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Lattices of intermediate subfactors

A fundamental example of a subfactor is the
fixed point algebra N = MG ¢ M of an outer
action of a finite group G on a factor M. In this
case the intermediate subfactors N C P C M
are precisely the fixed point algebras of the
subgroups of G.

Subfactor theory - “noncommutative Galois
theory’.

Watatani asked which finite lattices occur as
intermediate subfactor lattices for irreducible
finite-index subfactors. Recent progress - Xu.

This talk will focus on the structure associated
to 2 intermediate subfactors.



The Jones Index

Let M be a II; factor. L2(M) is the Hilbert
space completion of M w.r.t. the unique nor-
malized trace, with (x,y) = tr(y*z).

If N C M is a subfactor, let ey be the
projection of L2(M) onto L2(N). Let
M1 =< M,exN >. This is the basic
construction.

The Jones index is defined as [M : N] =
try, (en) if My is a Iy factor,
[M : N] = oo otherwise.



Let N C M be a subfactor with [M : N] < oo,
and let

N CM C My

be the basic construction. Then M C My is
also a finite-index subfactor, so can iterate the
pasic construction

M C My C Mo

where Mo =< Mqy,epr >.

Let e; = en,enp = €, €tCc. Get a tower:

N CM C® My C®2 M>...

where each My =< My, ep41 >.



Temperley-Lieb algebra

TL, is the complex vector space with basis
given by planar diagrams on a disk with 2n
distinguished boundary points. For example:
a basis for T'L3

OO OOS

TLn(6), 6 a complex parameter, is the algebra
with underlying vector space 1T'L, and multipli-
cation given on basis elements by ‘‘concatena-
tion of diagrams’, each closed loop contribut-
ing a factor of 4. For example:




A set of generators

Generators for TLg(6): Eq,E>, E3, E4

DCHEIOL

Relations: E’ZEi7 = EJEZ if |’L—]| > 1, E’iEi:tlEi =
E;.

Let N C M C® M; C® Ms,... be the Jones
tower of a subfactor. The projections e, ep,es,...
satisfy the relations: e;e; = eje; if |i — j| > 1,
e;e;11€; = Te;, Where 7 = [M : N]~1.

There is a surjective map from TL([M : N]%)
to the von Neumann algebra generated by eq, eo, ...
sending E; to de;. If [M : N] > 4 then this map
IS an isomorphism.



Let N C M be a subfactor with [M : N] < oo
and Jones tower N C M C® My C®2 M>....

Each relative commutant N’ N M, is f.d., and
the lattice:
(NNNN) ¢ (NNnM) c (N'NnMp) C..
U U
(M'nM) ¢ (M'nMy) C..

is called the standard invariant. What is
inside the standard invariant?

N'N N = CId - always trivial
NN M may be trivial (irreducible subfactor)
NN My 2 e1 - never trivial

N/ M Mk :_) {617 Ry ek}

In general there will be more stuff in the
standard invariant. A subfactor has no extra

structure if N N M, = {eq,...,ex}".



The TL algebra has a planar algebra struc-
ture by gluing the basis diagrams into the input
discs of a tangle. For example:

This TL planar algebra is present inside any PA
as the image of those tangles with no internal
discs. For a subfactor PA with P, = N'NM,;._q,
the TL planar algebra is the sub-PA generated
by the Jones projections.

Jones projections <— TL algebras

standard invariant <— planar algebra

no extra structure «<— PA=TL algebra
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T he principal graph

N C M a subfactor, [M : N] < c©. Let p =
NMa, p = My (bimodules, action by multi-
plication).

Let p* = p@p®p...(k factors). Then End(pF) =
NN M, 1= P.

Even vertices £ = { isomorphism classes of
irreducible N — N bimodules occuring in the
decomposition of p* for some even k}

Odd vertices O = { isomorphism classes of
irreducible N — M bimodules occuring in the
decomposition of p* for some odd k}

# of edges connecting a«a € E to g € O is the
multiplicity of 8 in ap



Subfactors with index less than 4

Jones Index Theorem: Let N C M be a sub-
factor with [M : N] < 4. Then [M : N] =
4cos?T for some k = 3,4, ....

Jones also constructed a subfactor for each k
which has no extra structure.

Turns out that subfactors with [M : N] < 4
(<= planar algebras with § < 2 ) are essentially
classified by the Coxeter-Dynkin diagrams

An, Do, Eg, Fg, except that there are two dif-
ferent planar algebras each for Eg and Eg. (Oc-
neanu, Popa).
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Principal graphs and supertransitivity

A subfactor is k-supertransitive if its planar
algebra does not contain any nontrivial k-boxes
(<= the initial part of its principal graph looks
like Ap41.) Some examples:

—0 ~——  Ap is k-supertransitive for all

R < D5, i1s 2n — 3-supertransitive.

FEg is 2-supertransitive.

Eg is 4-supertransitive.

/O/O

®0H0<Z\O\o the Haagerup subfactor with

index % V13 is 3-supertransitive.
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Comultiplication in planar algebras

Multiplication of 2-boxes is defined as vertical
contraction via the tangle

In a similar way, one can define a “‘comultipli-
cation” as horizontal contraction via the tangle
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Intermediate subfactors and biprojections

Let N C M be a subfactor with N N M = CId
and planar algebra U;P;.

Theorem (Bisch): The intermediate subfac-
tors N C P C M are in one-to-one correspon-
dence with elements of P> which are (up to
a scalar) projections with repect to both mul-
tiplication and comultiplication, and the two
adjoints.

iIntermediate subfactors <— biprojections

Bisch and Jones constructed the planar algebra
generated by a biprojection, giving a generic
construction of an intermediate subfactor

N C PC M such that N C P and P C M have
no extra structure. This Fuss-Catalan algebra
is a free product of Temperley-Lieb algebras.
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Two intermediate subfactors

P C M
A quadrilateral of subfactors is a diagram U U

N C Q
such that Pv@ = M and PAQ = N. (and

N'NM = CId.) Every quadrilateral has a dual
P c N’

quadrilateral of commutants U U .
M/ C Q/

A quadrilateral commutes if epeg = egep. It
cocommutes if its dual commutes.

Sano and Watatani studied angles between
subfactors: Ang(P,Q) = spec(cos_l(epeer)),
a numerical invariant which measures the
noncommutativity of P and Q.
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Pairs of intermediate subfactors with no
extra structure

A tensor product gives an easy construction of
commuting, cocommuting quadrilaterals with
no extra structure, and there is no obstruc-
tion to this. Constructing quadrilaterals with
nontrivial angles is harder.

Example: Let G be the symmetric group S3
acting as outer automorphisms of a factor M,
and let H and K be distinct order 2 subgroups.

M
AN
Then M M is a quadrilateral which does
o
QM
not commute since HK # KH. It does
however cocommute.
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It turns out that there is no generic construc-
tion of noncommuting pairs of intermediate
subfactors.

P C M
Theorem (G-Jones): Let U U be a

N C @Q
noncommuting quadrilateral such that the

elementary subfactors N C P,PC M,N C @

Q C M have no extra structure. Then ei-
ther N is the fixed-point algebra of an outer
action of the symmetric group Sz on M, or
[M : P)] = [P : N] = 2+ +2. In either case
the planar algebra for N C M is uniquely de-
termined.

Remark: The original proof used 6-supertransitivity
of the elementary subfactors- a subsequent proof
by Izumi relaxed the hypothesis to 4-supertransitivity
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The S3 quadrilateral is cocommuting and we
have [M : Pl =M : Q] =2 and [P : N] =
[Q : N] = 3. The full intermediate subfactor

M
)
P Q R

lattice is \\ \S and the angle between P

/

N

and @ is 7/3.

The other quadrilateral is noncocommuting, all
of the elementary subfactors have index 2 +
V2, the full intermediate subfactor lattice is

M

///\\\

P Q . P 92 and the angle between P and
\\N///

Q is cos—1(v2 —1).

P and @Q generate an isomorphic quadrilateral,
and the planar algebra for N C M is isomorphic
to its dual.
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Subfactors with index = 4 have prlncuoal %raph
Aco, A0 00 Dooy A, DIV ELD EWY D There
are very few noncommutlng quadrllaterals with
small index.

P C M
Theorem (G-Izumi): Let U U be a

N C Q
noncommuting quadrilateral such that [M : P],
M :Q],[P: N][Q:N] <4,

Then the principal graphs (Gycp,Gpcy) =
(GNcg,Gocm) are one of the following pairs:
(A7, A7), (BSD, ESY)

1 1
(A57A3)7 (D67A4)7 (Eg )7A5)7 (Eé )7D4)

(Dél), A3z)

There is a unique planar algebra corresponding
to each configuration.
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Case 1: (Gncp,Gpcm) = (A7, A7)
Noncocommuting and [M : P] = [P : N] =
46082% = 2+ 2.

Case 2: (Egl),Eél))
Noncocommuting and [M : P] = [P : N] = 4.

Case 3: (Asg, A3)
Cocommuting and [M : P] =2,[P : N] = 3.

Case 4: (Dg, Ayg)

34+ /5
Cocommuting and [M : P] = 4cos?E = +2 ,
54++5
[P: N] = éLcoszllO =—F

Cases 5-6: (E;l),A5), (Eél),D4)
Both cocommuting, [M : P] =3,[P : N] = 4.

Case 7: (DY A3) [M:Pl=2,[P:N] =4
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P C M
Theorem (G-Izumi): Let U U be a

N C Q
noncommuting quadrilateral such that [M : P],
M :Q], [P : NJ|,[Q: N]are all 3-supertransitive.
Then either the quadrilateral cocommutes and
[M : P] =[P : N] —1 or the quadrilateral does
not cocommute and [M : P] = [P : NJ.

In the first case Gal(M/N), the group of au-
tomorphisms of M which fix N pointwise, is a
subgroup of Ss3.

Remark: Consider the symmetric groups S, 4o

on S ={1,.,n+2}, St on{l,.,n,n+ 1}

S?%—I—l on {1,...,n,n+2}, and S, on {1,..,,n} and

an outer action of 5,4, on a factor R. Then
1 2

letting M = RS» P = Ron+1,Q = R°n+1, N =

RSn+2 gives a quadrilateral of the first type.

The (Ag, A3) and (E$1>,A5) quadrilaterals are
of this form for n = 1,2 respectively.
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Angles and Second Cohomolgy

A key element of the proof is the notion of
second cohomology for subfactors, introduced
by Izumi-Kosaki, which counts inner conjugacy
classes of subfactors sharing the same basic
construction (as a bimodule class). Second
cohomolgy is also closely related to angles. In
particular I-K showed that any 3-supertransitive
subfactor has trivial second cohomolgy.

P C M
Theorem (G-Izumi): Let U U
N C Q

be a noncommuting quadrilateral such that N C

P, N C @Q are 3 supertransitive. Then the unique
1
1

[P:N]—1

nontrivial angle value is always cos™
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The Haagerup subfactor

54+ 413
The Haagerup subfactor with index T

has the smallest index above 4 of any finite
depth subfactor. This subfactor gives an ex-
otic tensor category which is not known to ap-
pear in any other context.

Its (dual) principal graph is:

Note that it is 3-supertransitive.
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Quadrilaterals of Haagerup subfactors

There is a noncommuting, noncocommuting
P C M

quadrilateral U U such that [M : P] =

N C Q
[M:Q]:[P:N]z[Q:N]:S_I_Q\/ﬁ. NcCP

and N C Q are each the Haagerup subfactor

and P C M and Q C M are each the dual
Haagerup subfactor.

There is also a noncommuting but cocommut-
ing quadrilateral such that PC M and Q C M
are each the Haagerup subfactor and [P : N] =

[Q : N] = 7+2' 13. The principal graph of
® O‘O/\O
N
N CPis :
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There are 3 known examples of noncommut-
ing, noncocommuting quadrilaterals of
3-supertransitive subfactors. The principal graphs
of their elementary subfactors are, respectively,
A7,E$1), and the Haagerup graph.

® 0 A7

B

Haagerup graph

The construction uses the symmetry of the
third and fifth vertices. It is unknown whether
there are any additional examples.
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Quadrilaterals whose lower subfactors
have no extra structure

P C M
Theorem: Let U U beanoncommuting

N C @
quadrilateral such that the principal graphs of

N C Pand N C @ are A,. Then n is odd.
There exists such a quadrilateral for each odd
n > 3, unique up to isomorphism of the planar
algebra.

The two quadrilaterals with no extra structure
are the first two members of this series, corre-
sponding to n = 3,5. However when n > 7 the
upper subfactors have extra structure.

The proof uses a result of Evans-Gould on al-
gebras associated to T-shaped graphs.

It is unknown whether there exist any noncom-
muting quadrilaterals whose lower subfactors
have no extra structure and index greater than
4.
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Landau’s PQ relation

Let P and ) be biprojections in an irreducible
planar algebra. Then

However additional relations between two bipro-
jections are not known.

Conclusion

The rigidity imposed by the presence of mul-
tiple intermediate subfactors suggests a rich
structure to intermediate subfactor lattices.

The planar algebra interpretation of this rigid-
ity is not yet understood.
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