Pairs of intermediate subfactors

Pinhas Grossman
Vanderbilt University

With Vaughan Jones and with Masaki Izumi

Free Probability, Random Matrices, and Planar Algberas

Fields Institute, Toronto, Canada September 17-21 2007

Lattices of intermediate subfactors

A fundamental example of a subfactor is the fixed point algebra $N=M^{G} \subset M$ of an outer action of a finite group G on a factor M. In this case the intermediate subfactors $N \subset P \subset M$ are precisely the fixed point algebras of the subgroups of G.

Subfactor theory - "noncommutative Galois

 theory".Watatani asked which finite lattices occur as intermediate subfactor lattices for irreducible finite-index subfactors. Recent progress - Xu.

This talk will focus on the structure associated to 2 intermediate subfactors.

The Jones Index

Let M be a II_{1} factor. $L^{2}(M)$ is the Hilbert space completion of M w.r.t. the unique normalized trace, with $\langle x, y\rangle=\operatorname{tr}\left(y^{*} x\right)$.

If $N \subset M$ is a subfactor, let e_{N} be the projection of $L^{2}(M)$ onto $L^{2}(N)$. Let $M_{1}=<M, e_{N}>$. This is the basic construction.

The Jones index is defined as $[M: N]=$ $\operatorname{tr}_{M_{1}}\left(e_{N}\right)$ if M_{1} is a II_{1} factor, $[M: N]=\infty$ otherwise.

Let $N \subset M$ be a subfactor with $[M: N]<\infty$, and let

$$
N \subset M \subset M_{1}
$$

be the basic construction. Then $M \subset M_{1}$ is also a finite-index subfactor, so can iterate the basic construction

$$
M \subset M_{1} \subset M_{2}
$$

where $M_{2}=<M_{1}, e_{M}>$.

Let $e_{1}=e_{N}, e_{2}=e_{M}$, etc. Get a tower:

$$
N \subset M \subset^{e_{1}} M_{1} \subset^{e_{2}} M_{2} \cdots
$$

where each $M_{k+1}=<M_{k}, e_{k+1}>$.

Temperley-Lieb algebra

$T L_{n}$ is the complex vector space with basis given by planar diagrams on a disk with $2 n$ distinguished boundary points. For example: a basis for $T L_{3}$
$T L_{n}(\delta), \delta$ a complex parameter, is the algebra with underlying vector space $T L_{n}$ and multiplication given on basis elements by "concatenation of diagrams", each closed loop contributing a factor of δ. For example:

A set of generators

Generators for $T L_{5}(\delta): E_{1}, E_{2}, E_{3}, E_{4}$

Relations: $E_{i} E_{j}=E_{j} E_{i}$ if $|i-j|>1, E_{i} E_{i \pm 1} E_{i}=$ E_{i}.

Let $N \subset M \subset^{e_{1}} M_{1} \subset^{e_{2}} M_{2} \ldots$ be the Jones tower of a subfactor. The projections $e_{1}, e_{2}, e_{3}, \ldots$ satisfy the relations: $e_{i} e_{j}=e_{j} e_{i}$ if $|i-j|>1$, $e_{i} e_{i \pm 1} e_{i}=\tau e_{i}$, where $\tau=[M: N]^{-1}$.

There is a surjective map from $T L\left([M: N]^{\frac{1}{2}}\right)$ to the von Neumann algebra generated by e_{1}, e_{2}, \ldots sending E_{i} to δe_{i}. If $[M: N] \geq 4$ then this map is an isomorphism.

Let $N \subset M$ be a subfactor with $[M: N]<\infty$ and Jones tower $N \subset M \subset{ }^{e_{1}} M_{1} \subset{ }^{e_{2}} M_{2} \ldots$.

Each relative commutant $N^{\prime} \cap M_{k}$ is f.d., and the lattice:

$$
\begin{array}{rccc}
\left(N^{\prime} \cap N\right) & \subset\left(N^{\prime} \cap M\right) & \subset\left(N^{\prime} \cap M_{1}\right) & \subset \ldots \\
& \cup \\
& \left(M^{\prime} \cap M\right) & \subset\left(M^{\prime} \cap M_{1}\right) & \subset \ldots
\end{array}
$$

is called the standard invariant. What is inside the standard invariant?
$N^{\prime} \cap N=\mathbb{C} I d$ - always trivial
$N^{\prime} \cap M$ may be trivial (irreducible subfactor)
$N^{\prime} \cap M_{1} \ni e_{1}$ - never trivial
$N^{\prime} \cap M_{k} \supseteq\left\{e_{1}, \ldots, e_{k}\right\}$
In general there will be more stuff in the standard invariant. A subfactor has no extra structure if $N^{\prime} \cap M_{k}=\left\{e_{1}, \ldots, e_{k}\right\}^{\prime \prime}$.

The TL algebra has a planar algebra structure by gluing the basis diagrams into the input discs of a tangle. For example:

This TL planar algebra is present inside any PA as the image of those tangles with no internal discs. For a subfactor PA with $P_{k}=N^{\prime} \cap M_{k-1}$, the TL planar algebra is the sub-PA generated by the Jones projections.

Jones projections \Longleftrightarrow TL algebras standard invariant \Longleftrightarrow planar algebra no extra structure $\Longleftrightarrow \mathbf{P A}=T L$ algebra

The principal graph

$N \subset M$ a subfactor, $[M: N]<\infty$. Let $\rho=$ ${ }_{N} M_{M}, \bar{\rho}={ }_{M} M_{N}$ (bimodules, action by multiplication).

Let $\rho^{k}=\rho \otimes \bar{\rho} \otimes \rho \ldots$ (k factors). Then $\operatorname{End}\left(\rho^{k}\right) \cong$ $N^{\prime} \cap M_{k-1}=P_{k}$.

Even vertices $E=\{$ isomorphism classes of irreducible $N-N$ bimodules occuring in the decomposition of ρ^{k} for some even $\left.k\right\}$

Odd vertices $O=\{$ isomorphism classes of irreducible $N-M$ bimodules occuring in the decomposition of ρ^{k} for some odd $\left.k\right\}$
\# of edges connecting $\alpha \in E$ to $\beta \in O$ is the multiplicity of β in $\alpha \rho$

Subfactors with index less than 4

Jones Index Theorem: Let $N \subset M$ be a subfactor with $[M: N]<4$. Then $[M: N]=$ $4 \cos ^{2} \frac{\pi}{k}$ for some $k=3,4, \ldots$.

Jones also constructed a subfactor for each k which has no extra structure.

Turns out that subfactors with $[M: N]<4$ (\Longleftrightarrow planar algebras with $\delta<2$) are essentially classified by the Coxeter-Dynkin diagrams $A_{n}, D_{2 n}, E_{6}, E_{8}$, except that there are two different planar algebras each for E_{6} and E_{8}. (Ocneanu, Popa).

Principal graphs and supertransitivity

A subfactor is \mathbf{k}-supertransitive if its planar algebra does not contain any nontrivial k-boxes (\Longleftrightarrow the initial part of its principal graph looks like A_{k+1}.) Some examples:
. A_{n} is k-supertransitive for all k.

$D_{2 n}$ is $2 n-3$-supertransitive.

E_{6} is 2-supertransitive.

E_{8} is 4-supertransitive.

the Haagerup subfactor with
index $\frac{5+\sqrt{13}}{2}$ is 3 -supertransitive.

Comultiplication in planar algebras

Multiplication of 2-boxes is defined as vertical contraction via the tangle

In a similar way, one can define a "comultiplication" as horizontal contraction via the tangle

Intermediate subfactors and biprojections

Let $N \subset M$ be a subfactor with $N^{\prime} \cap M=\mathbb{C} I d$ and planar algebra $\cup_{i} P_{i}$.

Theorem (Bisch): The intermediate subfactors $N \subset P \subset M$ are in one-to-one correspondence with elements of P_{2} which are (up to a scalar) projections with repect to both multiplication and comultiplication, and the two adjoints.

intermediate subfactors \Longleftrightarrow biprojections

Bisch and Jones constructed the planar algebra generated by a biprojection, giving a generic construction of an intermediate subfactor $N \subset P \subset M$ such that $N \subset P$ and $P \subset M$ have no extra structure. This Fuss-Catalan algebra is a free product of Temperley-Lieb algebras.

Two intermediate subfactors

$$
\begin{array}{lllll}
& P & \subset & M \\
\text { A quadrilateral of subfactors is a diagram } & \cup & & \cup \\
& & N & \subset & Q \\
\text { such that } P \vee Q=M \text { and } P \wedge Q=N . \quad \text { (and } & \\
N^{\prime} \cap M=\mathbb{C} I d \text {.) Every quadrilateral has a dual } \\
& P^{\prime} & \subset & N^{\prime} \\
\text { quadrilateral of commutants } & \cup & \cup \\
& M^{\prime} & \subset & Q^{\prime}
\end{array}
$$

A quadrilateral commutes if $e_{P} e_{Q}=e_{Q} e_{P}$. It cocommutes if its dual commutes.

Sano and Watatani studied angles between subfactors: $\operatorname{Ang}(P, Q)=\operatorname{spec}\left(\cos ^{-1}\left(e_{P} e_{Q} e_{P}\right)\right)$, a numerical invariant which measures the noncommutativity of P and Q.

Pairs of intermediate subfactors with no extra structure

A tensor product gives an easy construction of commuting, cocommuting quadrilaterals with no extra structure, and there is no obstruction to this. Constructing quadrilaterals with nontrivial angles is harder.

Example: Let G be the symmetric group S_{3} acting as outer automorphisms of a factor M, and let H and K be distinct order 2 subgroups. M

Then $\mathbf{M}^{\mathrm{H}} \quad \mathrm{M}^{\mathrm{K}}$ is a quadrilateral which does

not commute since $H K \neq K H$. It does however cocommute.

It turns out that there is no generic construction of noncommuting pairs of intermediate subfactors.

$P \subset M$
 Theorem (G-Jones): Let $\cup \cup$ be a
 $N \subset Q$

noncommuting quadrilateral such that the elementary subfactors $N \subset P, P \subset M, N \subset Q$ $Q \subset M$ have no extra structure. Then either N is the fixed-point algebra of an outer action of the symmetric group S_{3} on M, or $[M: P]=[P: N]=2+\sqrt{2}$. In either case the planar algebra for $N \subset M$ is uniquely determined.

Remark: The original proof used 6-supertransitivity of the elementary subfactors- a subsequent proof by Izumi relaxed the hypothesis to 4 -supertransitivity

The S_{3} quadrilateral is cocommuting and we have $[M: P]=[M: Q]=2$ and $[P: N]=$
$[Q: N]=3$. The full intermediate subfactor p $\mathrm{O}_{\mathrm{k}}^{\mathrm{M}}$
lattice is
and the angle between P N and Q is $\pi / 3$.

The other quadrilateral is noncocommuting, all of the elementary subfactors have index $2+$ $\sqrt{2}$, the full intermediate subfactor lattice is
 and the angle between P and Q is $\cos ^{-1}(\sqrt{2}-1)$.
\widetilde{P} and \widetilde{Q} generate an isomorphic quadrilateral, and the planar algebra for $N \subset M$ is isomorphic to its dual.

Subfactors with index $=4$ have principal graph: $A_{\infty}, A_{-\infty, \infty}, D_{\infty}, A_{n}^{(1)}, D_{n}^{(1)}, E_{6}^{(1)}, E_{7}^{(1)}, E_{8}^{(1)}$. There are very few noncommuting quadrilaterals with small index.

Theorem (G-Izumi): Let | P |
| :--- |
| \cup |
| |
| |
| |\(\subset Q \begin{aligned} \&

\& \end{aligned}\) noncommuting quadrilateral such that $[M: P]$, $[M: Q],[P: N],[Q: N] \leq 4$.

Then the principal graphs $\left(G_{N \subset P}, G_{P \subset M}\right)=$ ($G_{N \subset Q}, G_{Q \subset M}$) are one of the following pairs:

$$
\begin{gathered}
\left(A_{7}, A_{7}\right), \quad\left(E_{7}^{(1)}, E_{7}^{(1)}\right) \\
\left(A_{5}, A_{3}\right), \quad\left(D_{6}, A_{4}\right), \quad\left(E_{7}^{(1)}, A_{5}\right), \quad\left(E_{6}^{(1)}, D_{4}\right) \\
\left(D_{6}^{(1)}, A_{3}\right)
\end{gathered}
$$

There is a unique planar algebra corresponding to each configuration.

Case 1: $\left(G_{N \subset P}, G_{P \subset M}\right)=\left(A_{7}, A_{7}\right)$
Noncocommuting and $[M: P]=[P: N]=$ $4 \cos ^{2} \frac{\pi}{8}=2+\sqrt{2}$.

Case 2: $\left(E_{7}^{(1)}, E_{7}^{(1)}\right)$
Noncocommuting and $[M: P]=[P: N]=4$.

Case 3: $\left(A_{5}, A_{3}\right)$
Cocommuting and $[M: P]=2,[P: N]=3$.

Case 4: $\left(D_{6}, A_{4}\right)$
Cocommuting and $[M: P]=4 \cos ^{2} \frac{\pi}{5}=\frac{3+\sqrt{5 \theta}}{2}$,
$[P: N]=4 \cos ^{2} \frac{\pi}{10}=\frac{5+\sqrt{5}}{2}$.
Cases 5-6: $\left(E_{7}^{(1)}, A_{5}\right), \quad\left(E_{6}^{(1)}, D_{4}\right)$
Both cocommuting, $[M: P]=3,[P: N]=4$.

Case 7: $\left(D_{6}^{(1)}, A_{3}\right)[M: P]=2,[P: N]=4$.

$P \subset M$

Theorem (G-Izumi): Let $\cup \cup$ be a
$N \subset Q$
noncommuting quadrilateral such that $[M: P]$, $[M: Q],[P: N],[Q: N]$ are all 3-supertransitive. Then either the quadrilateral cocommutes and $[M: P]=[P: N]-1$ or the quadrilateral does not cocommute and $[M: P]=[P: N]$.

In the first case $\operatorname{Gal}(M / N)$, the group of automorphisms of M which fix N pointwise, is a subgroup of S_{3}.

Remark: Consider the symmetric groups S_{n+2} on $S=\{1, \ldots, n+2\}, S_{n+1}^{1}$ on $\{1, \ldots, n, n+1\}$, S_{n+1}^{2} on $\{1, \ldots, n, n+2\}$, and S_{n} on $\{1, . ., n\}$ and an outer action of S_{n+2} on a factor R. Then letting $M=R^{S_{n}}, P=R^{S_{n+1}^{1}, Q}=R^{S_{n+1}^{2}, N}=$ $R^{S_{n+2}}$ gives a quadrilateral of the first type.

The $\left(A_{5}, A_{3}\right)$ and $\left(E_{7}^{(1)}, A_{5}\right)$ quadrilaterals are of this form for $n=1,2$ respectively.

Angles and Second Cohomolgy

A key element of the proof is the notion of second cohomology for subfactors, introduced by Izumi-Kosaki, which counts inner conjugacy classes of subfactors sharing the same basic construction (as a bimodule class). Second cohomolgy is also closely related to angles. In particular I-K showed that any 3-supertransitive subfactor has trivial second cohomolgy.

Theorem (G-Izumi): Let $\begin{array}{llll}P & \subset & M \\ & N & \subset \\ & & \cup\end{array}$
be a noncommuting quadrilateral such that $N \subset$ $P, N \subset Q$ are 3 supertransitive. Then the unique nontrivial angle value is always $\cos ^{-1} \frac{1}{[P: N]-1}$.

The Haagerup subfactor

The Haagerup subfactor with index $\frac{5+\sqrt{13}}{2}$ has the smallest index above 4 of any finite depth subfactor. This subfactor gives an exotic tensor category which is not known to appear in any other context.

Its (dual) principal graph is:

Note that it is 3-supertransitive.

Quadrilaterals of Haagerup subfactors

There is a noncommuting, noncocommuting $P \subset M$
quadrilateral $\cup \cup$ such that $[M: P]=$
$N \subset Q$
$[M: Q]=[P: N]=[Q: N]=\frac{5+\sqrt{13}}{2} . N \subset P$ and $N \subset Q$ are each the Haagerup subfactor and $P \subset M$ and $Q \subset M$ are each the dual Haagerup subfactor.

There is also a noncommuting but cocommuting quadrilateral such that $P \subset M$ and $Q \subset M$ are each the Haagerup subfactor and $[P: N]=$ $[Q: N]=\frac{7+\sqrt{13}}{2}$. The principal graph of $N \subset P$ is

There are 3 known examples of noncommuting, noncocommuting quadrilaterals of
3-supertransitive subfactors. The principal graphs of their elementary subfactors are, respectively, $A_{7}, E_{7}^{(1)}$, and the Haagerup graph.

$E_{7}^{(1)}$

Haagerup graph

The construction uses the symmetry of the third and fifth vertices. It is unknown whether there are any additional examples.

Quadrilaterals whose lower subfactors have no extra structure

$P \subset M$

Theorem: Let $\cup \quad \cup$ be a noncommuting $N \subset Q$
quadrilateral such that the principal graphs of $N \subset P$ and $N \subset Q$ are A_{n}. Then n is odd. There exists such a quadrilateral for each odd $n \geq 3$, unique up to isomorphism of the planar algebra.

The two quadrilaterals with no extra structure are the first two members of this series, corresponding to $n=3,5$. However when $n \geq 7$ the upper subfactors have extra structure.

The proof uses a result of Evans-Gould on algebras associated to T-shaped graphs.

It is unknown whether there exist any noncommuting quadrilaterals whose lower subfactors have no extra structure and index greater than 4.

Landau's PQ relation

Let P and Q be biprojections in an irreducible planar algebra. Then

However additional relations between two biprojections are not known.

Conclusion

The rigidity imposed by the presence of multiple intermediate subfactors suggests a rich structure to intermediate subfactor lattices.

The planar algebra interpretation of this rigidity is not yet understood.

