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Some uses of volatility derivatives

I Directional: The user has a forecast/view (perhaps based on

statistical time-series or macroeconomic or event-driven analysis)

that volatility will be higher or lower than the market expects.

I Relative value: The user believes that the market is overpricing

the volatility of one index relative to another index. Or the user

believes that the market is over/under-pricing the volatility of an

index relative to the volatility of the index’s constituent stocks.

I Hedging: The user wants to hedge volatility exposure.



Variance swap pays realized variance less a fixed leg



Variance swaps (RISK, August 2006):

The market for variance swaps has grown sharply over the past two

years. Deutsche Bank estimates that volumes grew fivefold last year

and are up 50% year-on-year for the first half of 2006. According to

BNP Paribas estimates, daily trading volumes for variance swaps on

indexes reached $4 million – 5 million in vega in the first half of 2006.

Credit Suisse, meanwhile, reckons daily trading volumes are around

EUR 2 million – 3 million in vega, compared with EUR 250,000 –

500,000 three years ago.



Variance swaps (Financial Times, May 2006):

Volatility is becoming an asset class in its own right. A range of

structured derivative products, particularly those known as variance

swaps, are now the preferred route for many hedge fund managers

and proprietary traders to make bets on market volatility.

Todd Steinberg, head of equities and derivatives at BNP Paribas in

New York, said: “Variance swaps isolate volatility and take away all of

the other attributes that you would ordinarily have to factor in, such

as . . . movements in the price of the underlying asset.” He pointed out

that . . . the contracts are . . . almost as liquid as S&P 500 listed

options, with spreads that are just as tight and with smaller capital

requirements. Of course, losses have the potential to build up at a

greater rate for those who turn out to take the wrong side of the swap.



Variance options (Financial Times, May 2007):

Mr Fields [head of flow and structured products, SocGen] remembers

a call on variance on the Eurostoxx in 2005 . . . was unexpectedly

crossable between clients and became very liquid within months.

At Deutsche they are not so sure . . . head of equity derivatives for

Europe Nino Kjellman . . . admits to being “disappointed” at the flow

in options on variance . . . He blames a combination of bid-ask margins

refusing to contract and the fact that risk management systems still

need improvements to book the trades. “I wouldn’t be happy to see

another tranche on top of what we have already,” says Mr Ankaoua.

“The industry is taking a big risk writing such products and at some

point that will be a risk that you can’t assess. This industry has to

fulfill investors’ needs, but . . . I don’t want to write a ticking bomb.”



This talk

I Objective: create/replicate/synthesize contracts on realized

variance using vanilla options and the underlier.

I We want the replication strategy to be model-free, not dependent

on a specific model of the underlying dynamics.

I For variance swaps, we review the known replication strategy.

I For variance options, it’s impossible to replicate perfectly in a

model-independent way, so we will superreplicate using vanilla

options and the underlying. (Subreplication: Dupire 2005)

I Carr-Lee’s “Robust Replication of Volatility Derivatives” made

an independence assumption to find [infinitely many] perfect

replication strategies for a given variance contract.

Here we drop the independence assumption entirely.



Assumptions and notation

I Frictionless arbitrage-free markets

I Let Y > 0 denote the share price of an underlying asset.

Assume Y is a continuous semimartingale (local martingale +

finite variation “drift”). For example, an Itô process

dYt = µtYtdt+ σtYtdWt,

where W is a Brownian motion, and µ and σ may be stochastic.

I Let Xt := log(Yt/Y0) be the log returns process.

I No dividends.

Zero interest rates: “cash”/“bond” has price 1 at all times.



Assumptions and notation

I Let [X] and [Y ] denote the quadratic variation, which is the

“continuously sampled cumulative realized variance” of

respectively X and Y . The definition can be expressed as:

[X]t =
∫ t

0

d[X]s =
∫ t

0

(dXs)2.

So Xt = log(Yt/Y0) implies

dXt =
1
Yt

dYt + (FV term) ⇒ d[X]t =
1
Y 2
t

d[Y ]t

In the Itô process case, [X]T =
∫ T
0
σ2
t dt becuase

dXt = σtdWt + (dt term) ⇒ d[X]t = σ2
t dt.

I A variance swap pays [X]T . (So we’re assuming zero fixed leg,

unit notional, no annualization, continuous sampling.)

I A variance call with strike Q and expiry T pays ([X]T −Q)+.



Variance swaps

Variance options

Superreplicating [X]T − [X]τb

Superreplicating ([X]τb −Q)+

The combined superhedge



Log contract is a “synthetic variance swap”

The payoff [X]T admits replication by

the European-style payoff −2 log(YT /Y0)

plus the P&L from holding 2/Yt shares at each time t

Therefore, a variance swap has time-0 value equal to a claim on

−2 log(YT /Y0).

Model-independent! Essentially no assumptions on σt.

(Dupire 92, Neuberger 94, Carr-Madan 98, Derman et al 99)



Synthetic variance swap

Log contract

including also the financed share position:

−2 log(YT /Y0)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2

3

4

5

6

Y
T
/Y

0

P
ay

of
f



Synthetic variance swap

Log contract including also the financed share position:

−2 log(YT /Y0) + 2(YT /Y0 − 1)
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Synthetic variance swap

I Equivalently, it’s the payoff of

(2/K2)dK

OTM calls or puts at each strike K.

I The value of this option portfolio is the model-free risk-neutral

expectation of realized variance on [0, T ], which can be described

as the “model-free implied variance”.

I Since 2003, the CBOE’s VIX index has been defined as the

square root of this value, using SPX options, for T = 30 days,

after interpolation.



Derivation

By Itô’s rule, Xt = log(Yt/Y0) implies

dXt =
1
Yt

dYt +
1
2

(
−1
Y 2
t

)
d[Y ]t =

1
Yt

dYt −
1
2

d[X]t.

Rewrite as

XT =
∫ T

0

1
Yt

dYt −
1
2

[X]T .

Rearranging,

[X]T = −2XT +
∫ T

0

2
Yt

dYt.

This is the sum of the European-style payoff −2 log(YT /Y0) and the

gains from dynamically holding 2/Yt shares.



Synthetic variance swaps: adding linear functions

Let λ, θ be arbitrary constants. Let

L(y) := −2 log y + λy + θ

The payoff [X]T admits replication by

the European-style payoff L(YT )− L(Y0)

plus the P&L from holding 2/Yt − λ shares at each time t

Therefore, a variance swap has time-0 value equal to a claim on

L(YT )− L(Y0)

Or simply

L(YT )

if L is “at the money” at time 0. Model-independent!



Synthetic variance swaps: adding linear functions

At time 0 each of these price payoffs has same value as [X]T payoff
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What about discrete monitoring and hedging

Discretely monitor and hedge, at times tn. The variance swap pays∑
n

(log(Ytn+1/Ytn))2

The hedge pays −2 log(YT /Y0) plus the share-trading P&L:∑
n

(
− 2 log(Ytn+1/Ytn) +

2
Ytn

(Ytn+1 − Ytn)
)

As a function of the one-period simple return Rn+1 := Ytn+1/Ytn − 1,

the one-period variance swap P&L is

[log(1 +R)]2

and the one-period synthetic variance swap P&L is

−2 log(1 +R) + 2R.

For small R, the P&L error (synthetic− genuine) ≈ R3/3 is small.



What about discrete monitoring and hedging

P&L of synthetic variance swap ≈ P&L of variance swap because∑
n

(
− 2 log(Ytn+1/Ytn) +

2
Ytn

(Ytn+1 − Ytn)
)
≈
∑
n

(log(Ytn+1/Ytn))2

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

0.002

0.004

0.006

0.008

0.01

0.012

One−period simple return

O
ne

−
pe

rio
d 

ga
in

s

Synthetic variance swap
Variance swap



Variance swaps

Variance options

Superreplicating [X]T − [X]τb

Superreplicating ([X]τb −Q)+

The combined superhedge



Variance call: Option to receive variance less strike



Synthesizing variance options?

I Variance options give portfolio managers more control over risk

exposure. But they pose greater hedging problems to the dealer.

I The difficulties arise from the absence of a model-independent

strategy to replicate variance options using Europeans and Y .

I But we will find model-independent strategies to superreplicate

variance options using Europeans and Y .

I If a variance option is bid above our upper bound, then short it

and go long our superreplicating strategy. Model-free arbitrage.



Variance call upper bound: general strategy

I Introduce a double barrier {bd, bu}. Let τb be Y ’s passage time.

I Decompose

([X]T −Q)+ ≤ ([X]τb∧T −Q)+ + ([X]T − [X]τb∧T ),

the sum of a pre-barrier-variance call and post-barrier-variance.

I We will use cash and shares (dynamic) to replicate ([X]τb −Q)+,

hence superreplicate ([X]τb∧T −Q)+.

I We will use options (static) and shares (dynamic) to:

superreplicate [X]T − [X]τb in the event that τb ≤ T

and produce 0 in the event that τb > T .

Hence superreplicate ([X]T − [X]τb∧T ).



The basic identity

Both superhedges come from a basic identity. Recall

dXt =
1
Yt

dYt + (dt term)

d[X]t =
1
Y 2
t

d[Y ]t.

Let h(x, q) be smooth. Again by Itô

h(YT , [X]T ) = h(Y0, 0) +
∫ T

0

hydYs +
∫ T

0

1
2
hyyd[Y ]s +

∫ T

0

hq d[X]s

= h(Y0, 0) +
∫ T

0

hydYs +
∫ T

0

1
2
Y 2
s hyy + hq d[X]s

suppressing the arguments (Ys, [X]s). See Bick (1995).

More generally we can replace T with a stopping time τ ∧ T .



Variance swaps

Variance options

Superreplicating [X]T − [X]τb

Superreplicating ([X]τb −Q)+

The combined superhedge



Create [X] using the d[X] integral

The basic identity says

h(YT , [X]T ) = h(Y0, 0) +
∫ T

0

hydYs +
∫ T

0

1
2
Y 2
s hyy + hq d[X]s

Making h(y, q) depend only on y, let’s have [X] dependence in RHS.

I In particular, if h(y, q) = L(y) = −2 log y + λy + θ then

L(YT ) = L(Y0) +
∫ T

0

LydYs + [X]T

This recovers the classic synthetic variance swap: hold a claim on

L(YT )− L(Y0) hedged dynamically with −Ly shares.

I If λ, θ are such that L is ATM, then replicating portfolio value is

E0L(YT )− L(Y0) = E0L(YT )



Superreplicating [X]T − [X]τb

Let

L(y) := −2 log y + λy + θ

where θ, λ are constants chosen such that L(bu) = L(bd) = 0.

At time τb we want to have a claim on L(YT )− L(Yτb) = L(YT ),

or larger. Simply holding a L(YT ) claim suffices if τb ≤ T .
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Superreplicating [X]T − [X]τb

However, if τb > T then L(YT ) < 0 and we don’t want that liability.

So holding a claim on L(YT )+ suffices in all cases.
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Variance swaps

Variance options

Superreplicating [X]T − [X]τb

Superreplicating ([X]τb −Q)+

The combined superhedge



Create functions of [X] using h(YT , [X]T )

Recall the basic identity

h(YT , [X]T ) = h(Y0, 0) +
∫ T

0

hydYs +
∫ T

0

1
2
Y 2
s hyy + hq d[X]s

Now let’s generate [X] dependence in the LHS instead of the RHS.

I If h(y, q) satisfies 1
2y

2hyy + hq = 0 then h(YT , [X]T ) can be

synthesized as h(Y0, 0) plus P&L from holding hy shares.

(Start with “intrinsic” in cash. Dynamically “delta hedge.”)

I Imposing “terminal conditions” at q = Q lets us create general

payoff functions of price-when-variance-reaches-Q.

I Imposing “boundary conditions” at y = b lets us create general

payoff functions of variance-when-price-reaches-b.



Intrinsic+Delta replicates h(Y, [X]) if h solves PDE

I If h solves the PDE
1
2
y2hyy + hq = 0

then the payoff h(YT∧τ , [X]T∧τ ) is replicated by holding

hy(Yt, [X]t) shares

h(Yt, [X]t)− Ythy(Yt, [X]t) cash

at each t ≤ T ∧ τ . Initial replicating portfolio value is h(Y0, 0).

I The PDE can be understood as a “Black-Scholes” PDE (or a

backward Kolmogorov equation) for driftless GBM with unit

volatility, but with q in place of t.



The time-change point-of-view

This result, and what follows, can be understood via time change.

In particular recall the theorem of Dambis/Dubins-Schwarz:

If M is a continuous martingale with M0 = 0 and [M ]∞ =∞ then

there exists a Brownian motion B such that for all t

Mt = B[M ]t

The DDS Brownian motion (Bu,FAu) is given by Bu := MAu where

Au := {inf u : [M ]t > u}.

I Intuition: Every continuous driftless process M is a Brownian

motion run on a stochastic clock. The clock (“business time”) is

the realized variance of M . The clock runs faster when M is

more volatile, slower when M is less volatile.



The time-change point-of-view

To apply DDS, we have

dXt =
1
Yt

dYt −
1

2Y 2
t

d[Y ]t =
1
Yt

dYt −
1
2

d[X]t

so Mt := Xt + 1
2 [X]t is (under risk-neutral measure) a martingale.

By DDS, there exists Brownian motion B with B[X]t = Mt for all

t ≤ T . Hence

Xt = B[X]t −
1
2

[X]t.

So X is drift −1/2 Brownian motion, run on a stochastic clock [X]t.

So Y is driftless GBM, wrt this business time clock: Yt = GBM[X]t .

[Dupire (2005) uses DDS to relate volatility derivatives to the

Skorohod problem. Forde (2005) notes the relevance of DDS to

pre-barrier variance contracts.]



Intrinsic+Delta replicates general g([X]τb)

Let τb be the first passage time of Y to b. For general boundary data

g : [0,∞)→ R, let h(y, q) := BP (y, q; b, g) where

BP (y, q; b, g) :=


∫∞
0
g(q + z) | log(b/y)|√

2πz3
exp

[
− (log(b/y)+z/2)2

2z

]
dz if q 6= b

g(q) if q = b

Then the intrinsic+delta strategy creates BP (XT∧τb , [X]T∧τb) =

g([X]τb)Iτb≤T +BP (XT , [X]T )Iτb>T≥ g([X]τb∧T ) if g is increasing

Replicating portfolio has time-0 value BP (Y0, 0; b, g).

Proof.

Directly verify that BP (y, q) satsifies the PDE.



Intuition of BP formula for pricing general g([X]τb)

I Eg(variance until Y hits b) =

Eg(time until unit-vol driftless GBM hits b).

The BP (y, q; b, g) computes this Eg(“Brownian passage” time).
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I The kernel z 7→ |β|√
2πz3

exp
[
− (β+z/2)2

2z

]
is the [defective if β ≥ 0]

density of passage time of drift −1/2 Brownian motion to level

β = log(b/y) (or driftless GBM from e0 = 1 to eβ = b/y).



The double barrier case

I Likewise, g([X]τb), where τb is first passage time to a double

barrier {bd, bu}, admits replication by intrinsic+delta. In this case

BP (y, q; bd, bu, g) =
∫ ∞

0

g(q + z) p(log(bd/y), log(bu/y), z)dz

involves a double-barrier density p.

I In the case g(q) = (q −Q)+ we have the representation

BP (y,q;bd,bu,Q)=
∫∞−αi
−∞−αi

√
y/bu sinh(log(bd/y)

√
1/4−2iz)−

√
y/bd sinh(log(bu/y)

√
1/4−2iz)

2πz2ei(Q−q)z sinh(log(bu/bd)
√

1/4−2iz)
dz

where α > 0 is arbitrary.

Proof: Combine the well-known Laplace transform of p with the

call pricing formula in Lee (2004).



Variance swaps

Variance options

Superreplicating [X]T − [X]τb

Superreplicating ([X]τb −Q)+

The combined superhedge



Variance call upper bound: general strategy

I Introduce a double barrier {bd, bu}. Let τb be Y ’s passage time.

I Decompose

([X]T −Q)+ ≤ ([X]τb∧T −Q)+ + ([X]T − [X]τb∧T ),

the sum of a pre-barrier-variance call and post-barrier-variance.

I We will use cash and shares (dynamic) to replicate ([X]τb −Q)+,

hence superreplicate ([X]τb∧T −Q)+.

I We will use options (static) and shares (dynamic) to:

superreplicate [X]T − [X]τb in the event that τb ≤ T

and produce 0 in the event that τb > T .

Hence superreplicate ([X]T − [X]τb∧T ).



Superreplication of variance call

Fix bd ≤ Y0 and bu ≥ Y0. Let

Nt :=
{
BPy(Yt, [X]t; bd, bu;Q), t ≤ τb
−Ly(Yt), t > τb.

The variance call is superreplicated by the strategy

1 claim on L(YT )+

Nt shares

BP (Y0, 0;Q) +
∫ t

0

NsdYs −NtYt cash

Superreplicating portfolio has time-0 value BP (Y0, 0;Q) + E0L(YT )+.



Proof.

The strategy clearly self-finances.

If τb ≥ T , then the portfolio has time-T value

L(YT )+ +BP (YT , [X]T ;Q) ≥ 0 + ([X]T −Q)+.

If τb < T then the portfolio has time-T value

([X]τb −Q)+ +
∫ T

τb

2
Yt

dYt + L(YT )+ ≥ ([X]τb −Q)+ + [X]T − [X]τb

≥ ([X]T −Q)+

where the first ≥ is because L(YT )+ ≥ L(YT ).



Variance call upper bound: a better decomposition

I Instead of

([X]T −Q)+ ≤ ([X]τb∧T −Q)+ + ([X]T − [X]τb∧T ),

decompose

([X]T−Q)+ ≤ ([X]τb −Q)+−([X]τb − [X]T −Q)++([X]T − [X]τb∧T ),

long a pre-barrier-variance perpetual call,

short a post-barrier-variance perpetual call,

long post-barrier-variance



Variance call upper bound: Improvement

A better (cheaper) alternative to the payoff L(YT )+ is L∗(YT ), where

L∗(y) := L∗(y; bd, bu, Q) :=

L(y) if y /∈ (bd, bu)

−BP (y, 0;Q) if y ∈ (bd, bu)
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Variance call upper bound: Improvement

If τb ≥ T , then the portfolio still has time-T value

−BP (YT , 0;Q) +BP (YT , [X]T ;Q) ≥ 0 + ([X]T −Q)+.

because

([X]τb −Q)+ ≥ ([X]T −Q)+ + ([X]τb − [X]T −Q)+

If τb < T then the portfolio still has time-T value

([X]τb −Q)+ +
∫ T

τb

2
Yt

dYt + L∗(YT ) ≥ ([X]τb −Q)+ + [X]T − [X]τb

≥ ([X]T −Q)+

where the first ≥ is because L∗(YT ) ≥ L(YT )− L(Yτb).



Variance call upper bound: Minimization

I The upper bound depends on the arbitrarily chosen bd ≤ Y0 and

bu ≥ Y0. Optimized upper bound is

inf
(bd,bu)

[
BP (Y0, 0; bd, bu, Q) + E0L

∗(YT ; bd, bu, Q)
]

I The first term has an explicit formula (Fourier-style).

The second term is observable from T -expiry European prices.

I Intuition:

The bigger the strike Q, the wider the optimal interval (bd, bu).

An interval too narrow includes in the post-barrier variance too

much pre-Q variance.

An interval too wide includes in the [call on] pre-barrier variance

too much variance occurring after expiry.



Variance call: Universal superreplicating portfolios
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Let Y0 = 100. These 3 time-T payoffs arise from 3 different choices of

(bd, bu). A claim on any one of these payoffs, together with dynamic

trading of shares, model-independently superreplicates a spot-starting

variance call with strike 0.04 and expiry T .



Example of upper and lower bounds
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Upper bound using Europeans
Heston
Lower bound (Dupire)

Bounds on variance calls with expiry T = 1, assuming the prices of

T -expiry Europeans are consistent with Heston dynamics

dVt = 1.15(0.04− Vt) + 0.39
√
VtdW2t, V0 = 0.04

where W1 and W2 are independent Brownian motions.



Conclusions

I Exactly replicate functions of pre-barrier variance (which, by

DDS, has the same law as time-until-unit-GBM-hits-barrier).

I Superreplicate post-barrier variance.

I Hence superreplication of variance call.

I All results are model-independent, rigorous, and extendable (to

forward-starting variance, arithmetic variance, corridor variance).

I Trading strategies are simple (static in options, “delta” in shares)

and give explicit arbitrage if our bounds are violated.
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