Toric Non-Abelian Hodge Theory
 Project in progress with Nick Proudfoot

Tamás Hausel

Royal Society URF, Oxford
http://www.maths.ox.ac.uk/~hausel/talks.html

Conference on Mathematical Physics and Geometric Analysis January 14-17, 2008, Fields Institute, Toronto

Non-Abelian Hodge Theory

- Simpson (1990), Hitchin (1987) for Riemann surfaces
- G reductive complex algebraic group, M smooth complex projective variety
- Betti cohomology:

$$
\mathcal{M}_{\mathrm{B}}:=H_{\mathrm{B}}^{1}(M, \mathrm{G})=\left\{\begin{array}{c}
\text { moduli space of representations } \\
\text { of } \pi_{1}(M) \rightarrow \mathrm{G}
\end{array}\right\}
$$

- De Rham cohomology:
$\mathcal{M}_{\mathrm{DR}}:=H_{\mathrm{DR}}^{1}(M, \mathrm{G})=\{$ moduli space of flat G-connections on $M\}$
- Delbeault cohomology:
$\mathcal{M}_{\text {Dol }}:=H_{\text {Dol }}^{1}(M, G)=\{$ moduli space of G-Higgs bundles on $M\}$
- Non-Abelian Hodge Theorem: $\mathcal{M}_{\text {Dol }} \cong{ }_{\text {diff }} \mathcal{M}_{\mathrm{DR}} \cong{ }_{\text {diff }} \mathcal{M}_{\mathrm{B}}$

Geometric aspects of NAHT for Riemann surfaces

- $\mathrm{G}=\mathrm{GL}_{n}=\mathrm{GL}(n, \mathbb{C})$;
$M=\Sigma_{\mu}$ coloured Riemann surface:
- Σ compact Riemann surface with punctures
- $a_{1}, \ldots, a_{k} \in \Sigma$ coloured by
- $\mu=\left(\mu^{1}, \ldots, \mu^{k}\right) \in \mathcal{P}(n)^{\{1, \ldots, k\}}$ a partition of n at each puncture
- $\mathcal{M}_{\text {Hit }}^{\mu}=\left\{\begin{array}{c}\text { moduli space of solutions of } \\ \text { Hitchin self-duality equations on } \Sigma_{\mu}\end{array}\right\}$
hyperkähler: $\left(\mathcal{M}_{\mathrm{Hit}}^{\mu}, I\right) \cong \mathcal{M}_{\mathrm{Dol}}^{\mu}$
$\left(\mathcal{M}_{\mathrm{Hit}}^{\mu}, J\right) \cong\left(\mathcal{M}_{\mathrm{Hit}}^{\mu}, K\right) \cong \mathcal{M}_{\mathrm{DR}}^{\mu} \stackrel{R H}{\cong} \mathcal{M}_{\mathrm{B}}^{\mu}$
$R H: \mathcal{M}_{\mathrm{DR}}^{\mu} \rightarrow \mathcal{M}_{\mathrm{B}}^{\mu}$
$\left(E_{\mu}, \nabla\right) \mapsto$ monodromy (∇)

Geometric aspects of NAHT for Riemann surfaces

- $\mathcal{M}_{\text {Dol }}^{\mu}=\left\{\begin{array}{c}\text { moduli space of } \mu \text {-parabolic rank } n \\ \text { Higgs bundles }\left(E_{\mu}, \phi\right) \text { on } \Sigma\end{array}\right\}$
the Hitchin map:

$$
\begin{aligned}
\chi: \mathcal{M}_{\text {Dol }}^{\mu} & \rightarrow \mathcal{H}^{\mu} \\
\left(E_{\mu}, \phi\right) & \mapsto \operatorname{CharPol}(\phi)
\end{aligned}
$$

is a completely integrable Hamiltonian system;

- \mathbb{C}^{\times}acts on $\mathcal{M}_{\text {Dol }}^{\mu}$ by $\left(E_{\mu}, \phi\right) \mapsto\left(E_{\mu}, \lambda \phi\right)$ downward Morse flow $=\chi^{-1}(0)$, the nilpotent cone.

Geometric aspects of NAHT for Riemann surfaces

- $\left(\tilde{\mathcal{C}}_{1}, \ldots, \tilde{\mathcal{C}}_{k}\right)$ semisimple conjugacy classes in GL_{n} of type μ.

$$
\mathcal{M}_{\mathrm{B}}^{\mu}:=\left\{\begin{array}{c}
A_{1}, B_{1}, \ldots, A_{g}, B_{g} \in \mathrm{GL}_{n}, C_{1} \in \tilde{\mathcal{C}}_{1}, \ldots, C_{k} \in \tilde{\mathcal{C}}_{k} \\
{\left[A_{1}, B_{1}\right] \cdots\left[A_{g}, B_{g}\right] C_{1} \cdots C_{k}=I_{n}}
\end{array}\right\} / / \mathrm{GL}_{n}
$$

- $\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)$ semisimple adjoint orbits in $\mathfrak{g l}_{n}$ of type μ.
$\mathcal{M}_{\mathrm{DR}}^{\mu}:=\left\{\begin{array}{c}\text { moduli space of meromorphic rank } n \text { flat connections } \\ \text { with simple poles at the punctures and residue in } \mathcal{C}_{i}\end{array}\right\}$
When $\Sigma=\mathbb{P}^{1}$ a point in

$$
\mathcal{Q}^{\mu}:=\left\{C_{1} \in \mathcal{C}_{1}, \ldots, C_{k} \in \mathcal{C}_{k} \mid C_{1}+\cdots+C_{k}=0\right\} / / \mathrm{GL}_{n}
$$

gives meromorphic flat connection $\sum_{i=1}^{k} C_{i} \frac{d z}{z-a_{i}} \in \mathcal{M}_{\mathrm{DR}}^{\mu}$ on \mathbb{P}^{1}

$$
\mathcal{Q}^{\mu} \stackrel{\Downarrow}{ } \quad \subset \mathcal{M}_{\mathrm{DR}}^{\mu}
$$

Cohomological aspects of NAHT for Σ_{μ}

- Morse theory for \mathbb{C}^{\times}C $\mathcal{M}_{\text {Dol }}^{\mu}$ by $\left(E_{\mu}, \phi\right) \mapsto\left(E_{\mu}, \lambda \phi\right)$

$$
H^{*}\left(\mathcal{M}_{\mathrm{Dol}}^{\mu}\right) \cong H^{*}\left(\chi^{-1}(0)\right) \cong \bigoplus_{\cup F_{i}=\left(\mathcal{M}_{\mathrm{Dol}}^{\mu}\right)^{\mathrm{C} \times}} H^{*+\lambda_{i}}\left(F_{i}\right)
$$

- Mixed Hodge structure is pure on $H^{*}\left(\mathcal{M}_{\mathrm{Dol}}^{\mu}\right)$ and $H^{*}\left(\mathcal{M}_{\mathrm{DR}}^{\mu}\right)$ but is not pure on $H^{*}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right)$

Cohomological aspects of NAHT for Σ_{μ}

- Purity Conjecture:

Pure part of $H^{*}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right) \cong H^{*}\left(\mathcal{Q}^{\mu}\right)$, if μ is indivisible.
$P H_{c}\left(\mathcal{M}_{B}^{\mu}, \sqrt{q}\right)=A_{\Gamma_{\mu}}\left(\mathbf{v}_{\mu}, q\right)$, if μ is divisible.
Kac's conjecture for star-shaped quivers Γ_{μ}

- Curious Poincaré Duality Conjecture:

$$
\begin{gathered}
H^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right) \cong H^{d_{\mu}-p, d_{\mu}-p ; d_{\mu}+k-2 p}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right) \\
\quad \Downarrow \\
P H^{*}\left(\mathcal{M}_{B}^{\mu}\right) \stackrel{H^{d_{\mu}}\left(\mathcal{M}_{B}^{\mu}\right)}{ } .
\end{gathered}
$$

- Master Conjecture with Macdonald polynomials $\tilde{H}_{\lambda}\left(\mathbf{x}_{i} ; q, t\right)$

$$
\begin{aligned}
& \sum_{p, k} h^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right) q^{p} t^{k}=(t \sqrt{q})^{d_{\mu}}(q-1)\left(1-\frac{1}{q t^{2}}\right) \\
& \cdot\left\langle\log \left(\sum_{\lambda \in \mathcal{P}}\left(\prod_{i=1}^{k} \tilde{H}_{\lambda}\left(\mathbf{x}_{i} ; q, \frac{1}{q t^{2}}\right)\right) \mathcal{H}_{\lambda}\left(q, \frac{1}{q t^{2}}\right)\right), h_{\mu}\right\rangle
\end{aligned}
$$

- the pure part and the $t=-1$ specialization of the Master Conjecture are theorems of (Hausel, Letellier, Villegas; 2007)

Aspects of NAHT for Σ^{μ}

$\left(\mathcal{M}_{\mathrm{Hit}}^{\mu}, g\right)$

$$
\begin{array}{rcc}
\chi^{-1}(0) \subset \mathcal{M}_{\mathrm{Dol}}^{\mu} \cong{ }_{\text {diff }} & \mathcal{M}_{\mathrm{DR}}^{\mu} & \stackrel{R H}{\cong} \mathcal{M}_{\mathrm{B}}^{\mu} \\
\chi \downarrow & \uparrow & \nearrow \\
\mathcal{H}^{\mu} & \mathcal{Q}^{\mu} &
\end{array}
$$

- Purity Conjecture: $P H^{*}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right) \cong H^{*}\left(\mathcal{Q}^{\mu}\right)$
- Curious Poincaré Duality: $H^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right) \cong H^{d_{\mu}-p, d_{\mu}-p ; d_{\mu}+k-2 p}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right)$
- Master Conjecture: combinatorial formula for $\sum_{p, k} h^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right) q^{p} t^{k}$

Aspects of NAHT for Σ^{μ}

$\left(\mathcal{M}_{\mathrm{Hit}}^{\mu}, g\right)$

$$
\begin{array}{rcc}
\chi^{-1}(0) \subset \mathcal{M}_{\mathrm{Dol}}^{\mu} \cong{ }_{\text {diff }} & \mathcal{M}_{\mathrm{DR}}^{\mu} & \stackrel{R H}{\cong} \mathcal{M}_{\mathrm{B}}^{\mu} \\
\chi \downarrow & \uparrow & \nearrow \\
\mathcal{H}^{\mu} & \mathcal{Q}^{\mu} &
\end{array}
$$

- Purity Conjecture: $P H^{*}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right) \cong H^{*}\left(\mathcal{Q}^{\mu}\right)$
- Curious Poincaré Duality: $H^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right) \cong H^{d_{\mu}-p, d_{\mu}-p ; d_{\mu}+k-2 p}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right)$
- Master Conjecture: combinatorial formula for $\sum_{p, k} h^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mu}\right) q^{p} t^{k}$

Quiver varieties

- Quiver $\Gamma=(\mathcal{V}, \mathcal{E})$, dimension vector $\mathbf{v}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right) \in \mathbb{N}^{\mathcal{V}}$ $\leadsto \mathcal{Q}^{\mathbf{v}}:=T^{*} \operatorname{Rep}(\Gamma, \mathbf{v}) / / / / \mathrm{GL}_{\mathbf{v}}$
a smooth hyperkähler quiver variety
- Recall

$$
\mathcal{Q}^{\mu}:=\left\{C_{1} \in \mathcal{C}_{1}, \ldots, C_{k} \in \mathcal{C}_{k} \mid C_{1}+\cdots+C_{k}=0\right\} / / \mathrm{GL}_{n}
$$

Observation: $\mathcal{Q}^{\mu} \cong \mathcal{Q}^{\mathbf{v}_{\mu}}$ is the quiver variety associated to a certain star-shaped quiver Γ_{μ} and dimension vector \mathbf{v}_{μ}

- [Crawley-Boevey-Shaw, 2006]: $(\Gamma, \mathbf{v}) \leadsto \mathcal{M}_{B}^{v}$ multiplicative quiver variety, using group valued symplectic quotients of Alekseev-Malkin-Meinrenken.

For a star-shaped quiver Γ_{μ} :

$$
\mathcal{M}_{B}^{v_{\mu}} \cong \mathcal{M}_{B}^{\mu}=\left\{C_{1} \in \tilde{\mathcal{C}}_{1}, \ldots, C_{k} \in \tilde{\mathcal{C}}_{k} \mid C_{1} \cdots C_{k}=I\right\} / / \mathrm{GL}_{n}
$$

Graphical Non-Abelian Hodge Theory Wannabe for ($\Gamma, \mathbf{v})$:

$$
\begin{array}{cccc}
& \left(\mathcal{M}_{\mathrm{Hit}}^{\mathrm{v}}, g\right) \\
& \downarrow & \downarrow & \searrow \\
\chi_{\mathrm{v}}^{-1}(0) \subset \mathcal{M}_{\mathrm{Dol}}^{\mathrm{v}} & \cong_{\text {diff }} & \mathcal{M}_{\mathrm{DR}}^{\mathrm{v}} & \stackrel{R H}{=} \mathcal{M}_{\mathrm{B}}^{\mathrm{v}} \\
\chi_{\mathrm{v}} \downarrow & & \uparrow & \nearrow \\
\mathcal{H}^{\mathrm{v}} & & \mathcal{Q}^{\mathrm{v}} &
\end{array}
$$

- Purity Conjecture: $P H^{*}\left(\mathcal{M}_{\mathrm{B}}^{\mathrm{v}}\right) \cong H^{*}\left(\mathcal{Q}^{\mathbf{v}}\right)$
- Curious Poincaré Duality: $H^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mathrm{v}}\right) \cong H^{d_{v}-p, d_{v}-p ; d_{v}+k-2 p}\left(\mathcal{M}_{\mathrm{B}}^{\mathrm{v}}\right)$
- Master Conjecture: combinatorial formula for $\sum_{p, k} h^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mathrm{v}}\right) q^{p} t^{k}$

Graphical Non-Abelian Hodge Theory Wannabe for ($\Gamma, \mathbf{v})$:

$$
\begin{array}{cccc}
& \left(\mathcal{M}_{\mathrm{Hit}}^{\mathrm{v}}, g\right) \\
& \downarrow & \downarrow & \searrow \\
\chi_{\mathrm{v}}^{-1}(0) \subset \mathcal{M}_{\mathrm{Dol}}^{\mathrm{v}} & \cong_{\text {diff }} & \mathcal{M}_{\mathrm{DR}}^{\mathrm{v}} & \stackrel{R H}{\cong} \mathcal{M}_{\mathrm{B}}^{\mathrm{v}} \\
\chi_{\mathrm{v}} \downarrow & & \uparrow & \nearrow \\
\mathcal{H}^{\mathrm{v}} & & \mathcal{Q}^{\mathrm{v}} &
\end{array}
$$

- Purity Conjecture: $P H^{*}\left(\mathcal{M}_{\mathrm{B}}^{\mathrm{v}}\right) \cong H^{*}\left(\mathcal{Q}^{\mathbf{v}}\right)$
- Curious Poincaré Duality: $H^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mathrm{v}}\right) \cong H^{d_{v}-p, d_{v}-p ; d_{v}+k-2 p}\left(\mathcal{M}_{\mathrm{B}}^{\mathrm{v}}\right)$
- Master Conjecture: combinatorial formula for $\sum_{p, k} h^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mathrm{v}}\right) q^{p} t^{k}$

Graphical Non-Abelian Hodge Theory would

- unify NAHT with the theory of quiver varieties (\sim representation theory of Kac-Moody algebras, Nakajima)
- the Graphical Hitchin map $\chi_{\mathbf{v}}: \mathcal{M}_{\text {Dol }}^{v} \rightarrow \mathcal{H}^{\mathbf{v}}$ would give many more examples of ACIHS
- the Graphical Purity conjecture $P H_{c}\left(\mathcal{M}_{B}^{v}, \sqrt{q}\right)=A_{\Gamma}\left(\mathbf{v}_{\mu}, q\right)$ would imply Kac's conjecture from 1982, that the coefficients of $A_{\Gamma}\left(\mathbf{v}_{\mu}, q\right)$ are positive

Toric hyperkähler varieties

- [Bielawski-Dancer, 2000] differential geometric, [Hausel-Sturmfels, 2002] algebraic combinatorics approach
- Basic Hamiltonian action: $\mathbb{T}:=\mathbb{C}^{\times}\left(\mathbb{C}^{2} \lambda(z, w)=\left(\lambda z, \lambda^{-1} w\right)\right.$ with moment map $\mu:=\mathbb{C}^{2} \rightarrow \mathbb{C} \mu(z, w)=z w$
- \mathcal{B} affine hyperplane arrangement in \mathbb{Q}^{d}, with $|\mathcal{B}|=n-d \leadsto$ $\mathbb{T}_{\mathcal{B}}^{n-d} \subset \mathbb{T}^{n}\left(\left(\mathbb{C}^{2}\right)^{n}\right.$ with moment map $\mu_{\mathcal{B}}:\left(\mathbb{C}^{2}\right)^{n} \rightarrow \mathbb{C}^{n-d} \leadsto$ toric hyperkähler variety $\mathcal{Q}^{\mathcal{B}}:=\mu_{\mathcal{B}}^{-1}(0) / / \theta_{\theta} \mathbb{T}^{n-d}$

Example: $\Gamma \leadsto$ cographic $\mathcal{B}_{\Gamma} \leadsto \mathcal{Q}^{\mathcal{B}_{\Gamma}} \cong \mathcal{Q}^{1}$ toric quiver variety

- $b_{2 k}\left(\mathcal{Q}^{\mathcal{B}}\right)=h_{k}\left(M_{\mathcal{B}}\right)=\sum_{i=k}^{n-d}(-1)^{i-k}\binom{i}{k} f_{i}\left(\mathcal{B}_{b d}\right)$
- middle Betti number $b_{2 d}\left(\mathcal{Q}^{\mathcal{B}}\right)=f_{d}\left(\mathcal{B}_{b d}\right)$ number of top dimensional bounded regions,
Euler characteristic $\sum_{k} b_{2 k}\left(\mathcal{Q}_{\mathcal{B}}\right)=f_{0}\left(\mathcal{B}_{b d}\right)$ number of vertices

Toric Non-Abelian Hodge Theory for \mathcal{B} :

		$\left(\mathcal{M}_{\mathrm{Hit}}^{\mathcal{B}}, \mathrm{g}\right)$			
		\swarrow	\downarrow	\searrow	
$\chi_{\mathcal{B}}^{-1}(0) \subset$	$\mathcal{M}_{\text {Dol }}^{\mathcal{B}}$	$\cong_{\text {diff }}$	$\mathcal{M}_{\text {DR }}^{\mathcal{B}}$	$\stackrel{\text { RH }}{=}$	$\mathcal{M}_{\text {B }}^{\text {B }}$
	$\chi_{\mathrm{B}} \downarrow$		\uparrow	/	
	$\mathcal{H}^{\mathcal{B}}$		$\mathcal{Q}^{\mathcal{B}}$		

- Purity Conjecture: $P H^{*}\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}\right) \cong H^{*}\left(\mathcal{Q}^{\mathcal{B}}\right)$
- Curious Poincaré Duality: $H^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}\right) \cong H^{d-p, d-p ; d+k-2 p}\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}\right)$
- Master Conjecture: combinatorial formula for $\sum_{p, k} h^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}\right) q^{\rho} t^{k}$

Construction of $\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}$

- $Z:=\mathbb{C}^{2} \backslash\{z w+1=0\}$
basic action: $\mathbb{T}:=\mathbb{C}^{\times}$C $Z \lambda(z, w)=\left(\lambda z, \lambda^{-1} w\right)$
holomorphic symplectic form: $\frac{d z \wedge d w}{1+z w}$
group-valued moment map $\Phi:=Z \rightarrow \mathbb{C}^{\times} \Phi(z, w)=1+z w$
- \mathcal{B}, affine hyperplane arrangement in \mathbb{Q}^{d}, with $|\mathcal{B}|=n-d \leadsto$ $\mathbb{T}_{\mathcal{B}}^{n-d} \subset \mathbb{T}^{n} \subset Z^{n}$
group-valued moment map $\Phi_{\mathcal{B}}:(Z)^{n} \rightarrow \mathbb{T}^{n-d}$
\leadsto toric Betti space $\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}:=\Phi_{\mathcal{B}}^{-1}(1) / / \theta^{\mathbb{T}^{n-d}}$
Example: $\Gamma \leadsto$ cographic $\mathcal{B}_{\Gamma} \leadsto \mathcal{M}_{\mathrm{B}}^{\mathcal{B}_{\Gamma}}=\mathcal{M}_{\mathrm{B}}^{1}$ toric multiplicative quiver variety of [Crawley-Boevey-Shaw, 2006]
- $E\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}, q\right)=\sum_{p, k} h^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}\right) q^{p}(-1)^{k}=$
$\sum_{i} h_{i}\left(M_{\mathcal{B}}\right)\left(q^{2}-q+1\right)^{d-i} q^{i} \Rightarrow E\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}, q\right)=q^{d} E\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}, 1 / q\right)$
Toric Curious Poincaré Duality

Toric Riemann-Hilbert map and Toric Purity Conjecture

- The local analytical isomorphism $R H_{Z}: \mathbb{C}^{2} \rightarrow Z$:

$$
\begin{gathered}
(z, w) \in \mathbb{C}^{2} \xrightarrow{R H_{z}}\left\{\begin{array}{cc}
\left(z, \frac{\exp (z w)-1}{z}\right) \in Z & z \neq 0 \\
(0, w) \in Z & z=0
\end{array}\right. \\
z w \downarrow \\
\downarrow 1+z w
\end{gathered}
$$

- This induces a local analytical isomorphism $R H_{\mathcal{B}}: \mathcal{Q}^{\mathcal{B}} \rightarrow \mathcal{M}_{\mathrm{B}}^{\mathcal{B}}$
- For many \mathcal{B} we can algebraically embed $i_{\mathcal{B}}: \mathcal{M}_{\mathrm{B}}^{\mathcal{B}} \hookrightarrow \mathcal{Q}^{\mathcal{B}}$ $R H_{\mathcal{B}} \circ i_{\mathcal{B}}$ induces an isomorphism on $H^{*}\left(\mathcal{Q}_{\mathcal{B}}\right)$.
$\Rightarrow P H^{*}\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}\right) \cong H^{*}\left(\mathcal{Q}_{\mathcal{B}}\right)$, the Toric Purity Conjecture

Construction of $\mathcal{M}_{\mathrm{Dol}}^{\mathcal{B}}$

- $\mathcal{B}_{A_{\infty}}=\left\{n \in \mathbb{R}^{1} \mid n \in \mathbb{Z}\right\} \leadsto \mathcal{Q}^{\mathcal{B}_{\infty}}$ (aka A_{∞} ALE space)
- $\mathbb{T}\left(\mathcal{Q}^{\mathcal{B}_{A_{\infty}}}\right.$, moment map $\mu_{A_{\infty}}: \mathcal{Q}^{\mathcal{B}_{A_{\infty}}} \rightarrow \mathbb{C}$, $\mu_{A_{\infty}}^{-1}(0)$ infinite chain of \mathbb{P}^{1} 's, $\mu_{A_{\infty}}^{-1}(x) \cong \mathbb{C}^{\times}, x \neq 0$.
- $\mathbb{Z} C^{\mathcal{Q}^{\mathcal{B}_{\infty}}}$ by shifting the chain of \mathbb{P}^{1} 's on $\mu_{A_{\infty}}^{-1}(0)$ multiplying by x on $\mu_{A_{\infty}}^{-1}(x) \cong \mathbb{C}^{\times}$

$$
T:=\mu_{A_{\infty}}^{-1}(\Delta) / \mathbb{Z}, \Delta=\{|x|<1\} \subset \mathbb{C}
$$

- $\mathbb{T} \mathbb{C} T$, moment map $\chi_{T}: T \rightarrow \Delta$.
$\chi_{T}^{-1}(0) \cong$ nodal $\mathbb{P}^{1}, \chi_{T}^{-1}(x) \cong$ elliptic curve, $x \neq 0$
\leadsto Tate curve
- \mathcal{B}, affine hyperplane arrangement in \mathbb{Q}^{d}, with $|\mathcal{B}|=n-d$ $\leadsto \mathbb{T}_{\mathcal{B}}^{n-d} \subset \mathbb{T}^{n} \subset T^{n}$ moment map $\mu_{\mathcal{B}}: T^{n} \rightarrow \mathbb{C}^{n-d}$ \leadsto toric Dolbeault space $\mathcal{M}_{\text {Dol }}^{\mathcal{B}}:=\mu_{T}^{-1}(0) / / \theta_{\theta} \mathbb{T}^{n-d}$

Toric Hitchin map and Curious Poincaré Duality

- $\chi_{T}: T \rightarrow \Delta \leadsto \chi_{\mathcal{B}}: \mathcal{M}_{\text {Dol }}^{\mathcal{B}} \rightarrow \Delta^{d}$ ACIHS toric Hitchin map $\chi_{\mathrm{B}}^{-1}(0)$ toroidal core: toric varieties glued together over the bounded regions in the toroidal hyperplane arrangement
$\tilde{\mathcal{B}}:=\left(\mathcal{B}+\mathbb{Z}^{d}\right) / \mathbb{Z}^{d} \subset \mathbb{R}^{d} / \mathbb{Z}^{d} \cong \mathrm{U}(1)^{d}$
$\Rightarrow b_{2 d}\left(\mathcal{M}_{\text {Dol }}^{\mathcal{B}}\right)=f_{d}(\tilde{\mathcal{B}})$
- simple combinatorial Morse theory on the toroidal hyperplane arrangement $\tilde{\mathcal{B}}$ implies that
$f_{d}(\tilde{\mathcal{B}})=\#\{$ top dimensional regions of $\tilde{\mathcal{B}}\}=\#\{$ vertices of $\tilde{\mathcal{B}}\}$
$\#\{$ vertices of $\tilde{\mathcal{B}}\}=\#\{$ vertices of $\mathcal{B}\}=f_{0}\left(\mathcal{B}_{b d}\right)=\sum_{i} b_{2 i}\left(\mathcal{Q}^{\mathcal{B}}\right)$
$\Rightarrow H^{2 d}\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}\right) \cong H^{*}\left(\mathcal{Q}^{\mathcal{B}}\right)$, a consequence of Curious Poincaré Duality, if we assume $\mathcal{M}_{\text {Dol }}^{\mathcal{B}} \cong{ }_{\text {diff }} \mathcal{M}_{\mathrm{B}}^{\mathcal{B}}$

Example: Calabi- $T^{*} \mathbb{P}^{2}$

- $\mathcal{B} \subset \mathbb{R}^{2}:$

- $\mathcal{Q}^{\mathcal{B}} \cong T^{*} \mathbb{P}^{2}=\left\{\tilde{z}_{1} \tilde{w}_{1}+\tilde{z}_{2} \tilde{w}_{2}+\tilde{z}_{3} \tilde{w}_{3}=0\right\} / / \theta \mathbb{T}$
$\mathcal{M}_{\mathrm{B}}^{\mathcal{B}} \cong m T^{*} \mathbb{P}^{2}=\left\{\left(1+z_{1} w_{1}\right)\left(1+z_{2} w_{2}\right)\left(1+z_{3} w_{3}\right)=1\right\} / /{ }_{\theta} \mathbb{T}$
$\tilde{z}_{i}=z_{i}, \tilde{w}_{1}=w_{1}, \tilde{w}_{2}=\left(1+z_{1} w_{1}\right) w_{2}$,
$\tilde{w}_{3}=\left(1+z_{1} w_{1}\right)\left(1+z_{2} w_{2}\right) w_{3}$
$\left(1+z_{1} w_{1}\right)\left(1+z_{2} w_{2}\right)\left(1+z_{3} w_{3}\right)=1 \Rightarrow \tilde{z}_{1} \tilde{w}_{1}+\tilde{z}_{2} \tilde{w}_{2}+\tilde{z}_{3} \tilde{w}_{3}=0$
\Downarrow
$\mathcal{I}_{\mathcal{B}}: \mathcal{M}_{\mathrm{B}}^{\mathcal{B}} \rightarrow \mathcal{Q}^{\mathcal{B}}$ algebraic embedding $\leadsto P H^{*}\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}\right) \cong H^{*}\left(\mathcal{Q}^{\mathcal{B}}\right)$

Example: Calabi- $T^{*} \mathbb{P}^{2}$

- $\tilde{\mathcal{B}}=\left(\mathcal{B}+\mathbb{Z}^{2}\right) / \mathbb{Z}^{2}$

- $\chi_{\mathcal{B}}^{-1}(0)$ is three toric varieties glued together according to the toroidal hyperplane arrangement
- $b_{4}\left(\mathcal{M}_{\text {Dol }}^{\mathcal{B}}\right)=\#\{\tilde{\tilde{B}}$ 2-dimensional regions in $\tilde{\mathcal{B}}\}=3=$ $\#\{$ vertices of $\tilde{\mathcal{B}}\}=b_{0}\left(T^{*} \mathbb{P}^{2}\right)+b_{2}\left(T^{*} \mathbb{P}^{2}\right)+b_{4}\left(T^{*} \mathbb{P}^{2}\right)$
\Downarrow
$H^{4}\left(m T^{*} \mathbb{P}^{2}\right) \cong H^{*}\left(T^{*} \mathbb{P}^{2}\right)$
- $\sum_{p, k} h^{p, p ; k}\left(m T^{*} \mathbb{P}^{2}\right) q^{p} t^{k}=$
$1+2 q t+q t^{2}+2 q^{2} t^{2}+q^{2} t^{4}+q^{3} t^{4}+2 q^{3} t^{3}+q^{4} t^{4}$

Toric Non-Abelian Hodge Theory for \mathcal{B} :

$$
\begin{array}{rccc}
& \left(\mathcal{M}_{\mathrm{Hit},}^{\mathcal{B}}, g\right) \\
\chi_{\mathcal{B}}^{-1}(0) \subset \mathcal{M}_{\mathrm{Dol}}^{\mathcal{B}} & \downarrow & \\
& \mathcal{M}_{\mathrm{DR}}^{\mathcal{B}} & \stackrel{R H_{\mathrm{B}}}{=} \mathcal{M}_{\mathrm{B}}^{\mathcal{B}} \\
\chi \downarrow & \ddots & \nearrow & \\
\mathcal{H}^{\mathcal{B}} & \mathcal{Q}^{\mathcal{B}} &
\end{array}
$$

- Purity Conjecture: $P H^{*}\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}\right) \cong H^{*}\left(\mathcal{Q}^{\mathcal{B}}\right)$
- Curious Poincaré Duality: $H^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{B}\right) \cong H^{d-p, d-p ; d+k-2 p}\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}\right)$
- Master Conjecture: combinatorial formula for $\sum_{p, k} h^{p, p ; k}\left(\mathcal{M}_{\mathrm{B}}^{\mathcal{B}}\right) q^{p} t^{k}$

