Planar Algebra of the Subgroup-Subfactor

Ved Prakash Gupta
Institute of Mathematical Sciences
Chennai, India
vpgupta@imsc.res.in

September 19, 2007
Workshop on Free Probability, Random Matrices and Planar Algebras Fields Institute, Toronto

- Given a pair of finite groups $H \leq G$, an outer action α of G on the hyperfinite I_{1}-factor R gives rise to the (hyperfinite) subgroup-subfactor

$$
N:=R \rtimes_{\alpha / H} H \subset R \rtimes_{\alpha} G=: M
$$

- Given a pair of finite groups $H \leq G$, an outer action α of G on the hyperfinite I_{1}-factor R gives rise to the (hyperfinite) subgroup-subfactor

$$
N:=R \rtimes_{\alpha / H} H \subset R \rtimes_{\alpha} G=: M
$$

- On its tower of relative commutants $\mathbb{C} \subset N^{\prime} \cap M \subset N^{\prime} \cap M_{1} \subset \ldots$, by [Jon], we have a spherical C^{*}-planar algebra structure: $P^{R \rtimes H \subset R \rtimes G}$.
- Given a pair of finite groups $H \leq G$, an outer action α of G on the hyperfinite I_{1}-factor R gives rise to the (hyperfinite) subgroup-subfactor

$$
N:=R \rtimes_{\alpha / H} H \subset R \rtimes_{\alpha} G=: M
$$

- On its tower of relative commutants $\mathbb{C} \subset N^{\prime} \cap M \subset N^{\prime} \cap M_{1} \subset \cdots$, by [Jon], we have a spherical C^{*}-planar algebra structure: $P^{R \rtimes H \subset R \rtimes G}$.
- Further, given a finite bipartite graph $\Gamma=\left(\mathcal{U}^{+}, \mathcal{U}^{-}, \mathcal{E}\right)$ with a spin function $\mathcal{U}^{+} \sqcup \mathcal{U}^{-} \xrightarrow{\mu}(0, \infty)$, Jones associated a planar algebra $P(\Gamma)$.
- Given a pair of finite groups $H \leq G$, an outer action α of G on the hyperfinite I_{1}-factor R gives rise to the (hyperfinite) subgroup-subfactor

$$
N:=R \rtimes_{\alpha / H} H \subset R \rtimes_{\alpha} G=: M
$$

- On its tower of relative commutants $\mathbb{C} \subset N^{\prime} \cap M \subset N^{\prime} \cap M_{1} \subset \ldots$, by [Jon], we have a spherical C^{*}-planar algebra structure: $P^{R \rtimes H \subset R \rtimes G}$.
- Further, given a finite bipartite graph $\Gamma=\left(\mathcal{U}^{+}, \mathcal{U}^{-}, \mathcal{E}\right)$ with a spin function $\mathcal{U}^{+} \sqcup \mathcal{U}^{-} \xrightarrow{\mu}(0, \infty)$, Jones associated a planar algebra $P(\Gamma)$.
- $[G: H]=n$. The obvious G action on G / H yields an action of G on the bipartite graph \star_{n} (with $\left|\mathcal{U}^{+}\right|=n,\left|\mathcal{U}^{-}\right|=1$, and the spin function whose entrywise squares gives the 'Perron-Frobenius eigenvector'), the G invariant planar subalgebra of $P\left(\star_{n}\right)$ is isomorphic to the planar algebra $P^{R \rtimes H \subset R \rtimes G}$.
(This last result is mentioned, although without any indication of proof, in the 'preprepreprint' [Jon03], which I came to know of only after this work was done.)
- Concrete model for the basic construction tower of $R \rtimes H \subset R \rtimes G$.
- "Orbit bases" for relative commutants in terms of the model tower.
- Planar Algebra of a bipartite Graph and G-action.
- Planar Algebra of the Subgroup-Subfactor:

$$
P^{R \rtimes H \subset R \rtimes G} \cong P\left(\star_{n}\right)^{G} .
$$

- Planar Algebra of the fixed subfactor:

$$
P^{R^{G} \subset R^{H}} \cong P\left(\overline{\star_{n}}\right)^{G} .
$$

Proposition. $N \subset M \subset{ }^{e_{1}} M_{1}$ be the basic construction for a subfactor $N \subset M$ with $[M: N]<\infty$. For any finite index set Λ,

$$
M_{\wedge}(N) \subset M_{\wedge}(M) \subset M_{\wedge}\left(M_{1}\right)
$$

is an instance of basic construction for I_{1}-factors.

Proposition. $N \subset M \subset{ }^{e_{1}} M_{1}$ be the basic construction for a subfactor $N \subset M$ with $[M: N]<\infty$. For any finite index set Λ,

$$
M_{\wedge}(N) \subset M_{\wedge}(M) \subset M_{\wedge}\left(M_{1}\right)
$$

is an instance of basic construction for Π_{1}-factors.
Lemma. Consider $N \subset M$ with $n=[M: N] \in \mathbb{N}$, and an orthonormal basis $\left\{\lambda_{i}: i \in I\right\}$ (i.e., $E_{n}\left(\lambda_{i} \lambda_{j}^{*}\right)=\delta_{j}^{i}, \forall i, j \in I$), $I:=\{1, \ldots, n\}$. Then

$$
\begin{aligned}
\left(N \subset M \stackrel{\theta}{\hookrightarrow} M_{l}(N) \subset M_{l}(M)\right) & \cong\left(N \subset M \subset M_{1} \subset M_{2}\right), \text { where } \\
\theta_{i, j}(x) & :=E_{N}\left(\lambda_{i} x \lambda_{j}^{*}\right), \forall x \in M, i, j \in I .
\end{aligned}
$$

Fix an outer action α of a finite group G on the hyperfinite I_{1}-factor R. $H \leq G ; G=\sqcup_{i=1}^{n} H g_{i}$, with $g_{1}=e$. We have

$$
R \rtimes G=\left\{\sum_{g} x_{g} u_{g}: x_{g} \in R\right\} \subset \mathcal{L}\left(L^{2}(R)\right), \text { where } u_{g} x=\alpha_{g}(x) u_{g}
$$

$\left\{u_{g_{i}}: 1 \leq i \leq n\right\}$ is an orthonormal basis for $N:=R \rtimes_{\alpha / H} H \subset R \rtimes_{\alpha} G=: M$.

$$
\begin{gathered}
\left(N \subset M \subset M_{1} \subset M_{2}\right) \cong\left(N \subset M \stackrel{\theta}{\hookrightarrow} M_{l}(N) \subset M_{l}(M)\right) ; \\
\\
\quad \text { and } \\
M_{2 k-1} \subset M_{2 k} \subset M_{2 k+1} \subset M_{2 k+2} \\
\\
M_{l^{k}}(N) \subset M_{l^{k}}(M) \stackrel{\Theta_{\Theta_{k+1}}}{\leftrightarrows} M_{l^{k+1}}(N) \subset M_{l^{k+1}}(M)
\end{gathered}
$$

$\forall k \geq 0$, where $\Theta_{k+1}:=M_{l}\left(\Theta_{k}\right)$ with $\Theta_{1}:=\theta$.

Theorem

$$
N \subset M \stackrel{\Theta_{1}}{\hookrightarrow} M_{l}(N) \subset M_{l}(M) \stackrel{\Theta_{2}}{\hookrightarrow} \cdots \subset M_{l^{k}}(M) \stackrel{\Theta_{k+1}}{\longleftrightarrow} M_{l^{k+1}}(N) \subset \cdots
$$

is a model for the basic construction tower of the subgroup-subfactor $N:=R \rtimes H \subset R \rtimes G=: M$.

Theorem

$$
N \subset M \stackrel{\Theta_{1}}{\hookrightarrow} M_{l}(N) \subset M_{l}(M) \stackrel{\Theta_{2}}{\hookrightarrow} \cdots \subset M_{l^{k}}(M) \stackrel{\Theta_{k+1}}{\longleftrightarrow} M_{l^{k+1}}(N) \subset \cdots
$$

is a model for the basic construction tower of the subgroup-subfactor $N:=R \rtimes H \subset R \rtimes G=: M$.
M sits in $M_{2 k-1} \cong M_{l^{k}}(N)$ by the map $\Theta_{k} \circ \cdots \circ \Theta_{1}=\theta^{(k)}$ given by

$$
\theta_{\underline{i}, \underline{j}}^{(k)}(x)=\theta_{i_{1}, j_{1}}\left(\theta_{i_{2}, j_{2}}\left(\cdots \theta_{i_{k}, j_{k}}(x) \cdots\right)\right)
$$

It turns out ([JS97]) that there is a G-action ${ }^{1}$ on $I^{k}, k \geq 1$, such that the set $Y_{k}:=\left\{(\underline{i}, \underline{j}) \in I^{k} \times I^{k}: H \sqcap g_{\underline{i}}=H \sqcap g_{\underline{j}}\right\}$ - where $\sqcap g_{\underline{i}}:=g_{i_{1}} g_{i_{2}} \cdots g_{i_{k}}$ - is invariant under the diagonal action of \bar{G}.

Further, $N^{\prime} \cap M_{2 k-1}$ has a basis indexed by $H \backslash Y_{k}$, the space of H-orbits of Y_{k}; write $[\underline{i}, j]^{\text {od }}$ for the basis vector of $N^{\prime} \cap M_{2 k-1}$ corresponding to the H-orbit of $(\underline{i}, \underline{j})$.

Similarly, $N^{\prime} \cap M_{2 k}$ has a basis indexed by $H \backslash\left(I^{k} \times I^{k}\right)$, the space of H-orbits of $I^{k} \times I^{k}$; write $[\underline{i}, j]^{e v}$ for the basis vector of $N^{\prime} \cap M_{2 k}$ corresponding to the H-orbit of $(\underline{i}, \underline{j})$.

$$
g \cdot \underline{j}=\underline{i} \Longleftrightarrow H g_{j_{s}} g_{j_{s+1}} \cdots g_{j_{k}} g^{-1}=H g_{i_{s}} g_{i_{s+1}} \cdots g_{i_{k}}, \forall 1 \leq s \leq k
$$

- $\Gamma=\left(\mathcal{U}^{+}, \mathcal{U}^{-}, \mathcal{E}\right)$: connected, bipartite, finite (multi-) graph.

Spin function: $\mu: \mathcal{U}^{+} \sqcup \mathcal{U}^{-} \rightarrow(0, \infty)$.

- Jones [Jon00] gave a planar algebra structure on $P(\Gamma):=\left\{P_{k}(\Gamma): k \in \operatorname{Col}:=\left\{0_{ \pm}, 1,2, \ldots\right\}\right\}$, where $P_{ \pm 0}(\Gamma):=\mathbb{C}\left[\mathcal{U}^{ \pm}\right]$and
$P_{k}(\Gamma):=\mathbb{C}\left[\right.$ loops of length $2 k$ on Γ based at vertices in $\left.\mathcal{U}^{+}\right]$for $k \geq 1$.
- For the reversed graph $\bar{\Gamma}:=\left(\mathcal{U}^{-}, \mathcal{U}^{+}, \mathcal{E}\right)$, we have $P(\bar{\Gamma}) \cong{ }^{-} P(\Gamma)$. ${ }^{2}$

[^0]A finite group G acts on (Γ, μ), if

- G acts as (parity preserving) automorphisms of the bipartite graph Γ, and
- μ is constant on G-orbits.

A finite group G acts on (Γ, μ), if

- G acts as (parity preserving) automorphisms of the bipartite graph Γ, and
- μ is constant on G-orbits.

Such an action induces a G-action on the planar algebra $P(\Gamma)$, i.e., G commutes with the tangle actions on $P(\Gamma)$, and we have the planar subalgebra

$$
P(\Gamma)^{G}:=\left\{P(\Gamma)_{k}^{G} ; k \in \operatorname{Col}\right\}
$$

of $P(\Gamma)$, where $P(\Gamma)_{k}^{G}:=\left\{x \in P_{k}(\Gamma): g \cdot x=x, \forall g \in G\right\}$.
The above G-action induces a G-action on the dual ${ }^{-} P(\Gamma) \cong P(\bar{\Gamma})$, and

$$
P(\bar{\Gamma})^{G} \cong{ }^{-}\left(P(\Gamma)^{G}\right) .
$$

$G=\sqcup_{i=1}^{n} H g_{i}$, with $g_{1}=1$. We write X for $H \backslash G$ and $x_{i}:=H g_{i}, 1 \leq i \leq n$. We have

$$
\Gamma=\star_{n}:=
$$

and $\mu\left(x_{i}\right)=1, \forall i$ and $\mu(*)=n^{1 / 4}$.
The G action on $H \backslash G$ yields the G-action on the bipartite graph \star_{n} :

$$
g \cdot x_{i}=x_{j} \text { iff } H g_{i} g^{-1}=H g_{j} ; \text { and } g \cdot *=*, \forall g \in G
$$

This induces a G action on the planar algebra $P\left(\star_{n}\right)$, and we get a connected, irreducible planar algebra $P\left(\star_{n}\right)^{G}$ with positive modulus \sqrt{n}.

If $k>0$ is even, say $k=2 r$, we simply write

$$
\left(\begin{array}{c}
x_{i_{1}}, \\
x_{i_{0}} \\
x_{i_{2 r-1}}, \cdots, x_{i_{r-1}} x_{i_{r}} \\
{ }^{2}, x_{i_{r+1}}
\end{array}\right)
$$

for the $2 k$-loop

By definition,
forms a basis for $P_{2 r}\left(\star_{n}\right)$, which is seen to be mapped into itself by the G-action. Hence, the distinct elements of the set

$$
\left\{\left[\begin{array}{c}
x_{i_{1}}, \cdots, x_{i_{r-1}} x_{i_{r}} \\
{ }_{i_{i_{0}}} x_{i_{2 r-1}}, \cdots, x_{i_{r+1}}
\end{array}\right]:=\sum_{g \in G} g\binom{x_{i_{1}}, \cdots, x_{i_{r-1}}}{{ }_{i_{i_{0}}} x_{i_{2_{r-1}}, \cdots, x_{i_{r+1}}}}: \underline{i} \in l^{2 r}\right\}
$$

form a basis for $P_{2 r}\left(\star_{n}\right)^{G}$.
A similar analysis is seen to hold for odd k.
Finally, $\left\{\sum_{i \in 1} x_{i}\right\}$ and $\{*\}$ form bases for $P_{0_{+}}\left(\star_{n}\right)^{G}$ and $P_{0_{-}}\left(\star_{n}\right)^{G}$, respectively.

Theorem
 $P^{R \rtimes H \subset R \rtimes G} \cong P\left(\star_{n}\right)^{G}$.

Theorem

$P^{R \rtimes H \subset R \rtimes G} \cong P\left(\star_{n}\right)^{G}$.
We need to define maps

$$
\varphi_{k}: P_{k}^{R \rtimes H \subset R \rtimes G}=N^{\prime} \cap M_{k-1} \rightarrow P_{k}\left(\star_{n}\right)^{G}, \forall k \in \text { Col. }
$$

Set

$$
\varphi_{0_{ \pm}}=\varphi_{1}=i d_{\mathbb{C}} ; \text { and }
$$

define

$$
\begin{aligned}
\varphi_{2 r}\left([\underline{i}, \underline{j}]^{o d}\right) & =\left[\begin{array}{c}
x_{p_{r}}, \cdots, x_{p_{2}} x_{q_{1}} \\
x_{1}{ }_{x_{q_{r}}}, \cdots, x_{q_{2}}
\end{array}\right], \text { and } \\
\varphi_{2 r+1}\left([\underline{i}, \underline{j}]^{\text {ev }}\right) & =\left[\begin{array}{c}
x_{p_{r}}, \cdots, x_{p_{2}}, x_{p_{1}} \\
{ }_{1}{ }_{x_{q_{r}}}, \cdots, x_{q_{2}}, x_{q_{1}}
\end{array}\right],
\end{aligned}
$$

where $x_{p_{l}}=H g_{i_{l}} g_{i_{l+1}} \cdots g_{i_{r}}$ and $x_{q_{l}}=H g_{j_{l}} g_{j_{l+1}} \cdots g_{j_{r}}$ for $1 \leq I \leq r$.

In order to prove that $\varphi=\left\{\varphi_{k}: k \in C o l\right\}$ is a planar algebra isomorphism, we need to verify the maps φ_{k} are equivariant with respect to the tangle actions. Fortunately, this needs to be done only for a 'generating class of tangles', as in:

Theorem: [KS04] Let \mathcal{T} be a collection of planar tangles containing

$$
\left\{1^{0^{ \pm}}\right\} \cup\left\{E_{k+1}^{k}, M_{k}, I_{k}^{k+1}: k \in C o l\right\} \cup\left\{\mathcal{E}^{k+1},\left(E^{\prime}\right)_{k}^{k}: k \geq 1\right\}
$$

and suppose \mathcal{T} is closed under composition, whenever it makes sense. Then \mathcal{T} contains all planar tangles.

Repeated applications of "Not-Burnside's Lemma" gives:
Corollary: $\operatorname{dim} P_{k}^{R \rtimes H \subset R \rtimes G}=\frac{1}{|G|} \sum_{C \in \mathcal{C}_{G}}|C|\left(\frac{|C \cap H||G|}{|C||H|}\right)^{k}, k \geq 1$, where \mathcal{C}_{G} is the set of conjugacy classes of G.

Our result yields unexpected universal 'upper and lower bounds' for the planar algebra of any index n subgroup-subfactor.

Corollary: Given any pair of finite groups $H \subset G$ with index n,

$$
P^{R \rtimes S_{n-1} \subset R \rtimes S_{n}} \cong P\left(\star_{n}\right)^{S_{n}} \subset P^{R \rtimes H \subset R \rtimes G} \subset P\left(\star_{n}\right)
$$

With $N:=R \rtimes H \subset R \rtimes G=: M$, we have $\left(M \subset M_{1}\right) \cong\left(R^{G} \subset R^{H}\right)$.
Recall that $P^{M \subset M_{1}} \cong-P^{N \subset M}$ and $P(\bar{\Gamma})^{G} \cong-\left(P(\Gamma)^{G}\right)$. Thus, we have:
Corollary: $P^{R^{G} \subset R^{H}} \cong P\left(\overline{\star_{n}}\right)^{G}$.
Corollary: If $[G: H]=n$ then

$$
P^{R^{S_{n}} \subset R^{S_{n-1}}} \cong P\left(\overline{\star_{n}}\right)^{S_{n}} \subset P^{R^{G} \subset R^{H}} \subset P\left(\overline{\star_{n}}\right) .
$$

V. F. R. Jones.

Planar Algebras I.
New Zealand Jour. Math., to appear. arXiv.math.QA/9909027.
E
V. F. R. Jones.

The planar algebra of a bipartite graph.
Knots in Hellas '98 (Delphi), pages 94-117, 2000.
V. F. R. Jones.

Quadratic tangles in planar algebras, 'preprepreprint'. 2003.

Ti V. F. R. Jones and V. S. Sunder.
Introduction to Subfactors.
Number 234 in LMS Lecture Note Series. Cambridge University Press, 1997.

圊 Vijay Kodiyalam and V. S. Sunder.
On Jones' Planar Algebras.
J. Knot Theory and Its Ramifications, 13(2):219-247, 2004.

[^0]: ${ }^{2}$ Recall ([KSO4]) that each planar algebra P admits a dual planar algebra ${ }^{-} P$ in such a way that $-P^{N \subset M} \cong P^{M \subset M_{1}}$.

