonzero winding number about 0.

To get a Gabor frame obstruction result, it suffices to show

$$\operatorname{ess\,inf}|\operatorname{\mathsf{Z}} f|=0$$

under the assumption $Z f \in L^{\infty}$.

Original Balian-Low Theorem

$$f \in H^1(\mathbb{R}) \cap \mathcal{F}H^1(\mathbb{R})$$

Balian-Low "proof" ('81 / '85)

$$Z f \in H^1_{loc}(\mathbb{R}^2) \subseteq C(\mathbb{R}^2)$$

Endpoint Soblev embedding: $H^1(\mathbb{R}^2) \subset VMO(\mathbb{R}^2)$ $||f||_{BMO} \lesssim ||f||_{H^1(\mathbb{R}^2)}$.

Coifman-Semmes proof ('90)

$$Z f \in H^1_{loc} \subseteq VMO_{loc}(\mathbb{R}^2).$$

Winding number argument still works for VMO $\cap L^{\infty}$, so $\operatorname{ess\,inf} | \operatorname{Z} f | = 0$.

Original Balian-Low Theorem

$$f \in H^1(\mathbb{R}) \cap \mathcal{F}H^1(\mathbb{R})$$

Balian-Low "proof" ('81 / '85)

 $Z f \in H^1_{loc}(\mathbb{R}^2) \nsubseteq C(\mathbb{R}^2)$

Endpoint Soblev embedding: $H^1(\mathbb{R}^2) \subset VMO(\mathbb{R}^2)$, $||f||_{BMO} \lesssim ||f||_{H^1(\mathbb{R}^2)}$.

Coifman–Semmes proof ('90)

 $Z f \in H^1_{loc} \subseteq VMO_{loc}(\mathbb{R}^2).$

Winding number argument still works for VMO $\cap L^{\infty}$, so ess $\inf |Zf| = 0$.

Original Balian-Low Theorem

$$f \in H^1(\mathbb{R}) \cap \mathcal{F}H^1(\mathbb{R})$$

Balian-Low "proof" ('81 / '85)

$$Z f \in H^1_{loc}(\mathbb{R}^2) \nsubseteq C(\mathbb{R}^2)$$

Endpoint Soblev embedding: $H^1(\mathbb{R}^2) \subset VMO(\mathbb{R}^2)$, $||f||_{BMO} \lesssim ||f||_{H^1(\mathbb{R}^2)}$.

Coifman-Semmes proof ('90)

$$Z f \in H^1_{loc} \subseteq VMO_{loc}(\mathbb{R}^2).$$

Winding number argument still works for VMO $\cap L^{\infty}$, so $\operatorname{ess\,inf} |Z f| = 0$.

Degree Theory and VMO

The Coifman–Semmes argument predicts a more general phenomenon:

General Principle (Brezis-Nirenberg, mid-'90s)

"Degree theory works for VMO maps."

$$F_{\varepsilon}(x) := \int_{B_{\varepsilon}(x)} F,$$

 $\deg_{\mathsf{VMO}}(F,p) := \deg(F_{\varepsilon},p) \text{ for } \varepsilon \text{ small.}$

So now to get Gabor frame obstruction results, it suffices to show that the Zak transform maps into VMO.

Degree Theory and VMO

The Coifman–Semmes argument predicts a more general phenomenon:

General Principle (Brezis-Nirenberg, mid-'90s)

"Degree theory works for VMO maps."

$$F_{\varepsilon}(x) := \int_{B_{\varepsilon}(x)} F$$
,

 $\mathsf{deg}_{\mathsf{VMO}}(F,p) := \mathsf{deg}(F_\varepsilon,p) \ \, \mathrm{for} \, \, \varepsilon \, \, \mathrm{small}.$

So now to get Gabor frame obstruction results, it suffices to show that the Zak transform maps into VMO.

Degree Theory and VMO

The Coifman–Semmes argument predicts a more general phenomenon:

General Principle (Brezis-Nirenberg, mid-'90s)

"Degree theory works for VMO maps."

$$F_{\varepsilon}(x) := \int_{B_{\varepsilon}(x)} F,$$

 $deg_{VMO}(F, p) := deg(F_{\varepsilon}, p)$ for ε small.

So now to get Gabor frame obstruction results, it suffices to show that the Zak transform maps into VMO.

Gröchenig's argument shows Z : $H^{p/2} \cap \mathcal{F}H^{q/2}(\mathbb{R}) \to C(\mathbb{R}^2)$ for $\frac{1}{p} + \frac{1}{q} < 1$; might hope for VMO when q = p'.

Take the "Sobolev embedding" route as above:

Modified Sobolev space

$$||f||_{S_{p,q}}^2 := \int_{\mathbb{R}^2} |\hat{f}(\xi,\eta)|^2 (1+|\xi|^p+|\eta|^q) d\xi d\eta$$

("
$$H^{p/2}$$
 in x-direction, $H^{q/2}$ in y." $S_{p,p} = H^{p/2}$.)

$$f \in H^{p/2}(\mathbb{R}) \cap \mathcal{F}H^{q/2}(\mathbb{R}) \Rightarrow \mathsf{Z} f \in (S_{p,q})_{\mathsf{loc}}(\mathbb{R}^2)$$

Gröchenig's argument shows Z : $H^{p/2} \cap \mathcal{F}H^{q/2}(\mathbb{R}) \to \mathcal{C}(\mathbb{R}^2)$ for $\frac{1}{p} + \frac{1}{q} < 1$; might hope for VMO when q = p'.

Take the "Sobolev embedding" route as above:

Modified Sobolev space

$$||f||_{\mathcal{S}_{p,q}}^2 := \int_{\mathbb{R}^2} |\hat{f}(\xi,\eta)|^2 (1+|\xi|^p+|\eta|^q) d\xi d\eta$$

(" $H^{p/2}$ in x-direction, $H^{q/2}$ in y." $S_{p,p} = H^{p/2}$.)

$$f \in H^{p/2}(\mathbb{R}) \cap \mathcal{F}H^{q/2}(\mathbb{R}) \Rightarrow \mathsf{Z} f \in (S_{p,q})_{\mathsf{loc}}(\mathbb{R}^2)$$

Theorem (à la endpoint Sobolev embedding)

For
$$1 ,$$

$$||f||_{\mathsf{BMO}} \lesssim_{p} ||f||_{\mathcal{S}_{p,p'}}.$$

(Use Littlewood-Paley decompositions.)

So if $f \in H^{p/2}(\mathbb{R}) \cap \mathcal{F}H^{p'/2}(\mathbb{R})$, then $Zf \in VMO(\mathbb{R}^2)$, and we can run a winding number argument to show $\operatorname{ess\,inf}|Zf|=0$. So $\mathcal{G}(f,\mathbb{Z}\times\mathbb{Z})$ is *not* a frame for $L^2(\mathbb{R})$.

Theorem (à la endpoint Sobolev embedding)

For
$$1 ,$$

$$||f||_{\mathsf{BMO}} \lesssim_p ||f||_{\mathcal{S}_{p,p'}}.$$

(Use Littlewood-Paley decompositions.)

So if $f \in H^{p/2}(\mathbb{R}) \cap \mathcal{F}H^{p'/2}(\mathbb{R})$, then $Zf \in VMO(\mathbb{R}^2)$, and we can run a winding number argument to show $\operatorname{ess\,inf}|Zf|=0$. So $\mathcal{G}(f,\mathbb{Z}\times\mathbb{Z})$ is *not* a frame for $L^2(\mathbb{R})$.

p = 1 Endpoint Results

Theorem (Benedetto–Czaja–Powell–Sterbenz '06)

If $f \in H^{1/2}(\mathbb{R})$ and $supp(f) \subseteq [-1,1]$, then $\mathcal{G}(f,\mathbb{Z} \times \mathbb{Z})$ is not a frame for $L^2(\mathbb{R})$.

Theorem (G '07)

If $f \in H^{1/2}(\mathbb{R})$ has compact support, then $\mathcal{G}(f,\mathbb{Z} \times \mathbb{Z})$ is not a frame.

(Compact support implies $Z f(x,y) = \sum e^{2\pi i \ell y} f(x-\ell)$ lies in the algebraic tensor product

$$VMO \cap L^{\infty}(\mathbb{R}) \otimes VMO \cap L^{\infty}(\mathbb{R}) \subset VMO(\mathbb{R}^2)$$

by Sobolev embedding for $H^{1/2}(\mathbb{R})$.)

p = 1 Endpoint Results

Theorem (Benedetto–Czaja–Powell–Sterbenz '06)

If $f \in H^{1/2}(\mathbb{R})$ and $supp(f) \subseteq [-1,1]$, then $\mathcal{G}(f,\mathbb{Z} \times \mathbb{Z})$ is not a frame for $L^2(\mathbb{R})$.

Theorem (G '07)

If $f \in H^{1/2}(\mathbb{R})$ has compact support, then $\mathcal{G}(f,\mathbb{Z} \times \mathbb{Z})$ is not a frame.

(Compact support implies $Z f(x, y) = \sum e^{2\pi i \ell y} f(x - \ell)$ lies in the algebraic tensor product

$$\mathsf{VMO} \cap L^\infty(\mathbb{R}) \otimes \mathsf{VMO} \cap L^\infty(\mathbb{R}) \subset \mathsf{VMO}(\mathbb{R}^2)$$

by Sobolev embedding for $H^{1/2}(\mathbb{R})$.)

