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Motivation

We would like to be able to price consistently at least
1 options on SPX
2 options on VIX

Over the last year, we have seen increased liquidity in both
options on variance and options on VIX

so now we have decent market price data

Which dynamics are consistent with market prices?
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Problems with one-factor stochastic volatility models

All volatilities depend only on the instantaneous variance v

Any option can be hedged perfectly with a combination of any
other option plus stock
Skew, appropriately defined, is constant

We know from PCA of volatility surface time series that there
are at least three important modes of fluctuation:

level, term structure, and skew

It makes sense to add at least one more factor.
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Other motivations for adding another factor

Adding another factor with a different time-scale has the
following benefits:

One-factor stochastic volatility models generate an implied
volatility skew that decays as 1/T for large T . Adding another
factor generates a term structure of the volatility skew that
looks more like the observed 1/

√
T .

The decay of autocorrelations of squared returns is exponential
in a one-factor stochastic volatility model. Adding another
factor makes the decay look more like the power law that we
observe in return data.
Variance curves are more realistic in the two-factor case. For
example, they can have humps.
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Historical attempts to add factors

Dupire’s unified theory of volatility (1996)

Local variances are driftless in the butterfly measure.
We can impose dynamics on local variances.

Stochastic implied volatility (1998)

The implied volatility surface is allowed to move.
Under diffusion, complex no-arbitrage condition, impossible to
work with in practice.

Variance curve models (1993-2005)

Variances are tradable!
Simple no-arbitrage condition.



Introduction Historical development Variance curve models Fitting the market Time series analysis Conclusion

Dupire’s unified theory of volatility

The price of the calendar spread ∂T C (K ,T ) expressed in
terms of the butterfly ∂K ,KC (K ,T ) is a martingale under the
measure QK ,T associated with the butterfly.



Introduction Historical development Variance curve models Fitting the market Time series analysis Conclusion

Dupire’s unified theory of volatility

The price of the calendar spread ∂T C (K ,T ) expressed in
terms of the butterfly ∂K ,KC (K ,T ) is a martingale under the
measure QK ,T associated with the butterfly.

Local variance vL(K ,T ) is given by (twice) the current ratio
of the calendar spread to the butterfly.



Introduction Historical development Variance curve models Fitting the market Time series analysis Conclusion

Dupire’s unified theory of volatility

The price of the calendar spread ∂T C (K ,T ) expressed in
terms of the butterfly ∂K ,KC (K ,T ) is a martingale under the
measure QK ,T associated with the butterfly.

Local variance vL(K ,T ) is given by (twice) the current ratio
of the calendar spread to the butterfly.

We may impose any dynamics such that the above holds and
local variance stays non-negative.



Introduction Historical development Variance curve models Fitting the market Time series analysis Conclusion

Dupire’s unified theory of volatility

The price of the calendar spread ∂T C (K ,T ) expressed in
terms of the butterfly ∂K ,KC (K ,T ) is a martingale under the
measure QK ,T associated with the butterfly.

Local variance vL(K ,T ) is given by (twice) the current ratio
of the calendar spread to the butterfly.

We may impose any dynamics such that the above holds and
local variance stays non-negative.

For example, with one-factor lognormal dynamics, we may
write:

v(S , t) = vL(S , t)
exp

{

−b2/2 t − b Wt

}

E [exp {−b2/2 t − b Wt} |St = S ]

where it is understood that vL(·) is computed at time t = 0.
Note that the denominator is hard to compute!
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Stochastic implied volatility

The evolution of implied volatilities is modeled directly as in
σBS(k,T , t) = G (z; k,T − t) with z = {z1, z2, ..., zn} for
some factors zi .

For example, the stochastic factors zi could represent level,
term structure and skew.

The form of G (·) is highly constrained by no-arbitrage
conditions

An option is valued as the risk-neutral expectation of future
cashflows – it must therefore be a martingale.
Even under diffusion assumptions, the resulting no-arbitrage
condition is very complicated.

Nobody has yet written down an arbitrage-free solution to a
stochastic implied volatility model that wasn’t generated from
a conventional stochastic volatility model.

SABR is a stochastic implied volatility model, albeit without
mean reversion, but it’s not arbitrage-free.

Stochastic implied volatility is a dead end!
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Why model variance swaps?

Dupire’s UTV is hard to implement because local variances
are not tradable.

Stochastic implied volatility isn’t practical because implied
volatilities are not tradable.

Variance swaps are tradable.

Variance swap prices are martingales under the risk-neutral

measure.

Moreover variance swaps are now relatively liquid
and forward variance swaps are natural hedges for cliquets and
other exotics.

Thus, as originally suggested by Dupire in 1993, and then
latterly by Duanmu, Bergomi, Buehler and others, we should
impose dynamics on forward variance swaps.
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Modeling forward variance

Denote the variance curve as of time t by

Ŵt(T ) = E

[

∫ T

0 vs ds

∣

∣

∣Ft

]

. The forward variance

ζt(T ) := E [vT | Ft ] is given by

ζt(T ) = ∂T Ŵt(T )

A natural way of satisfying the martingale constraint whilst
ensuring positivity is to impose lognormal dynamics as in Dupire’s
(1993) example:

dζt(T )

ζt(T )
= σ(T − t) dWt

for some volatility function σ(·).
Lorenzo Bergomi does this and extends the idea to n-factors.
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Bergomi’s model

In the 2-factor version of his model, we have

dζt(T )

ζt(T )
= ξ1 e−κ (T−t) dWt + ξ2 e−c (T−t) dZt

This has the solution

ζt(T ) = ζ0(T ) exp
{

ξ1 e−κ (T−t) Xt + ξ2 e−c (T−t) Yt + drift terms

}

with

Xt =

∫ t

0
e−κ (t−s) dWs ; Yt =

∫ t

0
e−c (t−s) dZs ;

Thus, both Xt and Yt are Ornstein-Ühlenbeck processes. In
particular, they are easy to simulate. The Bergomi model is a
market model: E [ζt(T )] = ζ0(T ) for any given initial forward
variance curve ζ0(T ).
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Variance curve models

The idea (similar to the stochastic implied volatility idea) is to
obtain a factor model for forward variance swaps. That is,

ζt(T ) = G (z;T − t)

with z = {z1, z2, ..., zn} for some factors zj and some variance

curve functional G (·).
Specifically, we want z to be a diffusion so that

dzt = µ(zt) dt +
d

∑

j

σj (zt) dW
j
t (1)

Note that both µ and σ are n−dimensional vectors.
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Buehler’s consistency condition

Theorem

The variance curve functional G (zt , τ) is consistent with the
dynamics (1) if and only if

∂τG (z; τ) =

n
∑

i=1

µi (z) ∂zi
G (z; τ)

+
1

2

n
∑

i ,k=1





d
∑

j=1

σj
i (z)σj

k(z)



 ∂zi ,zk
G (z; τ)

To get the idea, apply Itô’s Lemma to ζt(T ) = G (z ,T − t) with
dz = µ dt + σ dW to obtain

E [dζt(T )] = 0 =

{

−∂τG (z , τ) + µ ∂zG (z , τ) +
1

2
σ2 ∂z ,zG (z , τ)

}

dt
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Example: The Heston model

In the Heston model, G (v , τ) = v + (v − v̄) e−κ τ .

This variance curve functional is obviously consistent with
Heston dynamics with time-independent parameters κ, ρ and
η.

Imposing the consistency condition, Buehler shows that the
mean reversion rate κ cannot be time-dependent.

By imposing a similar martingale condition on forward entropy
swaps, Buehler further shows that the product ρ η of
correlation and volatility of volatility cannot be
time-dependent.
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Buehler’s affine variance curve functional

Consider the following variance curve functional:

G (z; τ) = z3+(z1−z3) e−κ τ +(z2 − z3)
κ

κ − c

(

e−c τ − e−κ τ
)

This looks like the Svensson parametrization of the yield curve.
The short end of the curve is given by z1 and the long end by
z3.
The middle level z2 adds flexibility permitting for example a
hump in the curve.
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Consistent dynamics

Buehler’s affine variance curve functional is consistent with
double mean reverting dynamics of the form:

dS

S
=

√
v dW

dv = −κ (v − v ′) dt + η1 vα dZ1

dv ′ = −c (v ′ − z3) dt + η2 v ′β dZ2

for any choice of α, β ∈ [1/2, 1].

We will call the case α = β = 1/2 Double Heston,
the case α = β = 1 Double Lognormal,
and the general case Double CEV.

All such models involve a short term variance level v that
reverts to a moving level v ′ at rate κ. v ′ reverts to the
long-term level z3 at the slower rate c < κ.



Introduction Historical development Variance curve models Fitting the market Time series analysis Conclusion

Check of consistency condition

Because G (·) is affine in z1 and z2, we have that

∂zi ,zj
G ({z1, z2}; τ) = 0 i , j ∈ {1, 2}.

Then the consistency condition reduces to

∂τG ({z1, z2}; τ) =

2
∑

i=1

µi({z1, z2}) ∂zi
G ({z1, z2}; τ)

= −κ (z1 − z2) ∂z1G − c (z2 − z3) ∂z2G

It is easy to verify that this holds for our affine functional.

In fact, the consistency condition looks this simple for affine
variance curve functionals with any number of factors!
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Dufresne’s trick for computing moments

Dufresne (2001) shows how to compute any desired moment of the
state variables in the Heston model through repeated application
of Itô’s Lemma.
For example, suppose we want to compute the second moment of
integrated variance WT :=

∫ T

0 vt dt. We first note that

dWt = vt dt

Then,
d(Wt)

2 = 2Wt vt dt

so

E
[

(Wt)
2
]

= 2

∫ t

0
E [Ws vs ] ds
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We may repeat this procedure to compute E [Wt vt ]. Specifically,
applying Itô’s Lemma,

d(Wt vt) = Wt dvt+vt dWt = Wt [−κ (vt − v̄) dt + η
√

vt dZ ]+v2
t dt

Thus

E [Wt vt ] = κ v̄

∫ t

0
e−κ (t−s)

E [Ws ] ds +

∫ t

0
e−κ (t−s)

E
[

v2
s

]

ds

We can apply Itô’s Lemma once more to find E
[

v2
t

]

and integrate
to get our result.

This trick will also work for

the Double Heston model (so long as E[dZ1 dZ2] = 0)
for the Double Lognormal model (even if E[dZ1 dZ2] 6= 0).



Introduction Historical development Variance curve models Fitting the market Time series analysis Conclusion

A digression: formulations of lognormal stochastic volatility

There are at least two obvious ways of writing down a lognormal
stochastic volatility model:

dv = −κ (v − v̄) dt + ξ v dZ (2)

and
d(log v) = −κ (log v − θ) dt + ξ dZ (3)

(2) allows for easy computation of moments, including moments of
integrated variance, using Dufresne’s trick. On the other hand,
with the Ornstein-Ühlenbeck formulation (3), log v is normally
distributed with easy expressions for the mean and variance, so
exact big-step Monte Carlo becomes possible.
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Double Lognormal vs Bergomi

Recall that the Bergomi model has dynamics (with τ = T − t)

dζt(T )

ζt(T )
= ξ1 e−κ τ dZ1 + ξ2 e−c τ dZ2

Now in the Double Lognormal model

dζt(T ) = dG (v , v ′; τ)

= ξ1 v e−κ τ dZ1 + ξ2 v ′
κ

κ − c

(

e−c τ − e−κ τ
)

dZ2

We see that the two sets of dynamics are very similar.
Bergomi’s model is a market model and Buehler’s affine
model is a factor model.

However any variance curve model may be made to fit the
initial variance curve by writing

ζt(T ) =
ζ0(T )

G(z0, T )
G(zt , T )
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SPX option implied volatilities as of 03-Apr-2007
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VIX option implied volatilities as of 03-Apr-2007
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We note that skews are steeply positive and that implied volatilities decline with time to expiry.
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How to price options on VIX

A VIX option expiring at time T with strike KVIX is valued at time
t as

Et









√

ET

[∫ T+∆

T

vs ds

]

− KVIX





+



where ∆ is around one month (we take ∆ = 1/12).
In the affine models under consideration, the inner expectation is
linear in vT , v ′

T and z3 so that

VIXT
2 = ET

[
∫ T+∆

T

vs ds

]

= a1 vT + a2 v ′

T + a3 z3

with some coefficients a1,a2 and a3 that depend only on ∆.
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A simple lognormal model

As in Friz-Gatheral, assume (wrongly of course) that VIX is
lognormally distributed: log VIX ∼ N(µ, s2). Then VIX 2 is also
lognormal with log VIX 2 ∼ N(2µ, 4 s2). Then

Et

[

VIXT
2
]

= Et

[

a1 vT + a2 v ′

T + a3 z3

]

= exp
{

2µ + 2 s2
}

Et

[

VIXT
4
]

= Et

[

(

a1 vT + a2 v ′

T + a3 z3

)2
]

= exp
{

4µ + 8 s2
}

Et [a1 vT + a2 v ′

T + a3 z3] is easy to evaluate; the result does
not depend on whether we choose Heston or lognormal
dynamics.

Et

[

(a1 vT + a2 v ′

T + a3 z3)
2
]

may be computed using the

Dufresne trick; in this case, the result does depend on our
choice of dynamics.
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Calibration to VIX options

We now have explicit expressions for µ and s under both
Heston and lognormal dynamics.
Moreover, with our lognormal assumption, the volatility smile
of VIX options will be flat at the level s/

√
t.

We proceed by fitting the model parameters jointly to the
term structure of VIX forwards and ATM VIX implied
volatilities.
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Calibration to VIX options

Of course, because VIX is not lognormally distributed, this
calibration doesn’t work very well.

It gets us close enough to be able to fit with manual tweaking
of parameters

In the next slide, we see the result of tweaking.
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Fit of Double Lognormal model to VIX options

From Monte Carlo simulation with parameters

z1 = 0.0137; z2 = 0.0208; z3 = 0.0421; κ = 12; ξ1 = 7; c = 0.34; ξ2 = 0.94;

we get the following fits (orange lines):
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Fit of Double Heston model to VIX options

From Monte Carlo simulation with parameters

z1 = 0.0137; z2 = 0.0208; z3 = 0.0421; κ = 12; η1 = 0.7; c = 0.34; η2 = 0.14;

we get the following fits (orange lines):
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In terms of densities of VIX

When we draw the densities of VIX for the last expiration
(T = 1.13) under each of the two modeling assumptions, we
see what’s happening:

Double log simulation
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In the (double) Heston model, vt spends too much time in the
neighborhood of v = 0 and too little time at high volatilities.
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In terms of densities of
√

vT

We see this really clearly when we plot the densities of
√

vT

(again with T = 1.13):
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The distribution of vT in the Heston model is completely
unrealistic. What do you think is the probability of
instantaneous volatility being less than 2%?
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Fit to SPX variance swaps

Variance swap fits are independent of the specific dynamics. Then
as before with
z1 = 0.0137; z2 = 0.0208; z3 = 0.0421; κ = 12; c = 0.34, we
obtain the following fit (green points are market prices):
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Fit of double lognormal model to SPX options

From Monte Carlo simulation with the same parameters as before plus ρ1 = −0.66, ρ2 = −0.60, we get the
following fits (blue lines):
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Parameter stability

Suppose we keep all the parameters unchanged from our
03-Apr-2007 fit. Can we fit the VIX option smiles from a later
date?

Recall the parameters:

Lognormal parameters:

κ = 12; ξ1 = 7; c = 0.34; ξ2 = 0.94;

Heston parameters:

κ = 12; η1 = 0.7; c = 0.34; η2 = 0.14;

Specifically, consider 09-Nov-2007 when volatilities were much
higher than April.
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Double Lognormal fit to VIX options as of 09-Nov-2007

We get the following fits (orange lines):
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Double Heston fit to VIX options as of 09-Nov-2007

We get the following fits (orange lines):
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Observations

The double lognormal model clearly fits the market better
than double Heston.

Not only does lognormal fit better on a given day, but
parameters are more stable over time.

We can fit both short and long expirations with the same
parameters in contrast to single-factor stochastic volatility
models.

The fitted lognormal parameters are such that the fast
timescale (log 2/12 ≈ 3 weeks) is shorter than the expiration
of most VIX options; the slow timescale (log(2)/.34 ≈ 2
years) is longer than the expiration of the longest-dated VIX
option.

We therefore have time-scale separation and can apply the
methods of (for example) Fouque, Papanicolaou, Sircar and
Solna.



Introduction Historical development Variance curve models Fitting the market Time series analysis Conclusion

Implied vs Historical

Just as option traders like to compare implied volatility with
historical volatility, we would like to compare the risk-neutral
parameters that we got by fitting the Double Lognormal
model to the VIX and SPX options markets with the historical
behavior of the variance curve.

First, we check to see (in the time series data) how many
factors are required to model the variance curve.
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PCA on historical variance swap data

We proxy variance swaps by the log-strip for each expiration.

Spline-interpolate to get standardized variance curves.

Perform PCA on first differences to obtain the following two
factors:
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The blue line is conventional PCA and the red line is robust
PCA.
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Extracting time series for z1 and z2

In our affine model, given estimates of κ, c and z3, we may
estimate z1 and z2 using linear regression.

From two years of SPX option data with parameters κ = 12,
c = 0.34 and z3 = 0.0421, we obtain the following time series
for

√
z1 (orange) and

√
z2 (green):
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Statistics of z1 and z2

Let’s näıvely compute the standard deviations of
log-differences of z1 and z2. We obtain

Factor Historical vol. Implied vol. (from VIX)
z1 8.6 7.0
z2 0.84 0.94

The two factors have the following autocorrelation plots
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Observations

Historical and implied volatilities are similar

in contrast to single-factor stochastic volatility models.

Historical decay rates are greater than implied

price of risk effect just as in single-factor stochastic volatility
models.
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Summary I

It makes sense to model tradables such as variance swaps
rather than non-tradables such as implied volatilities.

The affine variance curve functional introduced by Buehler is
particularly attractive

It is consistent with many dynamics of interest.

Dufresne’s trick of recursively applying Itô’s Lemma allows us
to compute moments for both Heston and lognormal
dynamics.

Although Double Heston is more analytically tractable,
Double Lognormal agrees much better with the market.

Whilst the rough levels of VIX option implied volatilities are
determined by SPX option prices, VIX option skews are seen to
be very sensitive to dynamical assumptions.
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Summary II

By adding a second volatility factor, we have achieved the
following:

The term structure of SPX skew seems right even for short
expirations with no need for jumps.
We are able to fit VIX options with time-homogeneous
parameters.
Historical and risk-neutral estimates of the volatilities of the
factors are similar

Recall that implied and historical vol. of vol. are very different

in single-factor volatility models.
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Current and future research

Develop efficient algorithms for pricing and calibration.

Investigate alternative dynamics:

More general CEV models with α, β 6= 1/2 or 1
Add jumps in volatility and stock price.

Add more tradable factors.
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