SPDE and portfolio choice

(joint work with M. Musiela)

Fields Institute November 2007

Thaleia Zariphopoulou
The University of Texas at Austin

Performance measurement of investment strategies

Market environment

Riskless and risky securities

- ullet $(\Omega, \mathcal{F}, \mathbb{P})$; $W = (W^1, \dots, W^d)$ standard Brownian Motion
- Traded securities

$$1 \le i \le k \qquad \begin{cases} dS_t^i = S_t^i \Big(\mu_t^i dt + \sigma_t^i \cdot dW_t \Big) , & S_0^i > 0 \\ dB_t = r_t B_t dt , & B_0 = 1 \end{cases}$$

 $\mu_t, r_t \in \mathbb{R}$, $\sigma_t^i \in \mathbb{R}^d$ bounded and \mathcal{F}_t -measurable stochastic processes

• Postulate existence of an \mathcal{F}_t -measurable stochastic process $\lambda_t \in \mathbb{R}^d$ satisfying

$$\mu_t - r_t \, \mathbb{1} = \sigma_t^T \lambda_t$$

No assumptions on market completeness

Market environment

- Self-financing investment strategies π^0_t , $\pi_t = (\pi^1_t, \dots, \pi^i_t, \dots, \pi^k_t)$
- Present value of this allocation

$$X_t = \sum_{i=0}^k \pi_t^i$$

$$dX_t = \sum_{i=1}^k \pi_t^i \sigma_t^i \cdot (\lambda_t \, dt + dW_t)$$

$$= \sigma_t \pi_t \cdot (\lambda_t \, dt + dW_t)$$

Traditional framework

A (deterministic) utility datum $u_T(x)$ is assigned at the end of a fixed investment horizon

$$U_T(x) = u_T(x)$$

No market input to the choice of terminal utility

Backwards in time generation of the indirect utility

$$V_{S}(x) = \sup_{\pi} E_{\mathbb{P}}(u_{T}(X_{T}^{\pi})|\mathcal{F}_{S}; X_{S}^{\pi} = x)$$

$$V_{S}(x) = \sup_{\pi} E_{\mathbb{P}}(V_{t}(X_{t}^{\pi})|\mathcal{F}_{S}; X_{S}^{\pi} = x) \qquad \text{(DPP)}$$

$$V_{S}(x) = E_{\mathbb{P}}(V_{t}(X_{t}^{\pi^{*}})|\mathcal{F}_{S}; X_{S}^{\pi^{*}} = x)$$

The value function process becomes the intermediate utility for all $t \in [0, T)$

Investment performance process

• For each self-financing strategy, represented by π , the associated wealth X_t^π satisfies

$$E_{\mathbb{P}}(V_t(X_t^{\pi})|\mathcal{F}_s) \le V_s(X_s^{\pi}), \qquad 0 \le s \le t \le T$$

• There exists a self-financing strategy, represented by π^* , for which the associated wealth $X_t^{\pi^*}$ satisfies

$$E_{\mathbb{P}}(V_t(X_t^{\pi^*})|\mathcal{F}_s) = V_s(X_s^{\pi^*}), \qquad 0 \le s \le t \le T$$

Investment performance process

$$V_{t,T}(x) \in \mathcal{F}_t$$
, $0 \le t \le T$

- ullet $V_{t,T}(X_t^\pi)$ is a supermartingale
- $V_{t,T}(X_t^{\pi^*})$ is a martingale
- ullet $V_{t,T}(x)$ is the terminal utility in trading subintervals [s,t], $0 \le s \le t$

Observations

- ullet $V_{T,T}(x)$ is chosen exogeneously to the market
- Choice of horizon possibly restrictive
- More realistic to have random terminal data, $V_{T,T}(x,\omega) = U(x,\omega)$

Investment performance process

$$U_t(x)$$
 is an \mathcal{F}_t -adapted process, $t \geq 0$

- The mapping $x \to U_t(x)$ is increasing and concave
- For each self-financing strategy, represented by π , the associated (discounted) wealth X_t^{π} satisfies

$$E_{\mathbb{P}}(U_t(X_t^{\pi}) \mid \mathcal{F}_s) \le U_s(X_s^{\pi}), \qquad 0 \le s \le t$$

• There exists a self-financing strategy, represented by π^* , for which the associated (discounted) wealth $X_t^{\pi^*}$ satisfies

$$E_{\mathbb{P}}(U_t(X_t^{\pi^*}) \mid \mathcal{F}_s) = U_s(X_s^{\pi^*}), \qquad 0 \le s \le t$$

Optimality across times

$$U_{S}(x) \in \mathcal{F}_{S} \qquad U_{t}(x) \in \mathcal{F}_{t}$$

$$|-----|$$

$$0$$

$$U_s(x) = \sup_{\mathcal{A}} E(U_t(X_t^{\pi})|\mathcal{F}_s, X_s = x)$$

- Does such a process aways exist?
- Is it unique?

Forward performance process

A datum $u_0(x)$ is assigned at the beginning of

the trading horizon, t = 0

$$U_0(x) = u_0(x)$$

Forward in time generation of optimal performance

$$E_{\mathbb{P}}(U_t(X_t^{\pi})|\mathcal{F}_s) \le U_s(X_s^{\pi}), \qquad 0 \le s \le t$$

$$E_{\mathbb{P}}(U_t(X_t^{\pi^*})|\mathcal{F}_s) = U_s(X_s^{\pi^*}), \qquad 0 \le s \le t$$

Many difficulties due to "inverse in time"

nature of the problem

The stochastic PDE of the forward performance process

The forward performance SPDE

Let $U\left(x,t\right)$ be an \mathcal{F}_{t} -measurable process such that the mapping $x\to U\left(x,t\right)$ is increasing and concave. Let also $U=U\left(x,t\right)$ be the solution of the stochastic partial differential equation

$$dU = \frac{1}{2} \frac{\left| \sigma \sigma^{+} \mathcal{A} \left(U \lambda + a \right) \right|^{2}}{\mathcal{A}^{2} U} dt + a \cdot dW$$

where a = a(x, t) is an \mathcal{F}_t -adapted process, while $\mathcal{A} = \frac{\partial}{\partial x}$.

Then $U\left(x,t\right)$ is a forward performance process.

The process a may depend on t, x, U, its spatial derivatives etc.

At the optimum

• The optimal portfolio vector π^* is given in the feedback form

$$\pi_t^* = \pi^* \left(X_t^*, t \right) = -\sigma^+ \frac{\mathcal{A} \left(U\lambda + a \right)}{\mathcal{A}^2 U} \left(X_t^*, t \right)$$

• The optimal wealth process X^* solves

$$dX_t^* = -\sigma\sigma^+ \frac{\mathcal{A}(U\lambda + a)}{\mathcal{A}^2U} (X_t^*, t) (\lambda dt + dW_t)$$

Intuition for the structure of the forward performance process

• Assume that U = U(x,t) solves

$$dU(x,t) = b(x,t) dt + a(x,t) \cdot dW_t$$

where b, a are \mathcal{F}_t —measurable processes.

• Recall that for an arbitrary admissible portfolio π , the associated wealth process, X^{π} , solves

$$dX_t^{\pi} = \sigma_t \pi_t \left(\lambda_t dt + dW_t \right)$$

• Apply the Ito-Ventzell formula to $U\left(X_{t}^{\pi},t\right)$ we obtain

$$dU\left(X_{t}^{\pi},t\right) = b\left(X_{t}^{\pi},t\right)dt + a\left(X_{t}^{\pi},t\right) \cdot dW_{t}$$

$$+U_{x}\left(X_{t}^{\pi},t\right)dX_{t}^{\pi}+\frac{1}{2}U_{xx}\left(X_{t}^{\pi},t\right)d\langle X^{\pi}\rangle_{t}+a_{x}\left(X_{t}^{\pi},t\right)d\langle W,X^{\pi}\rangle_{t}$$

$$= \left(b(X_t^{\pi}, t) + U_x(X_t^{\pi}, t) \sigma_t \pi_t \cdot \lambda_t + \sigma_t \pi_t \cdot a_x(X_t^{\pi}, t) + \frac{1}{2} U_{xx}(X_t^{\pi}, t) |\sigma_t \pi_t|^2 \right) dt$$

$$+\left(a\left(X_{t}^{\pi},t\right)+U_{x}\left(X_{t}^{\pi},t\right)\sigma_{t}\pi_{t}\right)\cdot dW_{t}$$

Intuition (continued)

By the monotonicity and concavity assumptions, the quantity

$$\sup_{\pi} \left(U_x \left(X_t^{\pi}, t \right) \sigma_t \pi_t \cdot \lambda_t + \sigma_t \pi_t \cdot a_x (X_t^{\pi}, t) + \frac{1}{2} U_{xx} \left(X_t^{\pi}, t \right) |\sigma_t \pi_t|^2 \right)$$
 is well defined.

• Calculating the optimum π^* yields

$$\pi_t^* = -\sigma_t^+ \frac{U_x\left(X_t^{\pi^*}, t\right) \lambda_t + a_x\left(X_t^{\pi^*}, t\right)}{U_{xx}\left(X_t^{\pi^*}, t\right)}$$

Deduce that the above supremum is given by

$$M^* (X_t^{\pi^*}, t) = -\frac{\left| \sigma_t \sigma_t^+ (U_x (X_t^{\pi^*}, t) \lambda_t + a_x (X_t^{\pi^*}, t)) \right|^2}{2U_{xx} (X_t^{\pi^*}, t)}$$

Choose the drift coefficient

$$b\left(x,t\right) = -M^{*}\left(x,t\right)$$

Solutions to the forward performance SPDE

$$dU = \frac{1}{2} \frac{\left| \sigma \sigma^{+} \mathcal{A} \left(U \lambda + a \right) \right|^{2}}{\mathcal{A}^{2} U} dt + a \cdot dW$$

Local differential coefficients

$$a(x,t) = F(x,t,U(x,t),U_x(x,t))$$

Difficulties

- The equation is fully nonlinear
- ullet The diffusion coefficient depends, in general, on U_x and U_{xx}
- The equation is not (degenerate) elliptic

Choices of volatility coefficient

• The deterministic case: a(x,t) = 0

The forward performance SPDE simplifies to

$$dU = \frac{1}{2} \frac{\left| \sigma \sigma^{+} \mathcal{A} \left(U \lambda \right) \right|^{2}}{\mathcal{A}^{2} U} dt$$

The process

$$U\left(x,t
ight) = u\left(x,A_{t}
ight) \quad \text{with} \quad A_{t} = \int_{0}^{t}\left|\sigma_{s}\sigma_{s}^{+}\lambda_{s}\right|^{2}ds$$

with $u: \mathbb{R} \times [0, +\infty) \to \mathbb{R}$, increasing and concave with respect to x, and solving

$$u_t u_{xx} = \frac{1}{2} u_x^2$$

is a solution.

MZ (2006)

Berrier, Rogers and Tehranchi (2007)

•
$$a(x,t) = 0$$

 σ, λ constants and u separable (in space and time)

The forward performance process reduces to a deterministic function.

$$U\left(x,t\right) = u\left(x,t\right)$$

$$u\left(x,t\right)=-e^{-x+\frac{t}{2}} \qquad \text{or} \qquad u\left(x,t\right)=\frac{1}{\gamma}x^{\gamma}e^{-\frac{\gamma}{2(1-\gamma)}\lambda^{2}t}$$

Horizon-unbiased utilities

Henderson-Hobson (2006)

•
$$a(x,t) = k$$
 , $k \in \mathbb{R}$

$$U(x,t) = u(x,A_t) + kW_t$$

The "market-view" case

$$a = U\phi$$
, ϕ is a d -dim \mathcal{F}_t -adapted process

The forward performance SPDE becomes

$$dU = \frac{1}{2} \frac{\left| \sigma \sigma^{+} \mathcal{A} U \left(\lambda + \phi \right) \right|^{2}}{\mathcal{A}^{2} U} dt + U \phi \cdot dW$$

ullet Define the processes Z and A by

$$dZ = Z\phi \cdot dW$$
 and $Z_0 = 1$

and

$$A_t = \int_0^t \left| \sigma_s \sigma_s^+ (\lambda_s + \phi_s) \right|^2 ds$$

• The process U = U(x,t)

$$U\left(x,t\right) = u\left(x,A_{t}\right)Z_{t}$$

with u solving

$$u_t u_{xx} = \frac{1}{2} u_x^2$$

is a solution

The "benchmark" case

$$a\left(x,t\right)=-xU\left(x,t\right)\delta,\quad\delta$$
 is a d -dim \mathcal{F}_{t} -adapted process

The forward performance SPDE becomes

$$dU\left(x,t\right) = \frac{1}{2} \frac{\left|\sigma_{t}\sigma_{t}^{+}\left(U_{x}\left(x,t\right)\left(\lambda_{t}-\delta_{t}\right)-xU_{xx}\left(x,t\right)\right)\right|^{2}}{U_{xx}\left(x,t\right)} dt - xU_{x}\left(x,t\right)\delta_{t} \cdot dW_{t}$$

ullet Define the processes Y and A by

$$dY_t = Y_t \delta_t \left(\lambda_t dt + dW_t \right)$$
 with $Y_0 = 1$

and

$$A_t = \int_0^t \left| \sigma_s \sigma_s^+ \lambda_s - \delta_s \right|^2 ds.$$

- Assume $\sigma \sigma^+ \delta = \delta$
- The process

$$U = U(x,t) = u\left(\frac{x}{Y_t}, A_t\right)$$

with u as before is a forward performance.

A general case

$$a(x,t) = -xU_x(x,t) \delta + U(x,t) \phi$$

The forward performance SPDE becomes

$$dU(x,t) = \frac{1}{2} \frac{\left| \sigma_t \sigma_t^+ \left(U_x(x,t) \left((\lambda_t + \phi_t) - \delta_t \right) - x U_{xx}(x,t) \delta_t \right) \right|^2}{U_{xx}(x)} dt + \left(-x U_x(x,t) \delta_t + U(x,t) \phi_t \right) \cdot dW_t$$

• Recall the "benchmark" and "market view processes"

$$dY_t = Y_t \delta_t \left(\lambda_t dt + dW_t \right)$$
 with $Y = 1$

and

$$dZ_t = Z_t \phi_t \cdot dW_t$$
 with $Z = 1$

• Define the process

$$A_t = \int_0^t \left| \sigma_s \sigma_s^+ \left(\lambda_s + \phi_s \right) - \delta_s \right|^2 ds$$

The process

$$U = U(x, t) = u\left(\frac{x}{Y_t}, A_t\right) Z_t$$

is a forward performance

MZ (2006, 2007)

The u-pde

An important differential object is the fully non-linear pde

$$u_t u_{xx} = \frac{1}{2}u_x^2 \qquad t > 0,$$

with $u_0(x) = U(x, 0)$.

The local risk tolerance

A quantity that enters in the explicit representation of the optimal portfolios

$$r = -\frac{u_x}{u_{xx}}$$

Modelling considerations

Three related pdes

Fast diffusion equation for risk tolerance

$$\begin{cases} r_t + \frac{1}{2}r^2r_{xx} = 0 \\ r(x,0) = r_0(x) \end{cases}$$
 (FDE)

Conductivity: r^2

• The transport equation

$$u_t + \frac{1}{2}ru_x = 0$$

with u_0 such that $r_0 = r(x, 0) = -\frac{u_0'(x)}{u_0''(x)}$

• Porous medium equation for risk aversion $\gamma = r^{-1}$

$$\gamma_t = \frac{1}{2}F(\gamma)_{xx}$$
 with $F(\gamma) = \gamma^{-1}$

Difficulties

- Differential input equation: $u_t \ u_{xx} = \frac{1}{2}u_x^2$ Inverse problem and fully nonlinear
- Transport equation: $u_t + \frac{1}{2}ru_x = 0$ Shocks, solutions past singularities
- Fast diffusion equation: $r_t + \frac{1}{2}r^2r_{xx} = 0$ Inverse problem and backward parabolic, solutions might not exist, locally integrable data might not produce locally bounded slns in finite time
- Porous medium equation: $\gamma_t = \frac{1}{2}(\frac{1}{\gamma})_{xx}$ Majority of results for (PME), $\gamma_t = (\gamma^m)_{xx}$, are for m>1, partial results for -1 < m < 0

An example of local risk tolerance

(MZ (2006) and Z-Zhou (2007))

$$r(x, t; \alpha, \beta) = \sqrt{\alpha x^2 + \beta e^{-\alpha t}}$$
 $\alpha, \beta > 0$

(Very) special cases

$$\begin{split} r(x,t;0,\beta) &= \sqrt{\beta} &\longrightarrow u(x,t) = -e^{-\frac{x}{\sqrt{\beta}} + \frac{t}{2}} \;, \quad x \in R \\ \\ r(x,t;1,0) &= |x| &\longrightarrow u(x,t) = \log x - \frac{t}{2}, \quad x > 0 \\ \\ r(x,t;\alpha,0) &= \sqrt{\alpha} \; |x| &\longrightarrow u(x,t) = \frac{1}{\gamma} x^{\gamma} e^{-\frac{\gamma}{2(1-\gamma)}t}, \; x \geq 0, \; \gamma = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}} \end{split}$$

Optimal allocations

Optimal portfolio vector

• The SPDE for the forward performance process

$$dU = \frac{1}{2} \frac{\left|\sigma\sigma^{+}\mathcal{A}\left(U\lambda + a\right)\right|^{2}}{\mathcal{A}^{2}U} dt + a \cdot dW$$

The optimal portfolio vector

$$\pi_t^* = \pi^* \left(t, X_t^* \right) = -\sigma^+ \frac{\mathcal{A} \left(U\lambda + a \right)}{\mathcal{A}^2 U} \left(X_t^*, t \right)$$

The optimal wealth process

$$dX_t^* = -\sigma\sigma^+ \frac{\mathcal{A}(U\lambda + a)}{\mathcal{A}^2 U} (X_t^*, t) (\lambda dt + dW_t)$$

Optimal portfolios in the MZ example

The structure of optimal portfolios

$$dX_t^* = \sigma_t \pi_t^* \cdot (\lambda_t \, dt + dW_t)$$

Stochastic input Market

Differential input Individual

wealth x risk tolerance r(x,t) $r_t + \frac{1}{2}r^2r_{xx} = 0$

$$U(x,t) = u\left(\frac{x}{Y_t}, A_t\right) Z_t$$

 $\frac{1}{Y_t}\pi_t^*$ is a *linear* combination

of (benchmarked) optimal wealth

and subordinated (benchmarked) risk tolerance

Optimal asset allocation

• Let X_t^* be the optimal wealth, Y_t the benchmark and A_t the time-rescaling processes

$$dX_t^* = \sigma_t \pi_t^* \cdot (\lambda_t dt + dW_t)$$
$$dY_t = Y_t \delta_t \cdot (\lambda_t dt + dW_t)$$
$$dA_t = |\sigma_t \sigma_t^+ (\lambda_t + \phi_t) - \delta_t|^2 dt$$

Define

$$\widetilde{X}_t^* \triangleq \frac{X_t^*}{Y_t}$$
 and $\widetilde{R}_t^* \triangleq r(\widetilde{X}_t^*, A_t)$

Optimal (benchmarked) portfolios

$$\hat{\pi}_t^* \triangleq \frac{1}{Y_t} \pi_t^* = m_t \widetilde{X}_t^* + n_t \widetilde{R}_t^*$$

$$m_t = \gamma_t^+ \delta_t \qquad n_t = \sigma_t^+ (\lambda_t + \phi_t - \delta_t)$$

$$m_t = \sigma_t^+ \delta_t \qquad n_t = \sigma_t^+ (\lambda_t + \phi_t - \delta_t)$$

Stochastic evolution of wealth-risk tolerance Explicit construction of optimal processes

A system of SDEs at the optimum

$$\widetilde{X}_t^* = \frac{X_t^*}{Y_t} \quad \text{ and } \quad \widetilde{R}_t^* = r(\widetilde{X}_t^*, A_t)$$

$$\begin{cases} d\widetilde{X}_t^* = r(\widetilde{X}_t^*, A_t)(\sigma_t \sigma_t^+ (\lambda_t + \phi_t) - \delta_t) \cdot ((\lambda_t - \delta_t) dt + dW_t) \\ d\widetilde{R}_t^* = r_x(\widetilde{X}_t^*, A_t) d\widetilde{X}_t^* \end{cases}$$

The optimal wealth and portfolios are explicitly constructed if the function $r(\boldsymbol{x},t)$ is known

Solutions of the fast diffusion risk tolerance pde

$$r_t + \frac{1}{2}r^2r_{xx} = 0$$

Positive and increasing space-time harmonic functions

• Assume that h(x,t) is positive, increasing in x, and satisfies

$$h_t + \frac{1}{2}h_{xx} = 0$$

• Then, it follows from Widder's theorem, that there exists a finite positive Borel measure such that

$$h(x,t) = \int_0^\infty e^{yx - \frac{1}{2}y^2t} \nu(dy)$$

Risk tolerance function

- ullet Take a positive and increasing space time harmonic function h(x,t)
- ullet Define the risk tolerance function r(x,t) by

$$r(x,t) = h_x(h^{-1}(x,t),t)$$

 $\bullet \ \ {\rm Then} \ r(x,t) \ {\rm solves} \ {\rm the} \ {\rm FDE}$

$$r_t + \frac{1}{2}r^2r_{xx} = 0$$
, $r(0,t) = 0$

The differential input function u

Define the function

$$u(x,t) = \int_0^x \exp\left(-h^{-1}(y,t) + \frac{1}{2}t\right) dy$$

• Then u solves

$$u_t u_{xx} = \frac{1}{2} u_x^2$$

• Alternatively, use $r(x,t) = h_x(h^{-1}(x,t),t)$ and the transport equation

$$u_t + \frac{1}{2}ru_x = 0$$

Example

• Consider the case when the positive Borel measure is a Dirac delta, i.e.,

$$\nu = \delta_{\gamma} , \qquad \gamma > 0$$

Then

$$h(x,t) = e^{\gamma x - \frac{1}{2}\gamma^2 t} ,$$

$$h^{-1}(x,t) = \frac{1}{\gamma} \left(\log x + \frac{1}{2}\gamma^2 t \right) ,$$

$$r(x,t) = \lambda x$$
,

$$u(x,t) = \frac{\gamma}{\gamma - 1} x^{\frac{\gamma - 1}{\gamma}} e^{-\frac{1}{2}(\gamma - 1)t}$$

Globally defined solutions to the u-pde and the FDE

• Assume that for a finite positive Borel measure on $\mathbb R$

$$\int_{\mathbb{R}} e^{-yx} \left(1 + |y| + \frac{1}{|y|} \right) \nu(dy) < \infty$$

Assume that the equation below has a solution

$$b'(t) = -\frac{1}{2} \frac{\int_{\mathbb{R}} e^{-yb(t) - \frac{1}{2}y^2 t} \nu(dy)}{\int_{\mathbb{R}} e^{-yb(t) - \frac{1}{2}y^2 t} y\nu(dy)}, \qquad b(0) = b_0$$

Increasing space-time harmonic functions

Define the function

$$h(x,t) = \int_{\mathbb{R}} \left(-e^{-yx - \frac{1}{2}y^2t} + e^{-yb(t) - \frac{1}{2}y^2t} \right) \frac{1}{y} v(dy)$$

• The above function satisfies

$$h_t + \frac{1}{2}h_{xx} = 0$$
,
 $h(b(t), t) = 0 \iff b(t) = h^{-1}(0, t)$

Risk tolerance function

• The solution to the fast diffusion risk tolerance pde is given by

$$r(x,t) = h_x(h^{-1}(x,t),t)$$

Example

• For positive constants a and b define

$$h(x,t) = \frac{b}{a} \exp\left(-\frac{1}{2}a^2t\right) \sinh(ax)$$

Observe that

$$r(x,t) = \sqrt{a^2x^2 + b^2 \exp(-a^2t)}$$

- ullet The corresponding u(x,t) function can be calculated explicitly
- The above class covers the classical exponential, logarithmic and power cases

Notice that r(x,t) is globally defined

Optimal wealth and risk tolerance processes

Define the process

$$M_t = \int_0^t \sigma \sigma^+ \lambda_s dW_s$$

Note that

$$A_t = \langle M \rangle_t$$

Optimal wealth process

$$X_t^{x,*} = h(h^{-1}(x,0) + A_t + M_t, A_t)$$

Risk tolerance process

$$R_t^{x,*} = r(X_t^{x,*}, A_t) = h_x(h^{-1}(x, 0) + A_t + M_t, A_t)$$

Construction

• Initial data $u_0(x)$, or $r_0(x)$, yields h(x,0)

• Backward heat equation for h

• Solution h(x,t)

• Risk tolerance function $r(x,t) = h_x(h^{-1}(x,t),t)$

• Market input $M_t = \int_0^t \sigma_s \sigma_s^+ \lambda_s dW_s$

Construction

• Optimal wealth $X_t^{x,*} = h\left(h^{-1}(x,0) + \langle M \rangle_t + M_t, \langle M \rangle_t\right)$

- Optimal risk tolerance $r(X_t^{x,*},t) = h_x\left(h^{-1}(X_t^{x,*},t),t\right)$
- Optimal portfolio

$$\pi_t^* = k_t^1 X_t^{x,*} + k_t^2 r(X_t^{x,*}, t)$$

- Distributional properties of optimal wealth
- Specification of initial data h(x, 0)?
- Inference of initial data from the investor's wish list.