Asymptotics of representations of symmetric groups and random matrices

(joint work with Roland Speicher)

Piotr Śniady

University of Wroclaw

Outline

- 1 Problem: Representations of symmetric groups S_n
- 2 Tools: Permutationally invariant random matrices
- Main result: Gaussian fluctuations of Young diagrams

Outline

- $oldsymbol{1}$ Problem: Representations of symmetric groups S_n
 - What is asymptotic theory of representations?
 - Kerov's transition measure
 - Outlook
- Tools: Permutationally invariant random matrices
- 3 Main result: Gaussian fluctuations of Young diagrams

Our favorite group today is the symmetric group S_n .

Our favorite group today is the symmetric group S_n .

Representation of S_n is a homomorphism $\rho: S_n \to \operatorname{End}(V)$, where V is a finite-dimensional (complex) vector space.

Our favorite group today is the symmetric group S_n .

Representation of S_n is a homomorphism $\rho: S_n \to \operatorname{End}(V)$, where V is a finite-dimensional (complex) vector space.

Representation is irreducible if V has no invariant subspaces.

Our favorite group today is the symmetric group S_n .

Representation of S_n is a homomorphism $\rho: S_n \to \operatorname{End}(V)$, where V is a finite-dimensional (complex) vector space.

Representation is irreducible if V has no invariant subspaces.

Every irreducible representation ρ^{λ} of S_n corresponds to some Young diagram λ with n boxes.



Our favorite group today is the symmetric group S_n .

Representation of S_n is a homomorphism $\rho: S_n \to \operatorname{End}(V)$, where V is a finite-dimensional (complex) vector space.

Representation is irreducible if V has no invariant subspaces.

Every irreducible representation ρ^{λ} of S_n corresponds to some Young diagram λ with n boxes.

What happens to representations of S_n when $n \to \infty$?

Reducible representations and random Young diagrams

Every reducible representation ρ of S_n defines the canonical probability measure on Young diagrams with n boxes, given as follows.

Reducible representations and random Young diagrams

Every reducible representation ρ of S_n defines the canonical probability measure on Young diagrams with n boxes, given as follows.

We decompose ρ as a direct sum of irreducible representations.

$$P(\lambda) = \frac{(\text{multiplicity of } \rho^{\lambda} \text{ in } \rho)(\text{dimension of } \rho^{\lambda})}{(\text{dimension of } \rho)}$$

Reducible representations and random Young diagrams

Every reducible representation ρ of S_n defines the canonical probability measure on Young diagrams with n boxes, given as follows.

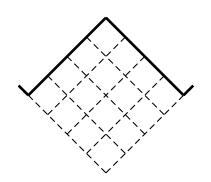
We decompose ρ as a direct sum of irreducible representations.

$$P(\lambda) = \frac{(\text{multiplicity of } \rho^{\lambda} \text{ in } \rho)(\text{dimension of } \rho^{\lambda})}{(\text{dimension of } \rho)}$$

Concrete problem for today

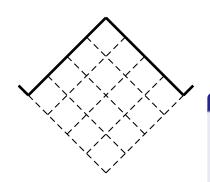
For each n let ρ_n be a representation of S_n and λ_n be a random Young diagram distributed according to ρ_n . What are the statistical properties of λ_n in the limit $n \to \infty$?

Example of a concrete problem: Restriction of irreducible representations



We consider a Young diagram ν with a shape of a $n \times n$ square and the corresponding irreducible representation ρ^{ν} of S_{n^2} .

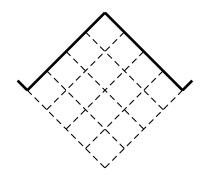
Example of a concrete problem: Restriction of irreducible representations

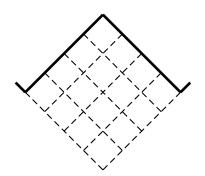


We consider a Young diagram ν with a shape of a $n \times n$ square and the corresponding irreducible representation ρ^{ν} of S_{n^2} .

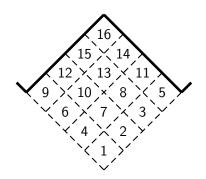
Problem

What is the distribution of the random Young diagram associated to the restriction of the representation ρ^{ν} to a subgroup $S_{\frac{1}{2}n^2}$?

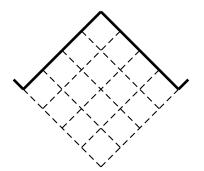




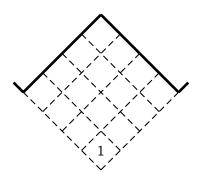
A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .



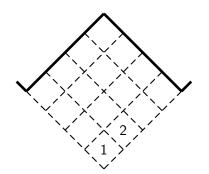
A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .



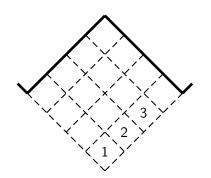
A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .



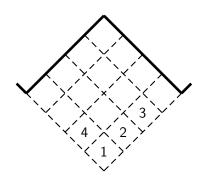
A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .



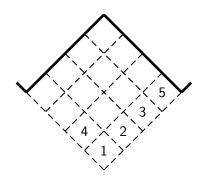
A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .



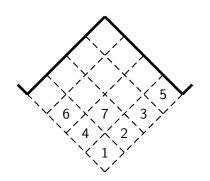
A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .



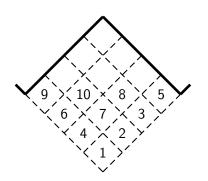
A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .



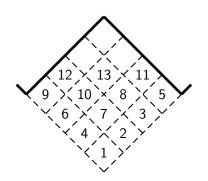
A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .



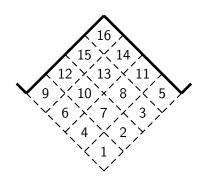
A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .



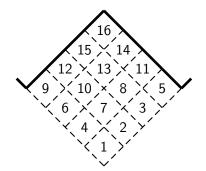
A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

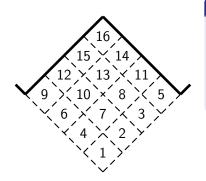


A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .



A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .





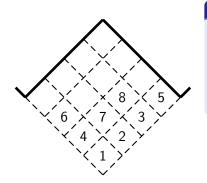
Problem

From a randomly chosen Young tableau



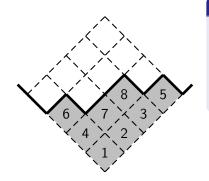
Problem

From a randomly chosen Young tableau we remove all boxes with numbers bigger than $\frac{1}{2}n^2$.



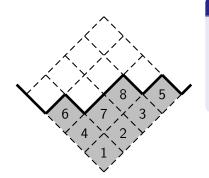
Problem

From a randomly chosen Young tableau we remove all boxes with numbers bigger than $\frac{1}{2}n^2$.



Problem

From a randomly chosen Young tableau we remove all boxes with numbers bigger than $\frac{1}{2}n^2$.



Problem

From a randomly chosen Young tableau we remove all boxes with numbers bigger than $\frac{1}{2}n^2$.

What is the distribution of the resulting Young diagram?

What is asymptotic theory of representations? **Kerov's transition measure** Outlook

Representations and non-commutative probability

Let a representation ρ of S_n be fixed.

Representations and non-commutative probability

Let a representation ρ of S_n be fixed.

Let $A = \mathbb{C}[S_n]$ be the algebra of non-commutative random variables.

Representations and non-commutative probability

Let a representation ρ of S_n be fixed.

Let $\mathcal{A} = \mathbb{C}[S_n]$ be the algebra of non-commutative random variables.

Let the expected value $\mathbb{E}:\mathcal{A}\to\mathbb{C}$ be given by the character

$$\mathbb{E}[x] = \chi^{\rho}(x) = \operatorname{tr} \rho(x)$$

Representations and non-commutative probability

Let a representation ρ of S_n be fixed.

Let $\mathcal{A} = \mathbb{C}[S_n]$ be the algebra of non-commutative random variables.

Let the expected value $\mathbb{E}:\mathcal{A}\to\mathbb{C}$ be given by the character

$$\mathbb{E}[x] = \chi^{\rho}(x) = \operatorname{tr} \rho(x) = \frac{\operatorname{Tr} \rho(x)}{\text{dimension of } \rho}$$

If $M \in \mathcal{M}_d(\mathbb{C})$ is a non-random matrix with eigenvalues $z_1, \ldots, z_d \in \mathbb{R}$ we define its eigenvalues distribution as

$$\mu^{M} = \frac{1}{d} \left(\delta_{z_1} + \cdots + \delta_{z_d} \right).$$

If $M \in \mathcal{M}_d(\mathbb{C})$ is a non-random matrix with eigenvalues $z_1, \ldots, z_d \in \mathbb{R}$ we define its eigenvalues distribution as

$$\mu^{M} = \frac{1}{d} \left(\delta_{z_1} + \dots + \delta_{z_d} \right).$$

If M is random then its eigenvalues distribution μ^M is a random probability measure on \mathbb{R} , called empirical eigenvalues distribution.

If $M \in \mathcal{M}_d(\mathbb{C})$ is a non-random matrix with eigenvalues $z_1, \ldots, z_d \in \mathbb{R}$ we define its eigenvalues distribution as

$$\mu^{M} = \frac{1}{d} \left(\delta_{z_1} + \dots + \delta_{z_d} \right).$$

If M is random then its eigenvalues distribution μ^M is a random probability measure on \mathbb{R} , called empirical eigenvalues distribution.

Information about μ^{M} is contained in random variables

$$\int x^k \ d\mu^M, \qquad k = 1, 2, \dots$$

If $M \in \mathcal{M}_d(\mathbb{C})$ is a non-random matrix with eigenvalues $z_1, \ldots, z_d \in \mathbb{R}$ we define its eigenvalues distribution as

$$\mu^{M} = \frac{1}{d} \left(\delta_{z_1} + \dots + \delta_{z_d} \right).$$

If M is random then its eigenvalues distribution μ^M is a random probability measure on \mathbb{R} , called empirical eigenvalues distribution.

Information about μ^{M} is contained in random variables

$$\int x^k \ d\mu^M, \qquad k = 1, 2, \dots$$

$$\mathbb{E}\left[\int x^{k_1} \ d\mu^M\right] \cdots \left[\int x^{k_s} \ d\mu^M\right] = \mathbb{E}\operatorname{tr} M^{k_1} \cdots \operatorname{tr} M^{k_s}$$

If $M \in \mathcal{M}_d(\mathbb{C})$ is a non-random matrix with eigenvalues $z_1, \ldots, z_d \in \mathbb{R}$ we define its eigenvalues distribution as

$$\mu^{M} = \frac{1}{d} \left(\delta_{z_1} + \dots + \delta_{z_d} \right).$$

If M is random then its eigenvalues distribution μ^M is a random probability measure on \mathbb{R} , called empirical eigenvalues distribution.

Information about μ^M is contained in random variables

$$\int x^k \ d\mu^M, \qquad k = 1, 2, \dots$$

$$\mathbb{E}\left[\int x^{k_1} \ d\mu^{M}\right] \cdots \left[\int x^{k_s} \ d\mu^{M}\right] := \mathbb{E}\operatorname{tr} M^{k_1} \cdots \operatorname{tr} M^{k_s}$$

can be used as an alternative definition of empirical eigenvalues distribution!

Define Biane's matrix J

$$J = \begin{bmatrix} 0 & (1,2) & \dots & (1,n) & 1 \\ (2,1) & 0 & \dots & (2,n) & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (n,1) & (n,2) & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{bmatrix} \in \mathcal{M}_{n+1} \otimes \mathbb{C}[S_n]$$

Define Biane's matrix J

$$J = \begin{bmatrix} 0 & (1,2) & \dots & (1,n) & 1 \\ (2,1) & 0 & \dots & (2,n) & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (n,1) & (n,2) & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{bmatrix} \in \mathcal{M}_{n+1} \otimes \mathbb{C}[S_n]$$

We view J as a random matrix with non-commutative entries.

Define Biane's matrix J

$$J = \begin{bmatrix} 0 & (1,2) & \dots & (1,n) & 1 \\ (2,1) & 0 & \dots & (2,n) & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (n,1) & (n,2) & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{bmatrix} \in \mathcal{M}_{n+1} \otimes \mathbb{C}[S_n]$$

We view J as a random matrix with non-commutative entries. We view $\operatorname{tr} J^k \in \mathbb{C}[S_n]$ (for $k=1,2,\ldots$) as random variables.

Define Biane's matrix J

$$J = \begin{bmatrix} 0 & (1,2) & \dots & (1,n) & 1 \\ (2,1) & 0 & \dots & (2,n) & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (n,1) & (n,2) & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{bmatrix} \in \mathcal{M}_{n+1} \otimes \mathbb{C}[S_n]$$

We view J as a random matrix with non-commutative entries. We view $\operatorname{tr} J^k \in \mathbb{C}[S_n]$ (for $k=1,2,\ldots$) as classical random variables.

Define Biane's matrix J

$$J = egin{bmatrix} 0 & (1,2) & \dots & (1,n) & 1 \ (2,1) & 0 & \dots & (2,n) & 1 \ dots & dots & \ddots & dots & dots \ (n,1) & (n,2) & \dots & 0 & 1 \ 1 & 1 & \dots & 1 & 0 \end{bmatrix} \in \mathcal{M}_{n+1} \otimes \mathbb{C}[S_n]$$

We view J as a random matrix with non-commutative entries. We view $\operatorname{tr} J^k \in \mathbb{C}[S_n]$ (for $k=1,2,\ldots$) as classical random variables.

Kerov's transition measure μ^{ρ} corresponding to ρ is defined as the empirical eigenvalues distribution of J.

(random Young diagram
$$\lambda$$
) \longleftrightarrow (random transition measure $\mu^{\rho}=\mu^{\lambda}$)

(random Young diagram
$$\lambda$$
) \longleftrightarrow (random transition measure $\mu^{\rho}=\mu^{\lambda}$) for details ask me during coffee break...

(random Young diagram
$$\lambda$$
) \longleftrightarrow (random transition measure $\mu^{\rho}=\mu^{\lambda}$)

for details ask me during coffee break...

Young diagram λ with n boxes is balanced if it has at most $C\sqrt{n}$ rows and columns.

(random Young diagram
$$\lambda$$
) \longleftrightarrow \longleftrightarrow (random transition measure $\mu^{\rho}=\mu^{\lambda}$)

for details ask me during coffee break...

Young diagram λ with n boxes is balanced if it has at most $C\sqrt{n}$ rows and columns. For a balanced diagram λ its transition measure μ^{λ} is supported on $[-C\sqrt{n},C\sqrt{n}]$.

(random Young diagram
$$\lambda$$
) \longleftrightarrow (random transition measure $\mu^{\rho}=\mu^{\lambda}$)

for details ask me during coffee break...

Young diagram λ with n boxes is balanced if it has at most $C\sqrt{n}$ rows and columns. For a balanced diagram λ its transition measure μ^{λ} is supported on $[-C\sqrt{n},C\sqrt{n}]$.

Normalized Biane's matrix $J = \frac{1}{\sqrt{n}}J$ has spectral measure equal to $\frac{1}{\sqrt{n}}\mu^{\lambda}$, supported on [-C,C]. Corresponds to rescaled Young diagram $\frac{1}{\sqrt{n}}\lambda$.

Concrete problem for today, reformulated

Suppose that ρ_n is a representation of S_n and λ_n is the corresponding random Young diagram.

Concrete problem for today, reformulated

Suppose that ρ_n is a representation of S_n and λ_n is the corresponding random Young diagram.

What can we say about the fluctuations of shape of λ_n for $n \to \infty$?

Concrete problem for today, reformulated

Suppose that ρ_n is a representation of S_n and λ_n is the corresponding random Young diagram.

What can we say about the fluctuations of shape of λ_n for $n \to \infty$?

Namely, what can we say about the random variables

$$M_k(J) = \int x^k d\mu^{\lambda_n}, \qquad k = 1, 2, \dots$$
?

Concrete problem for today, reformulated

Suppose that ρ_n is a representation of S_n and λ_n is the corresponding random Young diagram.

What can we say about the fluctuations of shape of $\frac{1}{\sqrt{n}}\lambda_n$ for $n \to \infty$?

Namely, what can we say about the random variables

$$M_k(\widetilde{J}) = \frac{1}{\sqrt{n^k}} M_k(J) = \frac{1}{\sqrt{n^k}} \int x^k d\mu^{\lambda_n}, \qquad k = 1, 2, \dots$$

• Good news: questions on representations of S_n are reduced to random matrix theory,

• Good news: questions on representations of S_n are reduced to random matrix theory, free probability theory,

• Good news: questions on representations of S_n are reduced to random matrix theory, free probability theory, higher-order free probability.

- Good news: questions on representations of S_n are reduced to random matrix theory, free probability theory, higher-order free probability.
- Bad news: entries of our matrices do not commute.

- Good news: questions on representations of S_n are reduced to random matrix theory, free probability theory, higher-order free probability.
- Bad news: entries of our matrices do not commute. Good news: we do not care.

- Good news: questions on representations of S_n are reduced to random matrix theory, free probability theory, higher-order free probability.
- Bad news: entries of our matrices do not commute. Good news: we do not care.
- Bad news: the random matrices which we are going to study have a not-so-nice symmetry.

- Good news: questions on representations of S_n are reduced to random matrix theory, free probability theory, higher-order free probability.
- Bad news: entries of our matrices do not commute. Good news: we do not care.
- Bad news: the random matrices which we are going to study have a not-so-nice symmetry.
- Bad news: we have to find the relation between the characters of S_n and moments of the entries of J.

- Good news: questions on representations of S_n are reduced to random matrix theory, free probability theory, higher-order free probability.
- Bad news: entries of our matrices do not commute. Good news: we do not care.
- Bad news: the random matrices which we are going to study have a not-so-nice symmetry.
- Bad news: we have to find the relation between the characters of S_n and moments of the entries of J.
- Strange news: fluctuations are almost the same as for unitarily invariant random matrices, higher order freeness,...

Outline

- 1 Problem: Representations of symmetric groups S_n
- Tools: Permutationally invariant random matrices
 - Permutationally invariant random matrices
 - Partitions and genus expansion
- Main result: Gaussian fluctuations of Young diagrams

Let $[M_{ij}]_{1 \le i,j \le d}$ be a random matrix (possibly, with non-commuting entries).

Let $[M_{ij}]_{1 \le i,j \le d}$ be a random matrix (possibly, with non-commuting entries).

We say that M is permutationally invariant if for any permutation $\pi \in S_d$

$$\mathbb{E}\big[M_{i_1i_2}M_{i_2i_3}\cdots M_{i_{k-1}i_k}M_{i_ki_1}\big] =$$

Let $[M_{ij}]_{1 \le i,j \le d}$ be a random matrix (possibly, with non-commuting entries).

We say that M is permutationally invariant if for any permutation $\pi \in S_d$

$$\mathbb{E}\big[M_{i_1i_2}M_{i_2i_3}\cdots M_{i_{k-1}i_k}M_{i_ki_1}\big] = \mathbb{E}\big[M_{\pi(i_1)\pi(i_2)}\cdots M_{\pi(i_{k-1})\pi(i_k)}M_{\pi(i_k)\pi(i_1)}\big].$$

Let $[M_{ij}]_{1 \le i,j \le d}$ be a random matrix (possibly, with non-commuting entries).

We say that M is permutationally invariant if for any permutation $\pi \in S_d$

$$\mathbb{E}\big[M_{i_1i_2}M_{i_2i_3}\cdots M_{i_{k-1}i_k}M_{i_ki_1}\big] = \mathbb{E}\big[M_{\pi(i_1)\pi(i_2)}\cdots M_{\pi(i_{k-1})\pi(i_k)}M_{\pi(i_k)\pi(i_1)}\big].$$

Very weak condition!

Let $[M_{ij}]_{1 \le i,j \le d}$ be a random matrix (possibly, with non-commuting entries).

We say that M is permutationally invariant if for any permutation $\pi \in S_d$

$$\mathbb{E}\big[M_{i_1i_2}M_{i_2i_3}\cdots M_{i_{k-1}i_k}M_{i_ki_1}\big] = \mathbb{E}\big[M_{\pi(i_1)\pi(i_2)}\cdots M_{\pi(i_{k-1})\pi(i_k)}M_{\pi(i_k)\pi(i_1)}\big].$$

Very weak condition!

Example

$$J = \begin{bmatrix} 0 & (1,2) & \dots & (1,n) & 1 \\ (2,1) & 0 & \dots & (2,n) & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (n,1) & (n,2) & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{bmatrix}$$
 is permutationally invariant.

Two traces

For a matrix M we usually consider the normalized trace

$$\operatorname{tr} M = \frac{\operatorname{Tr} M}{\operatorname{Tr} 1}$$

Two traces

For a matrix M we usually consider the normalized trace

$$\operatorname{tr} M = \frac{\operatorname{Tr} M}{\operatorname{Tr} 1}$$

But today we prefer a different functional

$$\operatorname{tr}_1 M = M_{11}$$
.

Two traces

For a matrix M we usually consider the normalized trace

$$\operatorname{tr} M = \frac{\operatorname{Tr} M}{\operatorname{Tr} 1}$$

But today we prefer a different functional

$$\operatorname{tr}_1 M = M_{11}$$
.

Example

For Biane's matrix J

$$\operatorname{tr}_1 J^k = \operatorname{tr} J^k$$
.

What is the relation between

• macroscopic: distribution and fluctuations of eigenvalues,

What is the relation between

- macroscopic: distribution and fluctuations of eigenvalues,
- microscopic: joint distribution of a small number of entries.

What is the relation between

- macroscopic: distribution and fluctuations of eigenvalues,
- microscopic: joint distribution of a small number of entries.

Example

micro: ρ is the left-regular representation \longleftrightarrow joint distribution of entries in Biane's matrix is specified

What is the relation between

- macroscopic: distribution and fluctuations of eigenvalues,
- microscopic: joint distribution of a small number of entries.

Example

```
micro: \rho is the left-regular representation \longleftrightarrow joint distribution of entries in Biane's matrix is specified macro: What are the fluctuations of a random irreducible component. \longleftrightarrow what are the fluctuations of eigenvalues of Biane's matrix?
```

If p is a partition of $\{1, \ldots, k\}$ we define

$$\Sigma_{p}(M) = \Sigma_{p} = \sum_{\substack{\mathbf{i} = (i_{1}, \dots, i_{k}) \\ \mathbf{i} \sim p \\ i_{1} = 1}} M_{i_{1}i_{2}} M_{i_{2}i_{3}} \cdots M_{i_{k-1}i_{k}} M_{i_{k}i_{1}}$$

If p is a partition of $\{1, \ldots, k\}$ we define

$$\Sigma_p(M) = \Sigma_p = \sum_{\substack{\mathbf{i} = (i_1, ..., i_k) \\ \mathbf{i} \sim p \\ i_1 = 1}} M_{i_1 i_2} M_{i_2 i_3} \cdots M_{i_{k-1} i_k} M_{i_k i_1}$$

Example

For $p = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$ we sum over $(i_1, \dots, i_7) = (1, a, 1, b, a, c, a)$

such that 1, a, b, c are all different,

If p is a partition of $\{1, \ldots, k\}$ we define

$$\Sigma_{p}(M) = \Sigma_{p} = \sum_{\substack{\mathbf{i}=(i_{1},\dots,i_{k})\\ \mathbf{i}\sim p\\ i_{1}=1}} M_{i_{1}i_{2}} M_{i_{2}i_{3}} \cdots M_{i_{k-1}i_{k}} M_{i_{k}i_{1}}$$

Example

For $p = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$ we sum over $(i_1, \dots, i_7) = (1, a, 1, b, a, c, a)$

such that 1, a, b, c are all different,

$$\Sigma_p = \sum_{\substack{a,b,c:\ 1,a,b,c ext{ all different}}} M_{1a} M_{a1} M_{ba} M_{ac} M_{ca} M_{a1}$$

If p is a partition of $\{1, \ldots, k\}$ we define

$$\Sigma_p(M) = \Sigma_p = \sum_{\substack{\mathbf{i} = (i_1, ..., i_k) \\ \mathbf{i} \sim p \\ i_1 = 1}} M_{i_1 i_2} M_{i_2 i_3} \cdots M_{i_{k-1} i_k} M_{i_k i_1}$$

If p is a partition of $\{1, \ldots, k\}$ we define

$$\Sigma_{p}(M) = \Sigma_{p} = \sum_{\substack{\mathbf{i} = (i_{1}, \dots, i_{k}) \\ \mathbf{i} \sim p \\ i_{1} = 1}} M_{i_{1}i_{2}} M_{i_{2}i_{3}} \cdots M_{i_{k-1}i_{k}} M_{i_{k}i_{1}}$$

Lemma

$$\mathsf{tr}_1 \, M^k = \sum_{p: \textit{partition of } \{1, \dots, k\}} \Sigma_p$$

If p is a partition of $\{1, \ldots, k\}$ we define

$$\Sigma_{p}(M) = \Sigma_{p} = \sum_{\substack{\mathbf{i} = (i_{1}, \dots, i_{k}) \\ \mathbf{i} \sim p \\ i_{1} = 1}} M_{i_{1}i_{2}} M_{i_{2}i_{3}} \cdots M_{i_{k-1}i_{k}} M_{i_{k}i_{1}}$$

Lemma

$$\operatorname{tr}_1 M^k = \sum_{p: partition \ of \ \{1,...,k\}} \Sigma_p$$

$$\operatorname{tr}_1 M^{k_1} \cdots \operatorname{tr}_1 M^{k_l} = \sum_{\substack{p: partition \ of \ \{1, \dots, k_1 + \dots + k_l\} \\ p \ connects \ 1, 1 + k_1, 1 + k_1 + k_2, \dots}} \Sigma_{p}$$

For integers $k_1, \ldots, k_m \geq 1$ we define the conjugacy class $C_{k_1, \ldots, k_m} \in \mathbb{C}[S_n]$ as a linear combination of all permutations which in a cycle decomposition have cycles of length k_1, \ldots, k_m .

For integers $k_1, \ldots, k_m \geq 1$ we define the conjugacy class $C_{k_1, \ldots, k_m} \in \mathbb{C}[S_n]$ as a linear combination of all permutations which in a cycle decomposition have cycles of length k_1, \ldots, k_m .

Example

$$C_{3,2} =$$

For integers $k_1, \ldots, k_m \geq 1$ we define the conjugacy class $C_{k_1, \ldots, k_m} \in \mathbb{C}[S_n]$ as a linear combination of all permutations which in a cycle decomposition have cycles of length k_1, \ldots, k_m .

Example

$$C_{3,2} = \sum_{\substack{a_{1,1} | a_{1,2} | a_{1,3} \\ a_{2,1} | a_{2,2}}}$$

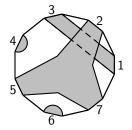
where the sum runs over all fillings of the boxes with numbers $1, 2, \ldots, n$ (every number can appear at most once).

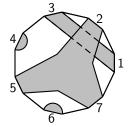
For integers $k_1, \ldots, k_m \geq 1$ we define the conjugacy class $C_{k_1, \ldots, k_m} \in \mathbb{C}[S_n]$ as a linear combination of all permutations which in a cycle decomposition have cycles of length k_1, \ldots, k_m .

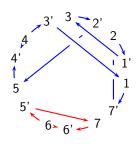
Example

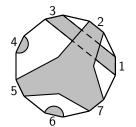
$$C_{3,2} = \sum_{\substack{a_{1,1} | a_{1,2} | a_{1,3} \\ a_{2,1} | a_{2,2} |}} (a_{1,1}, a_{1,2}, a_{1,3})(a_{2,1}, a_{2,2}),$$

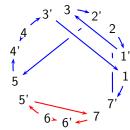
where the sum runs over all fillings of the boxes with numbers $1, 2, \ldots, n$ (every number can appear at most once).

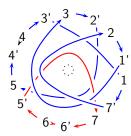


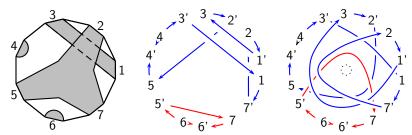








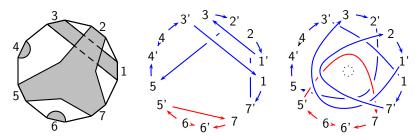




For each loop we count

$$\left(\frac{\text{number of visited vertices}}{2} - \text{number of winds}\right)$$
;

these numbers specify the conjugacy class of $\Sigma_{\pi}(J)$.

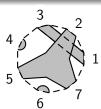


For each loop we count

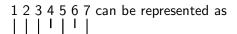
$$\left(\frac{\text{number of visited vertices}}{2} - \text{number of winds}\right);$$

these numbers specify the conjugacy class of $\Sigma_{\pi}(J)$.

In our example
$$\Sigma_{\pi}(J) = C_{\frac{10}{2}-3,\frac{4}{2}-1} = C_{2,1}$$
.



 $1\ 2\ 3\ 4\ 5\ 6\ 7$ can be represented as



We define genus of a partition as the genus of the corresponding two-dimensional surface.

1 2 3 4 5 6 7 can be represented as

We define genus of a partition as the genus of the corresponding two-dimensional surface.

Claim

Under mild assumptions (for example, $M = \frac{1}{\sqrt{n}}J$, balanced Young diagrams)

$$\mathbb{E}\Sigma_p(M) = O\left(d^{-\operatorname{genus}(p)}
ight)$$

Outline

- 1 Problem: Representations of symmetric groups S_n
- Tools: Permutationally invariant random matrices
- Main result: Gaussian fluctuations of Young diagrams
 - Approximate factorization of characters
 - Central limit theorem
 - Concluding remarks

For *nice* random matrices we can expect quick decay of cumulants:

$$k\big(\Sigma_{p_1}(\widetilde{J}),\dots,\Sigma_{p_l}(\widetilde{J})\big)=O\left(d^{-\operatorname{genus}(p_1)-\dots-\operatorname{genus}(p_l)-\binom{l-1)}{2}}\right).$$

For *nice* random matrices we can expect quick decay of cumulants:

$$k\big(\Sigma_{\rho_1}(\widetilde{J}),\ldots,\Sigma_{\rho_l}(\widetilde{J})\big) = O\left(d^{-\operatorname{genus}(\rho_1)-\cdots-\operatorname{genus}(\rho_l)-(l-1)}\right).$$

In the case of Biane's matrix Σ_p are conjugacy classes.

For *nice* random matrices we can expect quick decay of cumulants:

$$k\big(\Sigma_{\rho_1}(\widetilde{J}),\dots,\Sigma_{\rho_l}(\widetilde{J})\big) = O\left(d^{-\operatorname{genus}(\rho_1)-\dots-\operatorname{genus}(\rho_l)-(\emph{l}-1)}\right).$$

In the case of Biane's matrix Σ_p are conjugacy classes.

Equivalent to: for any permutations π_1, \ldots, π_l with disjoint supports the classical cumulant $k(\pi_1, \ldots, \pi_l)$ converges quickly enough to zero:

For *nice* random matrices we can expect quick decay of cumulants:

$$k\left(\Sigma_{p_1}(\widetilde{J}),\ldots,\Sigma_{p_l}(\widetilde{J})\right) = O\left(d^{-\operatorname{genus}(p_1)-\cdots-\operatorname{genus}(p_l)-(l-1)}\right).$$

In the case of Biane's matrix Σ_p are conjugacy classes.

Equivalent to: for any permutations π_1, \ldots, π_l with disjoint supports the classical cumulant $k(\pi_1, \ldots, \pi_l)$ converges quickly enough to zero:

$$k(\pi_1,\ldots,\pi_l)=O\left(n^{-\frac{|\pi_1|+\cdots+|\pi_l|+2(l-1)}{2}}\right)$$

For *nice* random matrices we can expect quick decay of cumulants:

$$k\left(\Sigma_{p_1}(\widetilde{J}),\ldots,\Sigma_{p_l}(\widetilde{J})\right) = O\left(d^{-\operatorname{genus}(p_1)-\cdots-\operatorname{genus}(p_l)-(l-1)}\right).$$

In the case of Biane's matrix Σ_p are conjugacy classes.

Equivalent to: for any permutations π_1, \ldots, π_l with disjoint supports the classical cumulant $k(\pi_1, \ldots, \pi_l)$ converges quickly enough to zero:

$$k(\pi_1,\ldots,\pi_l)=O\left(n^{-\frac{|\pi_1|+\cdots+|\pi_l|+2(l-1)}{2}}\right)$$

We call this property approximate factorization of characters:

$$\chi(\pi_1\cdots\pi_l)\approx\chi(\pi_1)\cdots\chi(\pi_l)$$

Main theorem: law of large numbers

Suppose that (ρ_n) is a sequence of representations with approximate factorization of characters

Main theorem: law of large numbers

Suppose that (ρ_n) is a sequence of representations with approximate factorization of characters and let (λ_n) be the corresponding sequence of random Young diagrams.

Main theorem: law of large numbers

Suppose that (ρ_n) is a sequence of representations with approximate factorization of characters and let (λ_n) be the corresponding sequence of random Young diagrams.

Theorem (law of large numbers, Philippe Biane 1998)

The sequence of rescaled random Young diagrams $(\frac{1}{\sqrt{n}}\lambda_n)$ converges in probability to some (generalized) Young diagram λ . The shape of this limit can be described by the free probability theory.

Main theorem: central limit theorem

Suppose that (ρ_n) is a sequence of representations with approximate factorization of characters and let (λ_n) be the corresponding sequence of random Young diagrams.

Main theorem: central limit theorem

Suppose that (ρ_n) is a sequence of representations with approximate factorization of characters and let (λ_n) be the corresponding sequence of random Young diagrams.

Theorem (central limit theorem, Piotr Śniady 2005)

The sequence of the fluctuations $(\frac{1}{\sqrt{n}}\lambda_n - \lambda)$, after some additional rescaling, converges in distribution to a Gaussian process. The covariance of this process can be described by second-order free probability theory (with a small correction).

• if ρ_n is the *left regular representation*;

- if ρ_n is the *left regular representation*;
- if ρ_n is the representation such that S_n is acting on $(\mathbb{C}^{d_n})^{\otimes n}$ by permuting the factors;

- if ρ_n is the *left regular representation*;
- if ρ_n is the representation such that S_n is acting on $(\mathbb{C}^{d_n})^{\otimes n}$ by permuting the factors;
- if ρ_n is an irreducible representation;

- if ρ_n is the *left regular representation*;
- if ρ_n is the representation such that S_n is acting on $(\mathbb{C}^{d_n})^{\otimes n}$ by permuting the factors;
- if ρ_n is an irreducible representation;
- many natural operations on representations preserve the characters factorization property: tensor product, outer product, induction and restriction,...

- if ρ_n is the *left regular representation*;
- if ρ_n is the representation such that S_n is acting on $(\mathbb{C}^{d_n})^{\otimes n}$ by permuting the factors;
- if ρ_n is an irreducible representation;
- many natural operations on representations preserve the characters factorization property: tensor product, outer product, induction and restriction,...

Corollary

What happens if we remove half of the boxes from a random Young tableau?

- if ρ_n is the *left regular representation*;
- if ρ_n is the representation such that S_n is acting on $(\mathbb{C}^{d_n})^{\otimes n}$ by permuting the factors;
- if ρ_n is an irreducible representation;
- many natural operations on representations preserve the characters factorization property: tensor product, outer product, induction and restriction,...

Corollary

What happens if we remove half of the boxes from a random Young tableau? The answer for this problem is given by a certain Gaussian process.

Other connections between representations of S_n and random matrices

 Okounkov, Baik, Deift, Johanson,...: random Young diagrams and Tracy-Widom distribution;

Other connections between representations of S_n and random matrices

- Okounkov, Baik, Deift, Johanson,...: random Young diagrams and Tracy-Widom distribution;
- Féray, Śniady: asymptotics of characters and largest eigenvalues of Wishart random matrices;

Other connections between representations of S_n and random matrices

- Okounkov, Baik, Deift, Johanson,...: random Young diagrams and Tracy-Widom distribution;
- Féray, Śniady: asymptotics of characters and largest eigenvalues of Wishart random matrices;
- and much more

Bibliography

Piotr Śniady.

Gaussian fluctuations of characters of symmetric groups and of Young diagrams.

Probab. Theory Related Fields 136 (2006), no. 2, 263-297. Also available as arXiv:math.CO/0501112

Piotr Śniady.

Asymptotics of characters of symmetric groups, genus expansion and free probability.

Discrete Math., 306 (7):624-665, 2006.

Also available as arXiv:math.CO/0411647