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Lattices of intermediate subfactors

A fundamental example of a subfactor is the
�xed point algebra N = MG ⊂ M of an outer
action of a �nite group G on a factor M . In this
case the intermediate subfactors N ⊂ P ⊂ M

are precisely the �xed point algebras of the
subgroups of G.

Subfactor theory - �noncommutative Galois
theory� .

Watatani asked which �nite lattices occur as
intermediate subfactor lattices for irreducible
�nite-index subfactors. Recent progress - Xu.

This talk will focus on the structure associated
to 2 intermediate subfactors.
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The Jones Index

Let M be a II1 factor. L2(M) is the Hilbert
space completion of M w.r.t. the unique nor-
malized trace, with 〈x, y〉 = tr(y∗x).

If N ⊂ M is a subfactor, let eN be the
projection of L2(M) onto L2(N). Let
M1 =< M, eN >. This is the basic
construction.

The Jones index is de�ned as [M : N ] =

trM1
(eN) if M1 is a II1 factor,

[M : N ] = ∞ otherwise.
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Let N ⊂ M be a subfactor with [M : N ] < ∞,
and let

N ⊂ M ⊂ M1

be the basic construction. Then M ⊂ M1 is
also a �nite-index subfactor, so can iterate the
basic construction

M ⊂ M1 ⊂ M2

where M2 =< M1, eM >.

Let e1 = eN , e2 = eM , etc. Get a tower:

N ⊂ M ⊂e1 M1 ⊂e2 M2...

where each Mk+1 =< Mk, ek+1 >.
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Temperley-Lieb algebra

TLn is the complex vector space with basis
given by planar diagrams on a disk with 2n
distinguished boundary points. For example:
a basis for TL3
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TLn(δ), δ a complex parameter, is the algebra
with underlying vector space TLn and multipli-
cation given on basis elements by �concatena-
tion of diagrams�, each closed loop contribut-
ing a factor of δ. For example:
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A set of generators

Generators for TL5(δ): E1, E2, E3, E4
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Relations: EiEj = EjEi if |i−j| > 1, EiEi±1Ei =
Ei.

Let N ⊂ M ⊂e1 M1 ⊂e2 M2... be the Jones
tower of a subfactor. The projections e1, e2, e3, ...

satisfy the relations: eiej = ejei if |i − j| > 1,
eiei±1ei = τei, where τ = [M : N ]−1.

There is a surjective map from TL([M : N ]
1
2)

to the von Neumann algebra generated by e1, e2, ...

sending Ei to δei. If [M : N ] ≥ 4 then this map
is an isomorphism.
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Let N ⊂ M be a subfactor with [M : N ] < ∞
and Jones tower N ⊂ M ⊂e1 M1 ⊂e2 M2....

Each relative commutant N ′ ∩Mk is f.d., and
the lattice:

(N ′ ∩N) ⊂ (N ′ ∩M) ⊂ (N ′ ∩M1) ⊂ ...
∪ ∪

(M ′ ∩M) ⊂ (M ′ ∩M1) ⊂ ...

is called the standard invariant. What is
inside the standard invariant?

N ′ ∩N = CId - always trivial
N ′ ∩M may be trivial (irreducible subfactor)
N ′ ∩M1 3 e1 - never trivial
...
N ′ ∩Mk ⊇ {e1, ..., ek}

In general there will be more stu� in the
standard invariant. A subfactor has no extra
structure if N ′ ∩Mk = {e1, ..., ek}′′.
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The TL algebra has a planar algebra struc-
ture by gluing the basis diagrams into the input
discs of a tangle. For example:

*

* *

*

*

*

=

*

This TL planar algebra is present inside any PA
as the image of those tangles with no internal
discs. For a subfactor PA with Pk = N ′∩Mk−1,
the TL planar algebra is the sub-PA generated
by the Jones projections.

Jones projections ⇐⇒ TL algebras
standard invariant ⇐⇒ planar algebra
no extra structure ⇐⇒ PA=TL algebra
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The principal graph

N ⊂ M a subfactor, [M : N ] < ∞. Let ρ =

NMM , ρ̄ = MMN (bimodules, action by multi-
plication).

Let ρk = ρ⊗ρ̄⊗ρ...(k factors). Then End(ρk) ∼=
N ′ ∩Mk−1 = Pk.

Even vertices E = { isomorphism classes of
irreducible N − N bimodules occuring in the
decomposition of ρk for some even k}

Odd vertices O = { isomorphism classes of
irreducible N − M bimodules occuring in the
decomposition of ρk for some odd k}

# of edges connecting α ∈ E to β ∈ O is the
multiplicity of β in αρ

9



Subfactors with index less than 4

Jones Index Theorem: Let N ⊂ M be a sub-
factor with [M : N ] < 4. Then [M : N ] =

4cos2π
k for some k = 3,4, ....

Jones also constructed a subfactor for each k

which has no extra structure.

Turns out that subfactors with [M : N ] < 4

(⇐⇒ planar algebras with δ < 2 ) are essentially
classi�ed by the Coxeter-Dynkin diagrams
An, D2n, E6, E8, except that there are two dif-
ferent planar algebras each for E6 and E8. (Oc-
neanu, Popa).
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Principal graphs and supertransitivity

A subfactor is k-supertransitive if its planar
algebra does not contain any nontrivial k-boxes
(⇐⇒ the initial part of its principal graph looks
like Ak+1.) Some examples:

.......* An is k-supertransitive for all
k.

.......* D2n is 2n− 3-supertransitive.

*
E6 is 2-supertransitive.

*

E8 is 4-supertransitive.

* the Haagerup subfactor with

index 5+
√

13
2 is 3-supertransitive.
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Comultiplication in planar algebras

Multiplication of 2-boxes is de�ned as vertical
contraction via the tangle

*

*

*

In a similar way, one can de�ne a �comultipli-
cation� as horizontal contraction via the tangle

*

* *
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Intermediate subfactors and biprojections

Let N ⊂ M be a subfactor with N ′ ∩M = CId

and planar algebra ∪iPi.

Theorem (Bisch): The intermediate subfac-
tors N ⊂ P ⊂ M are in one-to-one correspon-
dence with elements of P2 which are (up to
a scalar) projections with repect to both mul-
tiplication and comultiplication, and the two
adjoints.

intermediate subfactors ⇐⇒ biprojections

Bisch and Jones constructed the planar algebra
generated by a biprojection, giving a generic
construction of an intermediate subfactor
N ⊂ P ⊂ M such that N ⊂ P and P ⊂ M have
no extra structure. This Fuss-Catalan algebra
is a free product of Temperley-Lieb algebras.
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Two intermediate subfactors

A quadrilateral of subfactors is a diagram
P ⊂ M
∪ ∪
N ⊂ Q

such that P ∨ Q = M and P ∧ Q = N . (and
N ′ ∩M = CId.) Every quadrilateral has a dual

quadrilateral of commutants
P ′ ⊂ N ′
∪ ∪

M ′ ⊂ Q′
.

A quadrilateral commutes if eP eQ = eQeP . It
cocommutes if its dual commutes.

Sano and Watatani studied angles between
subfactors: Ang(P, Q) = spec(cos−1(ePeQeP )),
a numerical invariant which measures the
noncommutativity of P and Q.
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Pairs of intermediate subfactors with no
extra structure

A tensor product gives an easy construction of
commuting, cocommuting quadrilaterals with
no extra structure, and there is no obstruc-
tion to this. Constructing quadrilaterals with
nontrivial angles is harder.

Example: Let G be the symmetric group S3

acting as outer automorphisms of a factor M ,
and let H and K be distinct order 2 subgroups.

Then

M
H

M         M
K

M
G

is a quadrilateral which does

not commute since HK 6= KH. It does
however cocommute.
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It turns out that there is no generic construc-
tion of noncommuting pairs of intermediate
subfactors.

Theorem (G-Jones): Let
P ⊂ M
∪ ∪
N ⊂ Q

be a

noncommuting quadrilateral such that the
elementary subfactors N ⊂ P, P ⊂ M, N ⊂ Q

Q ⊂ M have no extra structure. Then ei-
ther N is the �xed-point algebra of an outer
action of the symmetric group S3 on M , or
[M : P ] = [P : N ] = 2 +

√
2. In either case

the planar algebra for N ⊂ M is uniquely de-
termined.

Remark: The original proof used 6-supertransitivity
of the elementary subfactors- a subsequent proof
by Izumi relaxed the hypothesis to 4-supertransitivity.
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The S3 quadrilateral is cocommuting and we
have [M : P ] = [M : Q] = 2 and [P : N ] =

[Q : N ] = 3. The full intermediate subfactor

lattice is

M

N

S

RP        Q

and the angle between P

and Q is π/3.

The other quadrilateral is noncocommuting, all
of the elementary subfactors have index 2 +√

2, the full intermediate subfactor lattice is
M

N

R

S

P          Q P
~

Q
~

and the angle between P and

Q is cos−1(
√

2− 1).

P̃ and Q̃ generate an isomorphic quadrilateral,
and the planar algebra for N ⊂ M is isomorphic
to its dual.
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Subfactors with index = 4 have principal graph:
A∞, A−∞,∞, D∞, A

(1)
n , D

(1)
n , E

(1)
6 , E

(1)
7 , E

(1)
8 . There

are very few noncommuting quadrilaterals with
small index.

Theorem (G-Izumi): Let
P ⊂ M
∪ ∪
N ⊂ Q

be a

noncommuting quadrilateral such that [M : P ],
[M : Q], [P : N ], [Q : N ] ≤ 4.

Then the principal graphs (GN⊂P , GP⊂M) =
(GN⊂Q, GQ⊂M) are one of the following pairs:

(A7, A7), (E(1)
7 , E

(1)
7 )

(A5, A3), (D6, A4), (E(1)
7 , A5), (E(1)

6 , D4)

(D(1)
6 , A3)

There is a unique planar algebra corresponding
to each con�guration.
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Case 1: (GN⊂P , GP⊂M) = (A7, A7)
Noncocommuting and [M : P ] = [P : N ] =
4cos2π

8 = 2 +
√

2.

Case 2: (E(1)
7 , E

(1)
7 )

Noncocommuting and [M : P ] = [P : N ] = 4.

Case 3: (A5, A3)
Cocommuting and [M : P ] = 2, [P : N ] = 3.

Case 4: (D6, A4)

Cocommuting and [M : P ] = 4cos2π
5 =

3 +
√

5ª
2

,

[P : N ] = 4cos2 π
10 =

5 +
√

5

2
.

Cases 5-6: (E(1)
7 , A5), (E(1)

6 , D4)
Both cocommuting, [M : P ] = 3, [P : N ] = 4.

Case 7: (D(1)
6 , A3) [M : P ] = 2, [P : N ] = 4.
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Theorem (G-Izumi): Let
P ⊂ M
∪ ∪
N ⊂ Q

be a

noncommuting quadrilateral such that [M : P ],
[M : Q], [P : N ], [Q : N ] are all 3-supertransitive.
Then either the quadrilateral cocommutes and
[M : P ] = [P : N ]− 1 or the quadrilateral does
not cocommute and [M : P ] = [P : N ].

In the �rst case Gal(M/N), the group of au-
tomorphisms of M which �x N pointwise, is a
subgroup of S3.

Remark: Consider the symmetric groups Sn+2
on S = {1, ..., n + 2}, S1

n+1 on {1, ..., n, n + 1},
S2

n+1 on {1, ..., n, n+2}, and Sn on {1, .., n} and
an outer action of Sn+2 on a factor R. Then
letting M = RSn, P = R

S1
n+1, Q = R

S2
n+1, N =

RSn+2 gives a quadrilateral of the �rst type.

The (A5, A3) and (E(1)
7 , A5) quadrilaterals are

of this form for n = 1,2 respectively.
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Angles and Second Cohomolgy

A key element of the proof is the notion of
second cohomology for subfactors, introduced
by Izumi-Kosaki, which counts inner conjugacy
classes of subfactors sharing the same basic
construction (as a bimodule class). Second
cohomolgy is also closely related to angles. In
particular I-K showed that any 3-supertransitive
subfactor has trivial second cohomolgy.

Theorem (G-Izumi): Let
P ⊂ M
∪ ∪
N ⊂ Q

be a noncommuting quadrilateral such that N ⊂
P, N ⊂ Q are 3 supertransitive. Then the unique
nontrivial angle value is always cos−1 1

[P : N ]− 1
.
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The Haagerup subfactor

The Haagerup subfactor with index 5 +
√

13

2
has the smallest index above 4 of any �nite
depth subfactor. This subfactor gives an ex-
otic tensor category which is not known to ap-
pear in any other context.

Its (dual) principal graph is:

*

Note that it is 3-supertransitive.
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Quadrilaterals of Haagerup subfactors

There is a noncommuting, noncocommuting

quadrilateral
P ⊂ M
∪ ∪
N ⊂ Q

such that [M : P ] =

[M : Q] = [P : N ] = [Q : N ] =
5 +

√
13

2
. N ⊂ P

and N ⊂ Q are each the Haagerup subfactor
and P ⊂ M and Q ⊂ M are each the dual
Haagerup subfactor.

There is also a noncommuting but cocommut-
ing quadrilateral such that P ⊂ M and Q ⊂ M

are each the Haagerup subfactor and [P : N ] =

[Q : N ] =
7 +

√
13

2
. The principal graph of

N ⊂ P is
*

.
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There are 3 known examples of noncommut-
ing, noncocommuting quadrilaterals of
3-supertransitive subfactors. The principal graphs
of their elementary subfactors are, respectively,
A7,E(1)

7 , and the Haagerup graph.

* A7

*
E

(1)
7

*

Haagerup graph

.

The construction uses the symmetry of the
third and �fth vertices. It is unknown whether
there are any additional examples.
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Quadrilaterals whose lower subfactors
have no extra structure

Theorem: Let
P ⊂ M
∪ ∪
N ⊂ Q

be a noncommuting

quadrilateral such that the principal graphs of
N ⊂ P and N ⊂ Q are An. Then n is odd.
There exists such a quadrilateral for each odd
n ≥ 3, unique up to isomorphism of the planar
algebra.

The two quadrilaterals with no extra structure
are the �rst two members of this series, corre-
sponding to n = 3,5. However when n ≥ 7 the
upper subfactors have extra structure.

The proof uses a result of Evans-Gould on al-
gebras associated to T-shaped graphs.

It is unknown whether there exist any noncom-
muting quadrilaterals whose lower subfactors
have no extra structure and index greater than
4.
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Landau's PQ relation

Let P and Q be biprojections in an irreducible
planar algebra. Then

P Q =c PQ

However additional relations between two bipro-
jections are not known.

Conclusion

The rigidity imposed by the presence of mul-
tiple intermediate subfactors suggests a rich
structure to intermediate subfactor lattices.

The planar algebra interpretation of this rigid-
ity is not yet understood.
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