A Calibratable Dynamic Model for CDO's: Application to Leveraged-Super-Senior Tranche Valuation

- Rapid growth of credit derivatives market.
- Valuation of CDO's in terms of a calibrated static model.
- •Risk-neutral pricing, i.e. pricing relative to market prices
- •Development of a dynamic model built onto the static model.
- •Example of valuation using the dynamic model: LSS-LT's

Michael Walker, Department of Physics University of Toronto

Global Credit Derivatives Market US\$ bn (from BBA Credit Derivatives Report 2006)

Recent report-Isda: 38% rise in CD notional, 1st half of 2007

Credit Derivatives Products

Further remarks

- CDO's have been prominent players in the global credit crunch that began in July-August
- Leveraged super-senior tranches (my last example) are probably the most common asset underlying the Canadian non-bank ABCP market (which is currently frozen)
- The development of methods of valuing portfolio credit derivatives is still very much an ongoing process.

CDO's – a simplistic view

CDO contracts provide insurance against tranche losses

- e.g. consider 3-6% tranche
- Protection buyer buys insurance against all losses from 3 to 6% of total notional.
- Protection buyer pays a regular quarterly premium to an investor
- Investor pays any losses lying between 3% and 6% to the protection buyer

iTraxx Tranche Quotes - 21 June 2005				
Tranche	3 year	5 year	7 year	10 year
1: 0-3%	7.3	27.38	43.8	53.25
2: 3-6%	26	91	245	455
3: 6-9%	7.4	31.5	60	123
4: 9-12%	2.4	19	30	56
5: 12-22%	2.3	12.5	19.5	35.5
0-100%	23.25	39.25	49.75	60.5

0-3% quoted as upfront %; remaining in bps per year (data from Julien Houdain and Fortis Investments)

Focus – The calibration problem

- Risk –neutral pricing is pricing relative to market prices
- There are typically 24 different CDO contracts (differing in maturity and loss tranche) on the market that reference the same underlying portfolio.
- The problem is to find a risk-neutral measure that can be calibrated to reproduce all available market prices – a central problem of much recent research
- The accurate marking of tranches to market, and the pricing of forward CDO's and dynamics-sensitive derivatives such as options and leveraged super-senior swaps requires simultaneous calibration to all available market prices.

The Basic Pricing Equation

- S For a CDO contract on a given tranche and for a given maturity, a fair premium requires that:
 - PV(Expected tranche losses) = w X T_{eff}
- S Define f(k,t) = expected loss per unit tranche notional for tranche k at time t
- S A knowledge of f(k,t) defines a static model for the valuation of CDO's

Expected loss for tranche k

Tranche term structures

iTraxx data for 21 June 2005 from Julien Houdain and Fortis Investments

Calibration procedure has been extensively tested

- Walker (2006) successful calibration to 97 daily sets of iTraxx quotes
- Torresetti et al (2006) successful calibration to 616 sets of CDX quotes and to 473 sets of iTraxx quotes (Nov 03 to May 06) – calibrated model reproduces the tranche prices to within the bid-ask spread

Applications of Static Model

- Marking to market of tranches as accurately as possible
- Valuing long-short forward tranches as accurately as possible
- For details, see Walker (2005, 2006).

Consider the 10 yr equity tranche, priced in terms of an upfront percentage u plus 500 bps per year

 Suppose that 23 of 24 tranche-maturity spreads are unchanged after one day, but that there is no market for the 10-yr equity tranche. All upfront u's consistent with

40% < u < 65% are arbitrage free

- For bespoke portfolio, calibration of index to corresponding portfolio of single names, but no market for tranches:
 - 41% < u < 72%
- Tranche prices are market prices: no tranche market = no tranche price (from risk-neutral pricing)

Mark-to-market 10 yr maturity

A Dynamic Model

discrete loss grid for portfolio losses

one-step Markov model

multi-step Markov model

Leveraged super-senior swaps with loss triggers

- Exotic, path-dependent, challenging to value
- Return on notional for SS's is low
- For LSS's investor is liable only for a posted collateral that is a fraction U < 1 (say U = 1/10) of the full notional
- Loss trigger protects protection buyer against losses exceeding U
- The first time the basket loss exceeds the trigger value K(t), the contract is wound up on a markto-market basis

LSS-LT fair spreads (Calibration to 21 June 2005 CDO Market prices)

Two Main Technical Ideas

 The introduction of a static riskneutral measure that allows easy and complete calibration to CDO spreads. Marking-tomarket and long-short forwards.

 The introduction of a dynamic multi-step Markov model that allows complete calibration to CDO spreads and easy calibration to prices of dynamics-sensitive derivatives

Conclusions: cont'd LSS-LT's (exotic, path-dependent) were discussed as an example

References to related work can be found in:

1) Michael Walker, 2006, "CDO Valuation: Term Structure, Tranche Structure and Loss Distributions,"

http://www.physics.utoronto.ca/~gocmp/nextLongB.2006.09.22.pdf

- 2) Roberto Torresetti, Damiano Brigo and Andrea Pallavicini, 2006, "Implied Expected Tranched Loss Surface from CDO Data," http://damianobrigo.it
- 3) Michael Walker, 2007, "Simultaneous Calibration to a Range of Portfolio Credit Derivatives with a Dynamic Discrete-Time Multi-Step Markov Loss Model,"

http://www.physics.utoronto.ca/~qocmp/FCDO2.pdf