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Portfolio credit derivatives

Contracts whose payofls depend on the losses due to defaults in
some underlying reference portfolio (of loans, bonds or credit

default swaps).
Most common example: Collateralized Debt Obligations (CDOs).

Commonly used approach to pricing of portfolio credit derivatives:
value = discounted expectation of cash flows computed under a

pricing measure (”risk neutral probability”) Q:

V.= BU[B(t,t;) Hj(L(t))) (1)

tj >t

where t; are cash flow dates, L(t;) is the loss due to default in the
reference portfolio, B(t,t;) is the discount factor and H;(L(t;)) is
the random, default dependent cash flow paid at ¢;.




Sample path of the loss process
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ITRAXX CDO tranches




Maturity

Bid\ Upfront

Ask\ Upfront

11.75%
53.75
14.00

5.7
2.13
0.80

12.00%
55.25
15.50

6.75
2.88
1.30

26.88%
130
36.75
16.50
5.50
2.40

27.13%
132
38.25
18.00
6.50
2.90




Maturity

Low

High

Bid\ Upfront

Ask\ Upfront

0%
3%
6%
9%
12%
22%

3%

6%

9%
12%
22%
100%

41.88%
348
93
40
13.25
4.35

42.13%
353
95
42
14.25
4.85

Table 1: ITRAXX tranche spreads, in bp. For the equity tranche

the periodic spread is 500bp and figures represent upfront payments.




Ingredients

Nominals N;,i = 1..n, Total nominal N = > N;
Default dates 7,7 = 1..n

Risk neutral probability of default F;(t) = Q(7r; <)
Survival function S;(t) = 1 — F;(t)

Recovery rate R;

Risk-free discount factor B(t,T)

Portfolio loss (as percentage of total nominalO:
Li = 7 > iy Ni(1 = Ri)lr,<
Tranche loss: Lg () = (L(t) —a)™ — (L(t) — b)*




Cash flow structure of a CDO tranche

Default leg: tranche loss due to defaults between ¢;_; and ¢;

Cash flow at ¢; N[Lap(t;) — Lap(tj—1)]

J
Value at t =0 N Y B(0,t;)E%Lap(t;) — Lap(ti—1) ] (2)
j=1

Similar to pricing of a portfolio of calls on L(t).
Requires knowledge of the risk neutral distribution of total
portfolio loss L(t)




Premium leg: pays fixed spread S(a,b) at dates ¢; on remaining
principal

Cash flow at t; S(a,b)N(t; —t;—1)[(b— L(t;))" — (a — L(¢;))T]

J
Valueat t =0 S(a, b)NZ B(O, tj)(tj — tj—l)
7=1

E®[(b— L(t;)* — (a — L(t;))"]

Computation of EQ[(L(t;) — K)T| requires knowledge of the (risk
neutral) distribution of total loss L(t;) which depends on
dependence among defaults




Fair spread of a CDO tranche swap with attachment point a and
detachment b initiated at ¢t = O:

-1 B(0,4;) E¥Lap(t;) = Lap(tj-1) ]

So (CL, b) =

S0 B(0,t5)(t; — ti—1)EQ[(b — L(t;))T — (a — L(t;)) ")

Computation of CDO spread involves E9[(L(t;) — K)™] which
requires knowledge of the (risk neutral) distribution of total loss
L(t;): involves assumptions on dependence among defaults
(”default correlation”)




Mark to market value of the value of a protection seller on the
tranche: premium leg- default leg

MTM(t) = NSo(a,b) Y B(t,t;)6; E°[(b— L(t;))" — (a — L(t;)) 7| 7]

—N Y B(t,t;)E°[Las(t;) — Las(t;—1)|Fi]

tj >t

= N(b—a) Y B(t,t;)[So(a,b)d;(1 — Pap(t,t;))—

tj >t

= [So(a,b) = Si(a,b)] N Y B(t, ;)8 E°[(b— L(t;))" — (a — L(t;)) " | 4]

tj >t

where 5]' = tj — tj—l-




Case of the equity tranche [0, K|

Default leg: tranche loss due to defaults between ¢;_; and t;

Cash flow at t; N|min(L(¢;), K) — min(L(t;_1), K)]

J
Valueat t =0 N Y B(0,t;)E%min(L(t;), K) — min(L(t;_1), K)
j=1




Premium leg: upfront fee U (K )% of the nominal of the tranche+
fixed spread f (usually 500 bp) at dates ¢; on remaining principal

Cash flow at ¢; f(t; —tj—1)(K — L(t;))"

J
Value at t =0 Nf > B(0,t;)(t; — tj—1)E?[(K — L(t;))"]

+NKU(K)




Upfront fee for equity tranche with detachment point K:

KU(K) =) B(0,t;)E%min(L(t;), K) — min(L(t;_1, K) |

J
—fZB(O,tj)(tj —t;_1)E%[(K — L(t;))*]

Computation requires knowledge of the (conditional) distribution
P,(t,t;) = Q(L(t;) < z|F:) of total loss L(t;) which depends on

dependence among defaults




Bottom-up approach in credit portfolio modeling

Idea:

e calibrate implied default probabilities for portfolio components
to credit default swap term structures

e add extra ingredient (copula, dependence structure) to obtain
joint distribution F'(t1,..,t,) of default times (n-dimensional

probability distribution)

e Use numerical procedure to compute the risk—neutral
distribution of portfolio loss L; from F': recursion methods,
FFT, quadrature, Monte Carlo,...

e Imply correlation parameters from tranche spreads




Issues:
e High dimensional models: n ~ 100 — —500.

e Need to separate joint distribution into copula + marginals and
parameterize them separately otherwise calibration to CDS and
CDO tranches cannot be separated — high-dimensional

nonlinear optimization problem

e scarcity of data — crude parametrization of joint

distribution/copula — restrictions on default dependence

structure.




Disadvantages of default time copula models

Copula models

e are unable to reproduce implied correlations for quoted CDO

tranches in a simple manner.

e are static: no dynamics for spreads, no spread volatility, no

way to update prices as time goes on.

e do not tell us how to compute conditional default probabilities,

forward tranche prices,...




Prototype of dynamic credit portfolio model: Duffie & Garleanu
(2005)

Default in each of : = 1..N ~ 100 names driven by a random

intensity process A\'(t) modeled as an affine jump-diffusion

X (1) = aX(1) + /T — pAi(t)

dX\i(t) = (a + bX;)dt + e/ N () AW} + dJ;(t)

Parameter p is difficult to calibrate: it cannot be calibrated
separately from parameters describing dynamics of /N individual

spreads.

As a result, getting market-consistent prices is a challenge.




Recall the expression for a CDO tranche spread

St(a,b) = Z}n:l B(0,t5)E%[Lab(t;) — Lap(tj—1) | F]

- 205m B(0,1)8; EQ[(b — L(t;)) T — (a — L(t;)) 7| 7]

Key observation: only involves the (conditional) distribution of
total portfolio loss L;:

per(z) = Q( Ly < x|F)




Top-down representation of the portfolio loss

Loss process is a (pure jump) process with increasing sample paths,
whose jump times 7 are the default events and whose jump sizes

L; are default losses:

where N; = ZZ . 17,<¢ is the number of defaults in portfolio before
t and L; is loss at j-th default event.

Idea: model the occurrence of jumps via the aggregate default rate
A; defined as probability per unit time of the next default

conditional on current market information
Q[Nt—l—At = Nt -+ 1’ft] — )\tAt + O(At)

Market convention: L; = (1 — R)/N is constant.




The top-down approach

Idea: view credit derivatives as options on the portfolio loss L;
model risk—neutral/ market—implied dynamics of L;.

1. Model the (spot) loss process L;: compound Poisson process
(insurance literature), conditional Poisson process (Brigo &
Pallavicini 05), self-exciting point process (Giesecke &
Goldberg), Cox process (Longstaff & Rajan), conditional
Markov chain (Ehlers & Schonbucher 07).

. Build a model for the term—structure of conditional default
probabilities (Schonbucher 05, Andersen et al 05):

per(z) = Q( L < z|F) (6)

Wide variety of specifications for portfolio loss process L;: which
one to pick? how to choose its parameters (loss intensity)
consistently with market observations of CDO spreads?




Modeling ingredients:

e Intensity \; of (next) default event:

Q(N(t+ At) = N(t—) + 1|F)
At

Poisson: Ay = f(t)
”Doubly stochastic”: default intensity driven by other
”"market factors”, not by default itself

d)\t — ,u(t, )\t)dt -+ O'()\t)th

Inhomogeneous Markov process: A¢ = f(t, N¢) = an, (1)

where a,, () are transition rates from n to n + 1

Dependence on history of defaults/ losses:

)\t — g(tj,Lj,j — 1Nt — 1)

e (Distribution of) Loss given default L.




Clustering of defaults
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Information content of credit portfolio derivatives

Market observations consist of fair spreads for (index) CDO
tranches. These can be represented in terms of expected tranche

notionals

C(tj, K;) = C; = E¥((K; — Ly,)"] (8)

Common procedure is to "strip” CDO spreads to get expected
tranche notionals C'(¢;, K;) and then calibrate these using a model.

Problem: we need C(t;, K;) for all payment dates ¢;: many more
than data observed! Ill-posed linear problem — parametrization of

C'(.,.) / interpolation usually used

Here we will avoid this step altogether and use a nonparametric

approach




Information content of credit portfolio derivatives
Proposition 1. Consider any non-explosive jump process
(Lt)tejo, 7+ with a intensity process (A¢(w))icfo, 7+ and IID jumps
with distribution F'. Define (it)te[o,T*] as the Markovian jump
process with jump size distribution F' and intensity

A (t, 1) = EQ [\ | L =1, Fo) (9)

Then, for any t € [0,T*], Ly and L; have the same distribution
conditional on Fy. In particular, the flow of marginal distributions
of (L¢)ieo,r+) only depends on the intensity (A)icjo, 7+ through its

conditional expectation Aeg(.,.).

Analogy with local volatility.




Proof. Consider any bounded measurable function f(.). Using the
pathwise decomposition of Lt into the sum of its jumps we can

write

f(Ly) = f(Lo)+ Y (f(Le—+ALy) = f(Ls=)) (10)

0<s<T

SO

Elf(Lr)|Fo] = f(Lo)+ B[ > (f(Ls—+ALs) = f(Ls-) )| Fo]

f(Lo) + / gt E[(f(Le + AL) — F(L) I\(ED

Denote

Qt :O'(fo\/Lt_)

the information set obtained by adding the knowledge of L;_ to the
current information set Fy. Define the local intensity function

A (t,1) = BN | Fo, L =1]. (12)




Noting that Fy C G; we have

E(f(Li— +AL) — f(Li—) )\
= BE|E|(f(Li— +ALy) — f(Li—) )Ae|Ge

quﬂzWMMﬂm_+w—f@F»MMWA

=Eu£wLF{/Fumaﬂu_+m—wa>va s
E|f(L71)|Fol = f(Ls) +

-MA ﬁxﬁmLF)/meaﬂu_+m—wa>va

The above equality shows that E[f(Lz)|Fo] = E[f(L1)|Fs] where
(it)ogth is the Markovian loss process with intensity

Ve = et (1, f/t_) and jump size distribution F hence L; =% L;. ]




Corollary 1 (Information content of non-path dependent portfolio
credit derivatives). The value EC[f(Lr)|Fo] att =0 of any
derivative whose payoff depends on the aggregate loss L1 of the
portfolio at on a fixed grid of dates, only depends on the default
intensity (A\¢)iejo, ) through its risk-neutral conditional expectation

with respect to the current loss level:

Aeg(t,1) = EQ\| L =1, Fo) (13)

In particular, CDO tranche spreads and mark-to-market value of
CDO tranches only depends on the transition rate (A;)ic(o, 7]
through the effective default intensity e (., .).




Forward equation for expected tranche loss In the markovian case

where portfolio loss intensity only depends on time/loss, the
expected tranche loss C(T, K) = EY (K — L7)™] solves a
Dupire-type forward equation (Cont & Savescu 2006)

00597;17() — _\(T, K — §K)C(T, K)

—(\(T,K — 26K) — 2X*(T, K — 6K))C(T, K — §K)

k—2

(2 —1)0K) =2\ (T,i6K) + \* (T, (i + 1)0K))C(T, K)

zzl




Problem 1 (Calibration problem). Given a set of observed CDO
tranche spreads (So(K;, Kiv1,Tk), i =1..1 — 1,k =1..m) for a
reference portfolio, construct a (risk—neutral) default rate/ loss
intensity A = (A¢)icpo, ) such that the spreads computed under the
model Q* match the market observations

A
thng B(Ovtj>E@ [LK¢,K¢+1 (tj) - LKq:,K7;+1 (tj—l ]

So(Ki, Kit1,Tk) = > <r, BO, 1) (t5 — tj1)EQ[(Kip1 — L(ty))t — (Ki —|L(t;))*]




Calibration by Relative entropy minimization under

constraints

One period case: Buchen & Kelly, Avellaneda 1998

Diffusion models: Avellaneda Friedman Holmes Samperi 1997
Monte Carlo setting: Avellaneda et al 2001

Lévy processes: Cont & Tankov 2004, 2006)

Given market prices C'(K;) of tranche payoffs and a prior guess \
for the loss intensity process, the reconstruction of the default
intensity process (A¢)c(o,7+] can be formalized as

d@A d@A
In

inf EQO
R T T

] (14)

under the constraint that the model Q* prices correctly the
observed CDO tranches, where Q* is the law of the point process
with intensity process A and Qg is the law of the point process with

intensity V.




Problem 2 (Calibration via relative entropy minimization). Given
a prior loss process with law Qq, find a default intensity (A¢)iejo, 7]

which minimaizes

A A
inf E@o [ dQ @
Q eA d@o d@o

| under EQ[H;,]=0 (15)

H;p = So(K;, Kiq1, Tk) B(0,t)(t; —tj_1)[(K;p11 — L(t;)T — (K; — L(t;)) 7]

B0, t)[(Kipq — L(t;)) T — (K; = LT = (Kypq — Lt 1) + (K; — L(t; 1)) 1 | (16)
and Q* denotes the law of the point process with intensity
(At)tejo, 7+ and Qq is the law of the point process with intensity Y.

Using the previous result we can restrict A to Markovian intensities

¢, Ly).




Computation of entropy

Equivalent change of measure for point processes (Jacod 1980,
Bremaud 1981)

Proposition 2. Let N; be a Poisson process with intensity vy on

(€, F+, Qo). Let X = (X¢)eejo,r be an Fi-predictable process such
that

t
/ Asds <00 Qp — a.s. (17)
0

Define the probability measure Q* on Fr by

Z, = HA” exp{/ot(%—)\s)ds}

<t Y0

Then Ny is a point process with F; intensity (A¢)icpo, 7] under Q.




Proposition 3 (Computation of relative entropy). Denote by

e Qg the law on [0,T] of a (standard unit intensity) Poisson

process and

o Q* the law on [0,T] of the point process with intensity

(At)tejo, ) verifying hypothesis (17).

The relative entropy of QN with respect to Qg is given by:

dQ* . dQ* - g
E[ZX 1y = 1= (9 / )\ln)\dt+T—/ \; dt 18
[d@o on] [O tIn Ay o ] (18)




Duality

Define the Lagrangian

T T I m
LA p) = EY [/ AsInAgds + T — / Asds — > > i pHig]
0

0 i=1 k=1
Using convex duality arguments, the primal problem:
dQ* . dQ*
inf FYo] O In O
QreA dQo  dQo

is equivalent to the dual problem

| under EQA[HZ-;{]:O (19)

T T I m
sup Inf g [/ s ln)\sds—i—T—/ ASdS—ZZ,LLi,kHZ-k] (20)
0

m.I AEN
peRm-! 0 i=1 k=1




Intensity control problem

An intensity control problem is an optimization problem with a

criterion of the type

T J
EQ)\ L/O gO(t,)\t,Lt)dt—i_ Z(I)j(tj7Ltg)]7

j=1
where p(t, \¢, N¢) is a running cost and ®;(;, L, ) represents the
terminal cost. Here

e(t,\, L) =AlnA+1—\ and  ®;(t, Ly,) M;;(K; — Ly,)*

where M;; = B(0,t;41) Z (i — pi—1.1) +
Ti2tjt1

B(0,t;) Z ik (1 — AS(KG, K1, Tk)) — pi—1,6(1 — AS(KG—1, K,

Ty >t




Single horizon case

T
Joe [/ (AMeIn e +1—A)dt + (T, L7)],
0

Solution by dynamic programming: introduce the value function

T
Vit k) = BV / ot Ao Lo)dt + (T, Ly)|N, = &
0

The value function can be characterized in terms of a Hamilton
Jacobi equation (Bismut 1975, Bremaud 1982).




Proposition 4. (Hamilton-Jacobi equations) Suppose there exists
a bounded function V : [0,T*] x N — V(t,n) differentiable in t,
such that

%

t k inf ANVt E+D) =V +AInh—A+1y=0(21
at(’)+,\e]&?nfty[{[ (t,k+1) (t, k)] + Aln + 1} (

for t€[0,7] and V(T,k)=®(T, ko) (22

and suppose there exists for each n € Nt an F;-predictable
mapping t — uw*(t, Ny) such that for eachn € N, t € [tg,T]

N(t, k) = argmin{\[V(t,k+1) =V (t,k)] + AIn A =X+ 1} (23)
A€]0,00]

Then Ay = X*(t, N¢) is an optimal control. Moreover
V(to, Ny,) = infaea, E[[,. Co(Nds + S (N)|Fy).




In our problem, in the case of a single maturity, the dual problem is

an intensity control problem with running cost

(In \(t, Ny) — DA, N,) + 1

and terminal cost is of the type ®;(L) = > M;;(K; — L)*.

The Hamilton Jacobi equations are given by

%—‘t/(t, n)—l—)i\reli{)\[V(t, n+1)=V(t,n)]+(nA(t,n)—1)A(t,n)+1) =0

which is a system of n = 125 coupled nonlinear ODEs.




The maximum in the nonlinear term can be explicitly computed:

A (t,n) = e~V (tn+1)=V(t,n)] (24)

%_V (tn) 41— e VERFD-VED] _
t Y

V(T k) =®(T, k)

Proposition 5 (Value function). Consider any terminal condition
O such that ®(x) = 0 for x > nd. Then the solution of (26)-27 is
given by

n—k

T —t)J .
V(t, k,p) :T—t—lnz< - ) e~ (T(i+1)0) (27)
J-

i=0




The key is to note that if we consider the exponential change of
variable u(t, k) = e~V %) then u solves a linear equation

Ou(t, k)
ot

which is recognized as the backward Kolmogorov equation

+u(t,k+1) —u(t,k) =0 with u(T, k) = exp(—®(T, kd)

associated with the Poisson process (i.e. the prior process, with law
Qo). The solution is thus given by the Feynman-Kac formula

w(t, k; p) = EQo [6—‘1’(T,5NT)|Nt = k] = EQo [6—¢(T,k5+5NT—t)]

using the Markov property and the independence of increments of
the Poisson process. The expectation is easily computed using the
Poisson distribution:

n—k

T — t)7 .
ki = Y e ot (25)

j=0
which leads to (28).




Case of several maturities
Recursive algorithm via dynamic programming principle

1. Start from the last payment date 7 = J and set
Fi(k) = ®;(ty, k).

. Solve the Hamilton-Jacobi equations (26) on |t;_1, ;]

backwards starting from the terminal condition

V(ts, k) = F;(k) (29)

which can be explicitly solved to yield V (¢, k; ) on t €]t;_1,1;]
using (28).

. Set Fj_l(k) = V(tj_l, k) + (I)j_l(tj_l, k5)
. Go to step 2 and repeat.

Discontinuities may appear in value function at junction dates.




Reconstruction algorithm

. Solve the dynamic programming equations (26)—(27) u € R to
compute V(0,0, u).

. Optimize V (0,0, ) over u € R!*/ using a gradient—based
method:

inf V(0,0,u) =V(0,0,u™) =V7(0,0)
peER!

. Compute the calibrated default intensity (optimal control) as

follows:

)\* (t, ]f) _ 6V(t,k§)—V(t,l€—l—1) (30)

. Compute the term structure of loss probabilities by solving the
Fokker-Planck equations.

. The calibrated default intensity A*(.,.) can then be used to
compute CDO spreads for different tranches, forward tranches




etc. in a straightforward manner: first we compute the
expected tranche loss C(T, K) by solving the forward equation:

6’0591;}() — _\(T, K — §K)C(T, K)

—(A\(T, K — 26K) — 2X*(T, K — 6 K))CO(T, K — 6K)

—2

—NTOH(T, (i — 1)6K) — 20 (T, i6K) + A\*(T, (i + 1)6K))C(T, K)

In particular the calibrated default intensity can be used to “fill
the gaps” in the base correlation surface in an arbitrage-free
manner, by first computing the expected tranche loss for all
strikes and then computing the base correlation for that strike.




Empirical results: ITRAXX




Maturity

Bid\ Upfront

Ask\ Upfront

11.75%
53.75
14.00

5.75
2.13
0.80

12.00%
55.25
15.50

6.75
2.88
1.30

26.88%
130
36.75
16.50
5.90
2.40

27.13%
132
38.25
18.00
6.50
2.90




Maturity | Low | High | Bid\ Upfront | Ask\ Upfront
0% 3% 41.88% 42.13%
3% 6% 348 393

6% 9% 93 95

9% 12% 40 42

12% | 22% 13.25 14.25
22% | 100% 4.35 4.85

Table 2: ITRAXX tranche spreads, in bp. For the equity tranche
the periodic spread is 500bp and figures represent upfront payments.




Figure 1: Calibrated intensity function A(¢,L): ITRAXX FEurope
Series 6, March 15 2007.




Figure 2: Dependence of default intensity on number of defaults for
t = lyear: ITRAXX Europe Series 6, March 15 2007..
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Figure 3: Term structure of loss distributions computed from cali-
brated default intensity: ITRAXX Europe Series 6, March 15 2007..




Implied loss distributions
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Figure 4: Implied loss distributions at various maturities: ITRAXX
Europe Series 6, March 15 2007.
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Figure 6: Dependence of default intensity on number of defaults for
t = lyear: ITRAXX September 26, 2005.
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Conclusion

Stochastic control method for solving a model calibration
problem.

Rigorous methodology for calibrating a top-down CDO pricing
model to market data.

Stable calibration algorithm based on intensity control method.

No black box optimization.

Nonparametric: no arbitrary functional form for the default

intensity.
No need to interpolate CDO data in maturity or strike!

Involves unconstrained convex minimization in dimension ~ 20:

few seconds on laptop!

Results point to default contagion effects in the riskneutral loss

process.




