Pairs of intermediate subfactors

Pinhas Grossman Vanderbilt University

With Vaughan Jones and with Masaki Izumi

Free Probability, Random Matrices, and Planar Algberas

Fields Institute, Toronto, Canada September 17-21 2007

Lattices of intermediate subfactors

A fundamental example of a subfactor is the fixed point algebra $N = M^G \subset M$ of an outer action of a finite group G on a factor M. In this case the intermediate subfactors $N \subset P \subset M$ are precisely the fixed point algebras of the subgroups of G.

Subfactor theory - "noncommutative Galois theory".

Watatani asked which finite lattices occur as intermediate subfactor lattices for irreducible finite-index subfactors. Recent progress - Xu.

This talk will focus on the structure associated to 2 intermediate subfactors.

The Jones Index

Let M be a II₁ factor. $L^2(M)$ is the Hilbert space completion of M w.r.t. the unique normalized trace, with $\langle x, y \rangle = tr(y^*x)$.

If $N \subset M$ is a subfactor, let e_N be the projection of $L^2(M)$ onto $L^2(N)$. Let $M_1 = \langle M, e_N \rangle$. This is the **basic** construction.

The **Jones index** is defined as $[M : N] = tr_{M_1}(e_N)$ if M_1 is a II₁ factor, $[M : N] = \infty$ otherwise. Let $N \subset M$ be a subfactor with $[M : N] < \infty$, and let

$$N \subset M \subset M_1$$

be the basic construction. Then $M \subset M_1$ is also a finite-index subfactor, so can iterate the basic construction

$$M \subset M_1 \subset M_2$$

where $M_2 = < M_1, e_M >$.

Let $e_1 = e_N, e_2 = e_M$, etc. Get a tower:

$$N \subset M \subset^{e_1} M_1 \subset^{e_2} M_2 \dots$$

where each $M_{k+1} = < M_k, e_{k+1} >$.

Temperley-Lieb algebra

 TL_n is the complex vector space with basis given by planar diagrams on a disk with 2n distinguished boundary points. For example: a basis for TL_3

 $TL_n(\delta)$, δ a complex parameter, is the algebra with underlying vector space TL_n and multiplication given on basis elements by "concatenation of diagrams", each closed loop contributing a factor of δ . For example:

5

A set of generators

Generators for $TL_5(\delta)$: E_1, E_2, E_3, E_4

Relations: $E_i E_j = E_j E_i$ if |i-j| > 1, $E_i E_{i\pm 1} E_i = E_i$.

Let $N \subset M \subset e_1 M_1 \subset e_2 M_2...$ be the Jones tower of a subfactor. The projections $e_1, e_2, e_3, ...$ satisfy the relations: $e_i e_j = e_j e_i$ if |i - j| > 1, $e_i e_{i \pm 1} e_i = \tau e_i$, where $\tau = [M : N]^{-1}$.

There is a surjective map from $TL([M:N]^{\frac{1}{2}})$ to the von Neumann algebra generated by $e_1, e_2, ...$ sending E_i to δe_i . If $[M:N] \ge 4$ then this map is an isomorphism.

6

Let $N \subset M$ be a subfactor with $[M : N] < \infty$ and Jones tower $N \subset M \subset e_1 M_1 \subset e_2 M_2....$

Each relative commutant $N' \cap M_k$ is f.d., and the lattice:

is called the **standard invariant**. What is inside the standard invariant?

 $N' \cap N = \mathbb{C}Id$ - always trivial $N' \cap M$ may be trivial (**irreducible** subfactor) $N' \cap M_1 \ni e_1$ - never trivial ... $N' \cap M_k \supseteq \{e_1, ..., e_k\}$

In general there will be more stuff in the standard invariant. A subfactor has **no extra** structure if $N' \cap M_k = \{e_1, ..., e_k\}''$.

The TL algebra has a planar algebra structure by gluing the basis diagrams into the input discs of a tangle. For example:

This TL planar algebra is present inside any PA as the image of those tangles with no internal discs. For a subfactor PA with $P_k = N' \cap M_{k-1}$, the TL planar algebra is the sub-PA generated by the Jones projections.

Jones projections \iff TL algebras standard invariant \iff planar algebra no extra structure \iff PA=TL algebra

The principal graph

 $N \subset M$ a subfactor, $[M : N] < \infty$. Let $\rho = {}_{N}M_{M}, \bar{\rho} = {}_{M}M_{N}$ (bimodules, action by multiplication).

Let $\rho^k = \rho \otimes \overline{\rho} \otimes \rho...(k \text{ factors})$. Then $End(\rho^k) \cong N' \cap M_{k-1} = P_k$.

Even vertices $E = \{$ isomorphism classes of irreducible N - N bimodules occuring in the decomposition of ρ^k for some even $k\}$

Odd vertices $O = \{$ isomorphism classes of irreducible N - M bimodules occuring in the decomposition of ρ^k for some odd $k\}$

of edges connecting $\alpha \in E$ to $\beta \in O$ is the multiplicity of β in $\alpha \rho$

Subfactors with index less than 4

Jones Index Theorem: Let $N \subset M$ be a subfactor with [M : N] < 4. Then $[M : N] = 4cos^2 \frac{\pi}{k}$ for some k = 3, 4, ...

Jones also constructed a subfactor for each k which has no extra structure.

Turns out that subfactors with [M : N] < 4(\iff planar algebras with $\delta < 2$) are essentially classified by the Coxeter-Dynkin diagrams A_n, D_{2n}, E_6, E_8 , except that there are two different planar algebras each for E_6 and E_8 . (Ocneanu, Popa).

Principal graphs and supertransitivity

A subfactor is **k-supertransitive** if its planar algebra does not contain any nontrivial k-boxes (\iff the initial part of its principal graph looks like A_{k+1} .) Some examples:

Comultiplication in planar algebras

Multiplication of 2-boxes is defined as vertical contraction via the tangle

In a similar way, one can define a "comultiplication" as horizontal contraction via the tangle

Intermediate subfactors and biprojections

Let $N \subset M$ be a subfactor with $N' \cap M = \mathbb{C}Id$ and planar algebra $\cup_i P_i$.

Theorem (Bisch): The intermediate subfactors $N \subset P \subset M$ are in one-to-one correspondence with elements of P_2 which are (up to a scalar) projections with repect to both multiplication and comultiplication, and the two adjoints.

intermediate subfactors \iff biprojections

Bisch and Jones constructed the planar algebra generated by a biprojection, giving a generic construction of an intermediate subfactor $N \subset P \subset M$ such that $N \subset P$ and $P \subset M$ have no extra structure. This **Fuss-Catalan** algebra is a free product of Temperley-Lieb algebras.

Two intermediate subfactors

A quadrilateral of subfactors is a diagram $\begin{array}{ccc} P & \subset & M \\ \cup & \cup & \\ N & \subset & Q \end{array}$ such that $P \lor Q = M$ and $P \land Q = N$. (and $N' \cap M = \mathbb{C}Id$.) Every quadrilateral has a **dual** $P' \subset & N'$ quadrilateral of commutants $\begin{array}{ccc} U & \cup & U \\ M' & \subset & Q' \end{array}$

A quadrilateral **commutes** if $e_P e_Q = e_Q e_P$. It **cocommutes** if its dual commutes.

Sano and Watatani studied **angles** between subfactors: $Ang(P,Q) = spec(cos^{-1}(e_Pe_Qe_P))$, a numerical invariant which measures the noncommutativity of P and Q.

Pairs of intermediate subfactors with no extra structure

A tensor product gives an easy construction of commuting, cocommuting quadrilaterals with no extra structure, and there is no obstruction to this. Constructing quadrilaterals with nontrivial angles is harder.

Example: Let G be the symmetric group S_3 acting as outer automorphisms of a factor M, and let H and K be distinct order 2 subgroups.

Then $M^{H} = M^{K}$ is a quadrilateral which does M^{G}

not commute since $HK \neq KH$. It does however cocommute.

M

It turns out that there is no generic construction of noncommuting pairs of intermediate subfactors.

Remark: The original proof used 6-supertransitivity of the elementary subfactors- a subsequent proof by Izumi relaxed the hypothesis to 4-supertransitivity. The S_3 quadrilateral is cocommuting and we have [M:P] = [M:Q] = 2 and [P:N] = [Q:N] = 3. The full intermediate subfactor

lattice is $P \subseteq Q = R$ and the angle between P

and Q is $\pi/3$.

The other quadrilateral is noncocommuting, all of the elementary subfactors have index $2 + \sqrt{2}$, the full intermediate subfactor lattice is

and the angle between \boldsymbol{P} and

Q is $\cos^{-1}(\sqrt{2}-1)$.

 \tilde{P} and \tilde{Q} generate an isomorphic quadrilateral, and the planar algebra for $N \subset M$ is isomorphic to its dual. Subfactors with index = 4 have principal graph: $A_{\infty}, A_{-\infty,\infty}, D_{\infty}, A_n^{(1)}, D_n^{(1)}, E_6^{(1)}, E_7^{(1)}, E_8^{(1)}$. There are very few noncommuting quadrilaterals with small index.

Theorem (G-Izumi): Let $\begin{array}{ccc} P \subset M \\ \cup & \cup \end{array}$ be a $N \subset Q$ noncommuting quadrilateral such that [M:P], $[M:Q], [P:N], [Q:N] \leq 4$.

Then the principal graphs $(G_{N \subset P}, G_{P \subset M}) = (G_{N \subset Q}, G_{Q \subset M})$ are one of the following pairs:

$$(A_7, A_7), \quad (E_7^{(1)}, E_7^{(1)})$$

 $(A_5, A_3), \quad (D_6, A_4), \quad (E_7^{(1)}, A_5), \quad (E_6^{(1)}, D_4)$
 $(D_6^{(1)}, A_3)$

There is a unique planar algebra corresponding to each configuration.

Case 1: $(G_{N \subset P}, G_{P \subset M}) = (A_7, A_7)$ Noncocommuting and $[M : P] = [P : N] = 4cos^2 \frac{\pi}{8} = 2 + \sqrt{2}.$

Case 2: $(E_7^{(1)}, E_7^{(1)})$ Noncocommuting and [M : P] = [P : N] = 4.

Case 3: (A_5, A_3) Cocommuting and [M : P] = 2, [P : N] = 3.

Case 4: (D_6, A_4) Cocommuting and $[M : P] = 4\cos^2 \frac{\pi}{5} = \frac{3 + \sqrt{5 \ominus}}{2}$, $[P : N] = 4\cos^2 \frac{\pi}{10} = \frac{5 + \sqrt{5}}{2}$.

Cases 5-6: $(E_7^{(1)}, A_5), \quad (E_6^{(1)}, D_4)$ Both cocommuting, [M : P] = 3, [P : N] = 4.

Case 7:
$$(D_6^{(1)}, A_3) [M : P] = 2, [P : N] = 4.$$

Theorem (G-Izumi): Let $\begin{array}{ccc} P & \subset & M \\ \cup & \cup & \cup & \text{be a} \\ N & \subset & Q \end{array}$

noncommuting quadrilateral such that [M : P], [M : Q], [P : N], [Q : N] are all 3-supertransitive. Then either the quadrilateral cocommutes and [M : P] = [P : N] - 1 or the quadrilateral does not cocommute and [M : P] = [P : N].

In the first case Gal(M/N), the group of automorphisms of M which fix N pointwise, is a subgroup of S_3 .

Remark: Consider the symmetric groups S_{n+2} on $S = \{1, ..., n + 2\}$, S_{n+1}^1 on $\{1, ..., n, n + 1\}$, S_{n+1}^2 on $\{1, ..., n, n+2\}$, and S_n on $\{1, ..., n\}$ and an outer action of S_{n+2} on a factor R. Then letting $M = R^{S_n}, P = R^{S_n^1+1}, Q = R^{S_n^2+1}, N =$ R^{S_n+2} gives a quadrilateral of the first type.

The (A_5, A_3) and $(E_7^{(1)}, A_5)$ quadrilaterals are of this form for n = 1, 2 respectively.

20

Angles and Second Cohomolgy

A key element of the proof is the notion of second cohomology for subfactors, introduced by Izumi-Kosaki, which counts inner conjugacy classes of subfactors sharing the same basic construction (as a bimodule class). Second cohomolgy is also closely related to angles. In particular I-K showed that any 3-supertransitive subfactor has trivial second cohomolgy.

Theorem (G-Izumi): Let
$$\begin{array}{ccc} P & \subset & M \\ \cup & & \cup \\ N & \subset & Q \end{array}$$

be a noncommuting quadrilateral such that $N \subset P, N \subset Q$ are 3 supertransitive. Then the unique nontrivial angle value is always $\cos^{-1} \frac{1}{[P:N]-1}$.

The Haagerup subfactor

The Haagerup subfactor with index $\frac{5+\sqrt{13}}{2}$ has the smallest index above 4 of any finite depth subfactor. This subfactor gives an exotic tensor category which is not known to appear in any other context.

Its (dual) principal graph is:

Note that it is 3-supertransitive.

Quadrilaterals of Haagerup subfactors

There is a noncommuting, noncocommuting $P \subset M$ quadrilateral $\cup \cup$ such that [M : P] = $N \subset Q$ $[M : Q] = [P : N] = [Q : N] = \frac{5 + \sqrt{13}}{2}$. $N \subset P$ and $N \subset Q$ are each the Haagerup subfactor and $P \subset M$ and $Q \subset M$ are each the dual Haagerup subfactor.

There is also a noncommuting but cocommuting quadrilateral such that $P \subset M$ and $Q \subset M$ are each the Haagerup subfactor and [P:N] = $[Q:N] = \frac{7 + \sqrt{13}}{2}$. The principal graph of $N \subset P$ is

23

There are 3 known examples of noncommuting, noncocommuting quadrilaterals of 3-supertransitive subfactors. The principal graphs of their elementary subfactors are, respectively, $A_7, E_7^{(1)}$, and the Haagerup graph.

The construction uses the symmetry of the third and fifth vertices. It is unknown whether there are any additional examples.

Quadrilaterals whose lower subfactors have no extra structure

$P \subset M$

Theorem: Let $\cup \qquad \cup$ be a noncommuting $N \subset Q$

quadrilateral such that the principal graphs of $N \subset P$ and $N \subset Q$ are A_n . Then n is odd. There exists such a quadrilateral for each odd $n \geq 3$, unique up to isomorphism of the planar algebra.

The two quadrilaterals with no extra structure are the first two members of this series, corresponding to n = 3, 5. However when $n \ge 7$ the upper subfactors have extra structure.

The proof uses a result of Evans-Gould on algebras associated to T-shaped graphs.

It is unknown whether there exist any noncommuting quadrilaterals whose lower subfactors have no extra structure and index greater than 4.

Landau's PQ relation

Let ${\cal P}$ and ${\cal Q}$ be biprojections in an irreducible planar algebra. Then

However additional relations between two biprojections are not known.

Conclusion

The rigidity imposed by the presence of multiple intermediate subfactors suggests a rich structure to intermediate subfactor lattices.

The planar algebra interpretation of this rigidity is not yet understood.