Free Probability Theory and

Non-crossing Partitions

Roland Speicher
Queen's University
Kingston, Canada

Freeness

Definition [Voiculescu 1985]: Let (\mathcal{A}, φ) be a non-commutative probability space, i.e. \mathcal{A} is unital algebra, and $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ is linear functional with $\varphi(1)=1$.
Unital subalgebras $\mathcal{A}_{1}, \ldots, \mathcal{A}_{r} \in \mathcal{A}$ are called free if we have

$$
\varphi\left(a_{1} \cdots a_{k}\right)=0
$$

whenever

- $a_{j} \in \mathcal{A}_{i(j)}$ for all $j=1, \ldots, k$
- $\varphi\left(a_{j}\right)=0$ for all $j=1, \ldots, k$
- $i(1) \neq i(2), i(2) \neq i(3), \ldots, i(k-1) \neq i(k)$

Freeness of random variables

Elements ('random variables') a and b in \mathcal{A} are called free if their generated unital subalgebras are free, i.e.

$$
\begin{aligned}
& \varphi\left(p_{1}(a) q_{1}(b) p_{2}(a) q_{2}(b) \cdots\right)=0 \\
& \varphi\left(q_{1}(b) p_{1}(a) q_{2}(b) p_{2}(a) \cdots\right)=0
\end{aligned}
$$

whenever

- p_{i}, q_{j} are polynomials
- $\varphi\left(p_{i}(a)\right)=0=\varphi\left(q_{j}(b)\right)$ for all i, j

Examples

Canonical examples for free random variables appear in the context of

- operator algebras:
creation and annihilation operators on full Fock spaces
von Neumann algebras of free groups
- random matrices

Operators on full Fock spaces

For a Hilbert space \mathcal{H} we define full Fock space

$$
\mathcal{F}(\mathcal{H})=\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}
$$

Operators on full Fock spaces

For a Hilbert space \mathcal{H} we define full Fock space

$$
\mathcal{F}(\mathcal{H})=\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}
$$

For each $g \in \mathcal{H}$ we have corresponding creation operator $l(g)$ and annihilation operator $l^{*}(g)$

$$
l(g) h_{1} \otimes \cdots \otimes h_{n}=g \otimes h_{1} \otimes \cdots \otimes h_{n}
$$

and

$$
\begin{aligned}
l^{*}(g) \Omega & =0 \\
l^{*}(g) h_{1} \otimes \cdots \otimes h_{n} & =\left\langle h_{1}, g\right\rangle h_{2} \otimes \cdots \otimes h_{n}
\end{aligned}
$$

Operators on full Fock spaces

For a Hilbert space \mathcal{H} we define full Fock space

$$
\mathcal{F}(\mathcal{H})=\mathbb{C} \Omega \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\otimes n}
$$

For each $g \in \mathcal{H}$ we have corresponding creation operator and annihilation operator $\quad l^{*}(g)$

$$
l(g) h_{1} \otimes \cdots \otimes h_{n}=g \otimes h_{1} \otimes \cdots \otimes h_{n}
$$

and

$$
\begin{aligned}
l^{*}(g) \Omega & =0 \\
l^{*}(g) h_{1} \otimes \cdots \otimes h_{n} & =\left\langle h_{1}, g\right\rangle h_{2} \otimes \cdots \otimes h_{n}
\end{aligned}
$$

We have vacuum expectation

$$
\varphi(a)=\langle\Omega, a \Omega\rangle
$$

Freeness for operators on full Fock spaces

If $\mathcal{H}_{1}, \ldots, \mathcal{H}_{r}$ are orthogonal sub-Hilbert spaces in \mathcal{H} and

$$
\begin{gathered}
\mathcal{A}:=B(\mathcal{F}(\mathcal{H})), \quad \varphi(\cdot):=\langle\Omega, \cdot \Omega\rangle \\
\mathcal{A}_{i}:=\text { unital } * \text {-algebra generated by } l(f)\left(f \in \mathcal{H}_{i}\right) \\
\text { then } \mathcal{A}_{1}, \ldots, \mathcal{A}_{r} \text { are free in }(\mathcal{A}, \varphi) .
\end{gathered}
$$

Freeness for operators on full Fock spaces

If $\mathcal{H}_{1}, \ldots, \mathcal{H}_{r}$ are orthogonal sub-Hilbert spaces in \mathcal{H} and

$$
\mathcal{A}:=B(\mathcal{F}(\mathcal{H})), \quad \varphi(\cdot):=\langle\Omega, \cdot \Omega\rangle
$$

$\mathcal{A}_{i}:=$ unital $*$-algebra generated by $l(f)\left(f \in \mathcal{H}_{i}\right)$
then $\mathcal{A}_{1}, \ldots, \mathcal{A}_{r}$ are free in (\mathcal{A}, φ).
Reason: If $a_{j} \in \mathcal{A}_{i(j)}$ with $i(1) \neq i(2) \neq \cdots \neq i(k)$ and $\varphi\left(a_{j}\right)=0$ for all j then

$$
a_{1} a_{2} \cdots a_{k} \Omega=a_{1} \Omega \otimes a_{2} \Omega \otimes \cdots \otimes a_{k} \Omega
$$

Gaussian random matrices

$$
A_{N}=\left(a_{i j}\right)_{i, j=1}^{N}: \Omega \rightarrow M_{N}(\mathbb{C})
$$

with

Gaussian random matrices

$$
A_{N}=\left(a_{i j}\right)_{i, j=1}^{N}: \Omega \rightarrow M_{N}(\mathbb{C})
$$

with

- $a_{i j}=\bar{a}_{j i}$ (i.e. $\left.A_{N}=A_{N}^{*}\right)$

Gaussian random matrices

$$
A_{N}=\left(a_{i j}\right)_{i, j=1}^{N}: \Omega \rightarrow M_{N}(\mathbb{C})
$$

with

- $a_{i j}=\bar{a}_{j i}$ (i.e. $A_{N}=A_{N}^{*}$)
- $\left\{a_{i j}\right\}_{1 \leq i \leq j \leq N}$ are independent Gaussian random variables with

$$
\begin{aligned}
E\left[a_{i j}\right] & =0 \\
E\left[\left|a_{i j}\right|^{2}\right] & =\frac{1}{N}
\end{aligned}
$$

Freeness for Gaussian random matrices

If A_{N} and B_{N} are independent Gaussian random matrices, i.e.,

- A_{N} is Gaussian random matrix, and B_{N} is Gaussian random matrix
- entries of A_{N} are independent from entries of B_{N}

Then A_{N} and B_{N} are asymptotically free

Asymptotic freeness

asymptotic freeness $\quad \hat{=} \quad \begin{gathered}\text { freeness relations hold in } \\ \text { the large } N \text {-limit }\end{gathered}$

$$
\lim _{N \rightarrow \infty} \varphi\left(p_{1}\left(A_{N}\right) q_{1}\left(B_{N}\right) p_{2}\left(A_{N}\right) q_{2}\left(B_{N}\right) \cdots\right)=0
$$

whenever

- p_{i}, q_{j} polynomials
- $\lim _{N \rightarrow \infty} \varphi\left(p_{i}\left(A_{N}\right)\right)=0=\lim _{N \rightarrow \infty} \varphi\left(q_{j}\left(A_{N}\right)\right)$ for all i, j

What is state φ for random matrices

$$
\lim _{N \rightarrow \infty} \varphi\left(p_{1}\left(A_{N}\right) q_{1}\left(B_{N}\right) p_{2}\left(A_{N}\right) q_{2}\left(B_{N}\right) \cdots\right)=0
$$

Two possibilities:

- (averaged) asymptotic freeness:

$$
\varphi=E \circ \operatorname{tr}
$$

- almost sure asymptotic freeness:

$$
\varphi=\operatorname{tr}, \quad \text { and lim-equations hold almost surely }
$$

What is Freeness?

Freeness between a and b is an infinite set of equations relating various moments in a and b :

$$
\varphi\left(p_{1}(a) q_{1}(b) p_{2}(a) q_{2}(b) \cdots\right)=0
$$

What is Freeness?

Freeness between a and b is an infinite set of equations relating various moments in a and b :

$$
\varphi\left(p_{1}(a) q_{1}(b) p_{2}(a) q_{2}(b) \cdots\right)=0
$$

Basic observation: freeness between a and b is actually a rule for calculating mixed moments in a and b from the moments of a and the moments of b :

$$
\varphi\left(a^{n_{1}} b^{m_{1}} a^{n_{2}} b^{m_{2}} \ldots\right)=\operatorname{polynomial}\left(\varphi\left(a^{i}\right), \varphi\left(b^{j}\right)\right)
$$

Example:

$$
\varphi\left(\left(a^{n}-\varphi\left(a^{n}\right) 1\right)\left(b^{m}-\varphi\left(b^{m}\right) 1\right)\right)=0
$$

thus
$\varphi\left(a^{n} b^{m}\right)-\varphi\left(a^{n} \cdot 1\right) \varphi\left(b^{m}\right)-\varphi\left(a^{n}\right) \varphi\left(1 \cdot b^{m}\right)+\varphi\left(a^{n}\right) \varphi\left(b^{m}\right) \varphi(1 \cdot 1)=0$,
and hence

$$
\varphi\left(a^{n} b^{m}\right)=\varphi\left(a^{n}\right) \cdot \varphi\left(b^{m}\right)
$$

Freeness is a rule for calculating mixed moments, analogous to the concept of independence for random variables.

Thus freeness is also called free independence

Freeness is a rule for calculating mixed moments, analogous to the concept of independence for random variables.

Note: free independence is a different rule from classical independence; free independence occurs typically for non-commuting random variables, like operators on Hilbert spaces or (random) matrices

Example:

$$
\varphi((a-\varphi(a) 1) \cdot(b-\varphi(b) 1) \cdot(a-\varphi(a) 1) \cdot(b-\varphi(b) 1))=0
$$

which results in

$$
\begin{aligned}
\varphi(a b a b)=\varphi(a a) \cdot \varphi(b) \cdot \varphi(b)+\varphi(a) & \cdot \varphi(a) \cdot \varphi(b b) \\
& -\varphi(a) \cdot \varphi(b) \cdot \varphi(a) \cdot \varphi(b)
\end{aligned}
$$

Consider independent Gaussian random matrices A_{N} and B_{N}. Then one has

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \varphi\left(A_{N}\right)=0, & & \lim _{N \rightarrow \infty} \varphi\left(B_{N}\right)=0 \\
\lim _{N \rightarrow \infty} \varphi\left(A_{N}^{2}\right)=1, & & \lim _{N \rightarrow \infty} \varphi\left(B_{N}^{2}\right)=1 \\
\lim _{N \rightarrow \infty} \varphi\left(A_{N}^{3}\right)=0, & & \lim _{N \rightarrow \infty} \varphi\left(B_{N}^{3}\right)=0 \\
\lim _{N \rightarrow \infty} \varphi\left(A_{N}^{4}\right)=2, & & \lim _{N \rightarrow \infty} \varphi\left(B_{N}^{4}\right)=2
\end{aligned}
$$

Asymptotic freeness between A_{N} and B_{N} implies then for example:

$$
\lim _{N \rightarrow \infty} \varphi\left(A_{N} A_{N} B_{N} B_{N} A_{N} B_{N} B_{N} A_{N}\right)=2
$$

$$
\operatorname{tr}\left(A_{N} A_{N} B_{N} B_{N} A_{N} B_{N} B_{N} A_{N}\right)
$$

one realization

averaged over 1000 realizations

Understanding the freeness rule: the idea of cumulants

- write moments in terms of other quantities, which we call free cumulants
- freeness is much easier to describe on the level of free cumulants: vanishing of mixed cumulants
- relation between moments and cumulants is given by summing over non-crossing or planar partitions

Example: independent Gaussian random matrices

Consider two independent Gaussian random matrices A and B
Then, in the limit $N \rightarrow \infty$, the moments

$$
\varphi\left(A^{n_{1}} B^{m_{1}} A^{n_{2}} B^{m_{2}} \cdots\right)
$$

are given by
\#\{non-crossing/planar pairings of pattern

$$
\begin{aligned}
& \underbrace{A \cdot A \cdots A}_{n_{1} \text {-times }} \cdot \underbrace{B \cdot B \cdots B}_{m_{1} \text {-times }} \cdot \underbrace{A \cdot A \cdots A}_{n_{2} \text {-times }} \cdot \underbrace{B \cdot B \cdots B}_{m_{2} \text {-times }} \cdots \\
&\text { which do not pair } A \text { with } B\}
\end{aligned}
$$

Example: $\varphi(A A B B A B B A)=2$

$A A B B A B B A$

Example: $\varphi(A A B B A B B A)=2$

Moments and cumulants

For

$$
\varphi: \mathcal{A} \rightarrow \mathbb{C}
$$

we define cumulant functionals κ_{n} (for all $n \geq 1$)

$$
\kappa_{n}: \mathcal{A}^{n} \rightarrow \mathbb{C}
$$

by moment-cumulant relation

$$
\varphi\left(a_{1} \cdots a_{n}\right)=\sum_{\pi \in N C(n)} \kappa_{\pi}\left[a_{1}, \ldots, a_{n}\right]
$$

$$
\varphi\left(a_{1}\right)=\kappa_{1}\left(a_{1}\right)
$$

$$
\varphi\left(a_{1} a_{2}\right)=\kappa_{2}\left(a_{1}, a_{2}\right)
$$

$$
+\kappa_{1}\left(a_{1}\right) \kappa_{1}\left(a_{2}\right)
$$

$$
\begin{gathered}
a_{1} a_{2} \\
\bigsqcup \\
|\mid
\end{gathered}
$$

$$
\begin{aligned}
\varphi\left(a_{1} a_{2} a_{3}\right)= & \kappa_{3}\left(a_{1}, a_{2}, a_{3}\right) \\
& +\kappa_{1}\left(a_{1}\right) \kappa_{2}\left(a_{2}, a_{3}\right) \\
& +\kappa_{2}\left(a_{1}, a_{2}\right) \kappa_{1}\left(a_{3}\right) \\
& +\kappa_{2}\left(a_{1}, a_{3}\right) \kappa_{1}\left(a_{2}\right) \\
& +\kappa_{1}\left(a_{1}\right) \kappa_{1}\left(a_{2}\right) \kappa_{1}\left(a_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \varphi\left(a_{1} a_{2} a_{3} a_{4}\right)=Ш+|Ш+\amalg+\amalg+山| \\
& +\sqcup \sqcup+\sqcup \sqcup+\|リ+|U|+\sqcup\| \\
& +\|+\amalg+\amalg \mid+\| \|
\end{aligned}
$$

$$
\begin{aligned}
\varphi\left(a_{1} a_{2} a_{3} a_{4}\right)= & \kappa_{4}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)+\kappa_{1}\left(a_{1}\right) \kappa_{3}\left(a_{2}, a_{3}, a_{4}\right) \\
& +\kappa_{1}\left(a_{2}\right) \kappa_{3}\left(a_{1}, a_{3}, a_{4}\right)+\kappa_{1}\left(a_{3}\right) \kappa_{3}\left(a_{1}, a_{2}, a_{4}\right) \\
& +\kappa_{3}\left(a_{1}, a_{2}, a_{3}\right) \kappa_{1}\left(a_{4}\right)+\kappa_{2}\left(a_{1}, a_{2}\right) \kappa_{2}\left(a_{3}, a_{4}\right) \\
& +\kappa_{2}\left(a_{1}, a_{4}\right) \kappa_{2}\left(a_{2}, a_{3}\right)+\kappa_{1}\left(a_{1}\right) \kappa_{1}\left(a_{2}\right) \kappa_{2}\left(a_{3}, a_{4}\right) \\
& +\kappa_{1}\left(a_{1}\right) \kappa_{2}\left(a_{2}, a_{3}\right) \kappa_{1}\left(a_{4}\right)+\kappa_{2}\left(a_{1}, a_{2}\right) \kappa_{1}\left(a_{3}\right) \kappa_{1}\left(a_{4}\right) \\
& +\kappa_{1}\left(a_{1}\right) \kappa_{2}\left(a_{2}, a_{4}\right) \kappa_{1}\left(a_{3}\right)+\kappa_{2}\left(a_{1}, a_{4}\right) \kappa_{1}\left(a_{2}\right) \kappa_{1}\left(a_{3}\right) \\
& +\kappa_{2}\left(a_{1}, a_{3}\right) \kappa_{1}\left(a_{2}\right) \kappa_{1}\left(a_{4}\right)+\kappa_{1}\left(a_{1}\right) \kappa_{1}\left(a_{2}\right) \kappa_{1}\left(a_{3}\right) \kappa_{1}\left(a_{4}\right)
\end{aligned}
$$

Freeness $\hat{=}$ vanishing of mixed cumulants

$$
\text { free product } \hat{=} \text { direct sum of cumulants }
$$

$\varphi\left(\boldsymbol{a}^{\boldsymbol{n}}\right)$ given by sum over blue planar diagrams
$\varphi\left(b^{m}\right)$ given by sum over red planar diagrams
then: for a and b free, $\varphi\left(a^{n_{1}} b^{m_{1}} \ldots\right)$ is given by sum over planar diagrams with monochromatic (blue or red) blocks

Freeness $\hat{=}$ vanishing of mixed cumulants

free product $\hat{=}$ direct sum of cumulants
We have: a and b free is equivalent to

$$
\kappa_{n}\left(c_{1}, \ldots, c_{n}\right)=0
$$

whenever

- $n \geq 2$
- $c_{i} \in\{a, b\}$ for all i
- there are i, j such that $c_{i}=a, c_{j}=b$

$$
\begin{gathered}
\varphi\left(a_{1} b_{1} a_{2} b_{2}\right)= \\
\kappa_{1}\left(a_{1}\right) \kappa_{1}\left(a_{2}\right) \kappa_{2}\left(b_{1}, b_{2}\right)+\kappa_{2}\left(a_{1}, a_{2}\right) \kappa_{1}\left(b_{1}\right) \kappa_{1}\left(b_{2}\right)
\end{gathered}
$$

$+\kappa_{1}\left(a_{1}\right) \kappa_{1}\left(b_{1}\right) \kappa_{1}\left(a_{2}\right) \kappa_{1}\left(b_{2}\right)$

One random variable and free convolution

Consider one random variable $a \in \mathcal{A}$ and define their Cauchy transform \mathbf{G} and their \mathcal{R}-transform \mathcal{R} by

$$
G(z)=\frac{1}{z}+\sum_{m=1}^{\infty} \frac{\varphi\left(a^{m}\right)}{z^{m+1}}, \quad \mathcal{R}(z)=\sum_{m=1}^{\infty} \kappa_{m}(a, \ldots, a) z^{m-1}
$$

Then we have

- $\frac{1}{G(z)}+\mathcal{R}(G(z))=z$
- $\mathcal{R}^{a+b}(z)=\mathcal{R}^{a}(z)+\mathcal{R}^{b}(z)$ if a and b are free

Random matrices: a route from classical to free probability

Consider unitarily invariant random matrices $A=\left(a_{i j}\right)_{i, j=1}^{N}$
entries \qquad matrix
freeness between A and B

Random matrices: a route from classical to free probability

Consider unitarily invariant random matrices $A=\left(a_{i j}\right)_{i, j=1}^{N}$
entries \qquad matrix
independence between $\left\{a_{i j}\right\}$ and $\left\{b_{k l}\right\}$ classical cumulants c_{n} of $a_{i j}$
freeness between A and B
free cumulants κ_{n} of A

Free cumulants as classical cumulants of cycles

Let

$$
A=\left(a_{i j}\right)_{i, j=1}^{N}
$$

be a unitarily invariant random matrix. Then we have

$$
\kappa_{n}(A, \ldots, A)=\lim _{N \rightarrow \infty} N^{n-1} c_{n}\left(a_{12}, a_{23}, a_{34}, \ldots, a_{n 1}\right)
$$

