Recovering credit portfolio loss dynamics from CDO tranches:

solution of an inverse problem via intensity control

Rama CONT
Center for Financial Engineering
Columbia University, New York

Andreea MINCA Finance Concepts

Outline

- CDOs and portfolio credit derivatives
- Top-down pricing models for portfolio credit derivatives
- A general parameterization of the portfolio loss process
- Reconstruction of the loss intensity by relative entropy minimization under constraints
- Interpretation of dual problem as intensity control problem
- Nonlinear representation as expectation
- Numerical solution and implementation
- Application to ITRAXX CDO data

Portfolio credit derivatives

Contracts whose payoffs depend on the losses due to defaults in some underlying reference portfolio (of loans, bonds or credit default swaps).

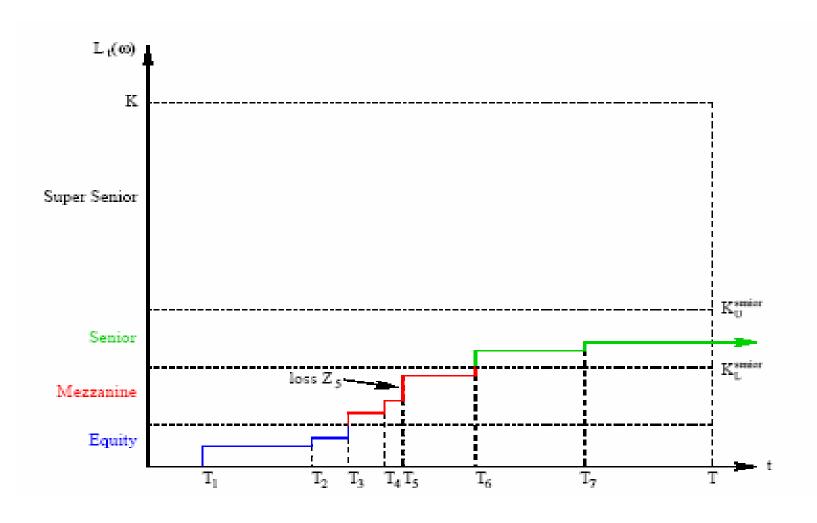
Most common example: Collateralized Debt Obligations (CDOs).

Commonly used approach to pricing of portfolio credit derivatives: value = discounted expectation of cash flows computed under a pricing measure ("risk neutral probability") \mathbb{Q} :

$$V_t = \sum_{t_j > t} E^{\mathbb{Q}}[B(t, t_j) H_j(L(t_j))] \tag{1}$$

where t_j are cash flow dates, $L(t_j)$ is the loss due to default in the reference portfolio, $B(t, t_j)$ is the discount factor and $H_j(L(t_j))$ is the random, default dependent cash flow paid at t_j .

Sample path of the loss process



Maturity	Low	High	Bid\ Upfront	Ask\ Upfront
5Y	0%	3%	11.75%	12.00%
	3%	6%	53.75	55.25
	6%	9%	14.00	15.50
	9%	12%	5.75	6.75
	12%	22%	2.13	2.88
	22%	100%	0.80	1.30
7Y	0%	3%	26.88%	27.13%
	3%	6%	130	132
	6%	9%	36.75	38.25
	9%	12%	16.50	18.00
	12%	22%	5.50	6.50
	22%	100%	2.40	2.90

Maturity	Low	High	Bid\ Upfront	Ask\ Upfront
	0%	3%	41.88%	42.13%
	3%	6%	348	353
10Y	6%	9%	93	95
101	9%	12%	40	42
	12%	22%	13.25	14.25
	22%	100%	4.35	4.85

Table 1: ITRAXX tranche spreads, in bp. For the equity tranche the periodic spread is 500bp and figures represent upfront payments.

Ingredients

- Nominals N_i , i = 1..n, Total nominal $N = \sum N_i$
- Default dates τ_i , i = 1..n
- Risk neutral probability of default $F_i(t) = \mathbb{Q}(\tau_i \leq t)$
- Survival function $S_i(t) = 1 F_i(t)$
- Recovery rate R_i
- Risk-free discount factor B(t,T)
- Portfolio loss (as percentage of total nominalO: $L_t = \frac{1}{N} \sum_{i=1}^n N_i (1 R_i) 1_{\tau_i \leq t}$
- Tranche loss: $L_{a,b}(t) = (L(t) a)^+ (L(t) b)^+$

Cash flow structure of a CDO tranche

Default leg: tranche loss due to defaults between t_{j-1} and t_j

Cash flow at
$$t_j$$
 $N[L_{a,b}(t_j) - L_{a,b}(t_{j-1})]$
Value at $t = 0$ $N \sum_{j=1}^{J} B(0, t_j) E^{\mathbb{Q}} [L_{a,b}(t_j) - L_{a,b}(t_{j-1})]$ (2)
$$= N \sum_{j=1}^{J} B(0, t_j) E^{\mathbb{Q}} [(L(t_j) - a)^+ - (L(t_j) - b)^+ - (L(t_{j-1}) - a)^+ + (L(t_{j-1}) - b)^+]$$

Similar to pricing of a portfolio of calls on L(t).

Requires knowledge of the risk neutral distribution of total portfolio loss L(t)

Premium leg: pays fixed spread S(a,b) at dates t_j on remaining principal

Cash flow at
$$t_j$$
 $S(a,b)N(t_j - t_{j-1})[(b - L(t_j))^+ - (a - L(t_j))^+]$
Value at $t = 0$ $S(a,b)N\sum_{j=1}^J B(0,t_j)(t_j - t_{j-1})$
 $E^{\mathbb{Q}}[(b - L(t_j))^+ - (a - L(t_j))^+]$

Computation of $E^{\mathbb{Q}}[(L(t_j) - K)^+]$ requires knowledge of the (risk neutral) distribution of total loss $L(t_j)$ which depends on dependence among defaults

Fair spread of a CDO tranche swap with attachment point a and detachment b initiated at t = 0:

$$S_0(a,b) = \frac{\sum_{j=1}^{J} B(0,t_j) E^{\mathbb{Q}} [L_{a,b}(t_j) - L_{a,b}(t_{j-1})]}{\sum_{j=1}^{J} B(0,t_j) (t_j - t_{j-1}) E^{\mathbb{Q}} [(b - L(t_j))^+ - (a - L(t_j))^+]}$$

Computation of CDO spread involves $E^{\mathbb{Q}}[(L(t_j) - K)^+]$ which requires knowledge of the (risk neutral) distribution of total loss $L(t_j)$: involves assumptions on dependence among defaults ("default correlation")

Mark to market value of the value of a protection seller on the tranche: premium leg- default leg

$$MTM(t) = NS_{0}(a,b) \sum_{t_{j}>t} B(t,t_{j})\delta_{j}E^{\mathbb{Q}}[(b-L(t_{j}))^{+} - (a-L(t_{j}))^{+}|\mathcal{F}_{t}]$$

$$-N \sum_{t_{j}>t} B(t,t_{j})E^{\mathbb{Q}}[L_{a,b}(t_{j}) - L_{a,b}(t_{j-1})|\mathcal{F}_{t}]$$

$$= N(b-a) \sum_{t_{j}>t} B(t,t_{j})[S_{0}(a,b)\delta_{j}(1-P_{a,b}(t,t_{j})) -$$

$$= [S_{0}(a,b) - S_{t}(a,b)] N \sum_{t_{j}>t} B(t,t_{j})\delta_{j}E^{\mathbb{Q}}[(b-L(t_{j}))^{+} - (a-L(t_{j}))^{+}|\mathcal{F}_{t}]$$

where $\delta_j = t_j - t_{j-1}$.

Case of the equity tranche [0, K]

Default leg: tranche loss due to defaults between t_{j-1} and t_j

Cash flow at
$$t_j$$
 $N[\min(L(t_j), K) - \min(L(t_{j-1}), K)]$

Value at
$$t = 0$$
 $N \sum_{j=1}^{J} B(0, t_j) E^{\mathbb{Q}}[\min(L(t_j), K) - \min(L(t_{j-1}), K)]$

Premium leg: upfront fee U(K)% of the nominal of the tranche+ fixed spread f (usually 500 bp) at dates t_j on remaining principal

Cash flow at
$$t_j$$
 $f(t_j - t_{j-1})(K - L(t_j))^+$
Value at $t = 0$ $Nf \sum_{j=1}^{J} B(0, t_j)(t_j - t_{j-1}) E^{\mathbb{Q}}[(K - L(t_j))^+] + NKU(K)$

Upfront fee for equity tranche with detachment point K:

$$KU(K) = \sum_{j=1}^{J} B(0, t_j) E^{\mathbb{Q}} [\min(L(t_j), K) - \min(L(t_{j-1}, K))]$$
$$-f \sum_{j=1}^{J} B(0, t_j) (t_j - t_{j-1}) E^{\mathbb{Q}} [(K - L(t_j))^+]$$

Computation requires knowledge of the (conditional) distribution $P_x(t,t_j) = \mathbb{Q}(L(t_j) \leq x | \mathcal{F}_t)$ of total loss $L(t_j)$ which depends on dependence among defaults

Bottom-up approach in credit portfolio modeling

Idea:

- calibrate implied default probabilities for portfolio components to credit default swap term structures
- add extra ingredient (copula, dependence structure) to obtain joint distribution $F(t_1,..,t_n)$ of default times (n-dimensional probability distribution)
- Use numerical procedure to compute the risk-neutral distribution of portfolio loss L_t from F: recursion methods, FFT, quadrature, Monte Carlo,...
- Imply correlation parameters from tranche spreads

Issues:

- High dimensional models: $n \simeq 100 500$.
- Need to separate joint distribution into copula + marginals and parameterize them separately otherwise calibration to CDS and CDO tranches cannot be separated → high-dimensional nonlinear optimization problem
- scarcity of data → crude parametrization of joint distribution/copula → restrictions on default dependence structure.

Disadvantages of default time copula models

Copula models

- are unable to reproduce implied correlations for quoted CDO tranches in a simple manner.
- are static: no dynamics for spreads, no spread volatility, no way to update prices as time goes on.
- do not tell us how to compute conditional default probabilities, forward tranche prices,...

Prototype of dynamic credit portfolio model: Duffie & Garleanu (2005)

Default in each of $i = 1..N \sim 100$ names driven by a random intensity process $\lambda^i(t)$ modeled as an affine jump-diffusion

$$\lambda^{i}(t) = \sqrt{\rho}\lambda^{0}(t) + \sqrt{1 - \rho}\lambda_{i}(t) \tag{3}$$

$$d\lambda_i(t) = (a + b\lambda_i)dt + c\sqrt{\lambda_i(t)}dW_t^i + dJ_i(t)$$
(4)

Parameter ρ is difficult to calibrate: it cannot be calibrated separately from parameters describing dynamics of N individual spreads.

As a result, getting market-consistent prices is a challenge.

Recall the expression for a CDO tranche spread

$$S_t(a,b) = \frac{\sum_{j=1}^m B(0,t_j) E^{\mathbb{Q}}[L_{a,b}(t_j) - L_{a,b}(t_{j-1}) | \mathcal{F}_t]}{\sum_{j=1}^m B(0,t_j) \delta_j E^{\mathbb{Q}}[(b-L(t_j))^+ - (a-L(t_j))^+ | \mathcal{F}_t]}$$

Key observation: only involves the (conditional) distribution of total portfolio loss L_t :

$$p_{t,T}(x) = \mathbb{Q}(|L_T \le x|\mathcal{F}_t) \tag{5}$$

Top-down representation of the portfolio loss

Loss process is a (pure jump) process with increasing sample paths, whose jump times T_j are the default events and whose jump sizes L_j are default losses:

$$L_t = \frac{1}{N} \sum_{i=1}^n N_i (1 - R_i) 1_{\tau_i \le t} = \sum_{j=1}^{N_t} L_j$$
 (7)

where $N_t = \sum_{i=1}^n 1_{\tau_i \leq t}$ is the number of defaults in portfolio before t and L_j is loss at j-th default event.

Idea: model the occurrence of jumps via the aggregate default rate λ_t defined as probability per unit time of the next default conditional on current market information

$$\mathbb{Q}[N_{t+\Delta t} = N_t + 1|\mathcal{F}_t] = \lambda_t \Delta t + o(\Delta t)$$

Market convention: $L_j = (1 - R)/N$ is constant.

The top-down approach

Idea: view credit derivatives as options on the portfolio loss L_t model risk-neutral/ market-implied dynamics of L_t .

- 1. Model the (spot) loss process L_t : compound Poisson process (insurance literature), conditional Poisson process (Brigo & Pallavicini 05), self-exciting point process (Giesecke & Goldberg), Cox process (Longstaff & Rajan), conditional Markov chain (Ehlers & Schonbucher 07).
- 2. Build a model for the term-structure of conditional default probabilities (Schonbucher 05, Andersen et al 05):

$$p_{t,T}(x) = \mathbb{Q}(|L_T \le x|\mathcal{F}_t) \tag{6}$$

Wide variety of specifications for portfolio loss process L_t : which one to pick? how to choose its parameters (loss intensity) consistently with market observations of CDO spreads?

Modeling ingredients:

• Intensity λ_t of (next) default event:

$$\lambda_t(\omega) = \lim_{\Delta t \to 0} \frac{\mathbb{Q}(N(t + \Delta t) = N(t - t) + 1 | \mathcal{F}_t)}{\Delta t}$$

- Poisson: $\lambda_t = f(t)$
- "Doubly stochastic": default intensity driven by other"market factors", not by default itself

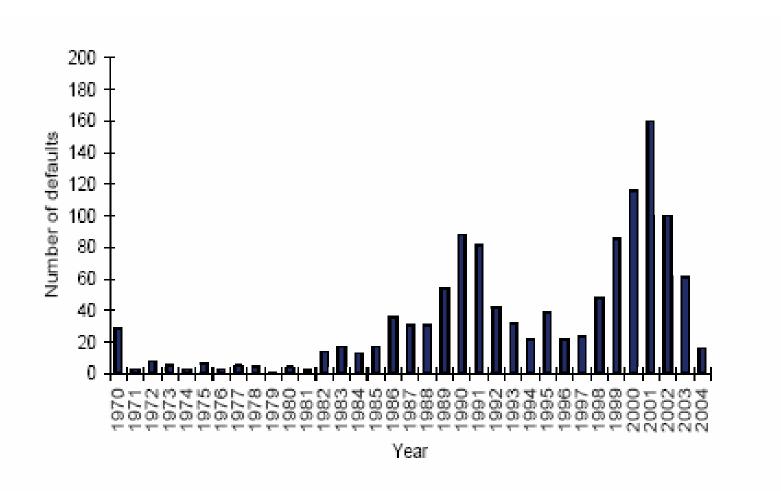
$$d\lambda_t = \mu(t, \lambda_t)dt + \sigma(\lambda_t)dW_t$$

- Inhomogeneous Markov process: $\lambda_t = f(t, N_t) = a_{N_t}(t)$ where $a_n(t)$ are transition rates from n to n+1
- Dependence on history of defaults/ losses:

$$\lambda_t = g(t_j, L_j, j = 1..N_t - 1)$$

• (Distribution of) Loss given default L_i .

Clustering of defaults



Information content of credit portfolio derivatives

Market observations consist of fair spreads for (index) CDO tranches. These can be represented in terms of expected tranche notionals

$$C(t_j, K_i) = C_i = E^{\mathbb{Q}}[(K_i - L_{t_j})^+]$$
(8)

Common procedure is to "strip" CDO spreads to get expected tranche notionals $C(t_j, K_i)$ and then calibrate these using a model.

Problem: we need $C(t_j, K_i)$ for all payment dates t_j : many more than data observed! Ill-posed linear problem \to parametrization of C(.,.) / interpolation usually used

Here we will avoid this step altogether and use a nonparametric approach

Information content of credit portfolio derivatives

Proposition 1. Consider any non-explosive jump process $(L_t)_{t\in[0,T^*]}$ with a intensity process $(\lambda_t(\omega))_{t\in[0,T^*]}$ and IID jumps with distribution F. Define $(\tilde{L}_t)_{t\in[0,T^*]}$ as the Markovian jump process with jump size distribution F and intensity

$$\lambda_{\text{eff}}(t,l) = E^{\mathbb{Q}}[\lambda_t | L_{t-} = l, \mathcal{F}_0]$$
(9)

Then, for any $t \in [0, T^*]$, L_t and \tilde{L}_t have the same distribution conditional on \mathcal{F}_0 . In particular, the flow of marginal distributions of $(L_t)_{t \in [0,T^*]}$ only depends on the intensity $(\lambda_t)_{t \in [0,T^*]}$ through its conditional expectation $\lambda_{\text{eff}}(.,.)$.

Analogy with local volatility.

Proof. Consider any bounded measurable function f(.). Using the pathwise decomposition of L_T into the sum of its jumps we can write

$$f(L_T) = f(L_0) + \sum_{0 < s \le T} (f(L_{s-} + \Delta L_s) - f(L_{s-}))$$
 (10)

SO

$$E[f(L_T)|\mathcal{F}_0] = f(L_0) + E[\sum_{0 < s \le T} (f(L_{s-} + \Delta L_s) - f(L_{s-}))|\mathcal{F}_0]$$

$$= f(L_0) + \int_0^T dt \quad E[(f(L_{t-} + \Delta L_t) - f(L_{t-}))\lambda_t(\mathcal{F}_0]$$

Denote

$$\mathcal{G}_t = \sigma(\mathcal{F}_0 \vee L_{t-})$$

the information set obtained by adding the knowledge of L_{t-} to the current information set \mathcal{F}_0 . Define the *local intensity* function

$$\lambda_{\text{eff}}(t,l) = E^{\mathbb{Q}}[\lambda_t | \mathcal{F}_0, L_{t-} = l]. \tag{12}$$

Noting that $\mathcal{F}_0 \subset \mathcal{G}_t$ we have

$$E[(f(L_{t-} + \Delta L_t) - f(L_{t-}))\lambda_t | \mathcal{F}_0]$$

$$= E[E[(f(L_{t-} + \Delta L_t) - f(L_{t-}))\lambda_t | \mathcal{G}_t] | \mathcal{F}_0]$$

$$= E[\int_0^1 F(dy) (f(L_{t-} + y) - f(L_{t-}) E[\lambda_0 | \mathcal{G}_t] | \mathcal{F}_0]$$

$$= E[\lambda_{\text{eff}}(t, L_{t-}) \int F(dy) (f(L_{t-} + y) - f(L_{t-}) | \mathcal{F}_0] \quad \text{so}$$

$$E[f(L_T) | \mathcal{F}_0] = f(L_t) +$$

$$E[\int_0^T dt \lambda_{\text{eff}}(t, L_{t-}) \int F(dy) (f(L_{t-} + y) - f(L_{t-}) | \mathcal{F}_0]$$

The above equality shows that $E[f(L_T)|\mathcal{F}_0] = E[f(\tilde{L}_T)|\mathcal{F}_0]$ where $(\tilde{L}_t)_{0 \leq t \leq T}$ is the Markovian loss process with intensity $\gamma_t = \lambda_{\text{eff}}(t, \tilde{L}_{t-})$ and jump size distribution F hence $\tilde{L}_t = {}^d L_t$.

Corollary 1 (Information content of non-path dependent portfolio credit derivatives). The value $E^{\mathbb{Q}}[f(L_T)|\mathcal{F}_0]$ at t=0 of any derivative whose payoff depends on the aggregate loss L_T of the portfolio at on a fixed grid of dates, only depends on the default intensity $(\lambda_t)_{t\in[0,T^*]}$ through its risk-neutral conditional expectation with respect to the current loss level:

$$\lambda_{\text{eff}}(t,l) = E^{\mathbb{Q}}[\lambda_t | L_{t-} = l, \mathcal{F}_0]$$
(13)

In particular, CDO tranche spreads and mark-to-market value of CDO tranches only depends on the transition rate $(\lambda_t)_{t \in [0,T^*]}$ through the effective default intensity $\lambda_{\text{eff}}(.,.)$.

Forward equation for expected tranche loss In the markovian case where portfolio loss intensity only depends on time/loss, the expected tranche loss $C(T,K) = E^{\mathbb{Q}^{\lambda}}[(K-L_T)^+]$ solves a Dupire-type forward equation (Cont & Savescu 2006)

$$\frac{\partial C(T,K)}{\partial T} = -\lambda^*(T,K - \delta K)C(T,K)$$
$$-(\lambda^*(T,K - 2\delta K) - 2\lambda^*(T,K - \delta K))C(T,K - \delta K)$$

$$-\sum_{i=1}^{k-2} (\lambda^*(T, (i-1)\delta K) - 2\lambda^*(T, i\delta K) + \lambda^*(T, (i+1)\delta K))C(T, K)$$

Problem 1 (Calibration problem). Given a set of observed CDO tranche spreads $(S_0(K_i, K_{i+1}, T_k), i = 1..I - 1, k = 1..m)$ for a reference portfolio, construct a (risk-neutral) default rate/ loss intensity $\lambda = (\lambda_t)_{t \in [0,T]}$ such that the spreads computed under the model \mathbb{Q}^{λ} match the market observations

$$S_0(K_i, K_{i+1}, T_k) = \frac{\sum_{t_j \le T_k} B(0, t_j) E^{\mathbb{Q}^{\lambda}} [L_{K_i, K_{i+1}}(t_j) - L_{K_i, K_{i+1}}(t_{j-1})]}{\sum_{t_j \le T_k} B(0, t_j) (t_j - t_{j-1}) E^{\mathbb{Q}^{\lambda}} [(K_{i+1} - L(t_j))^+ - (K_i - L(t_j))^+]}$$

Calibration by Relative entropy minimization under constraints

One period case: Buchen & Kelly, Avellaneda 1998

Diffusion models: Avellaneda Friedman Holmes Samperi 1997

Monte Carlo setting: Avellaneda et al 2001

Lévy processes: Cont & Tankov 2004, 2006)

Given market prices $C(K_i)$ of tranche payoffs and a prior guess λ^0 for the loss intensity process, the reconstruction of the default intensity process $(\lambda_t)_{t\in[0,T^*]}$ can be formalized as

$$\inf_{\mathbb{Q}^{\lambda} \in \Lambda} E^{\mathbb{Q}_0} \left[\frac{d\mathbb{Q}^{\lambda}}{d\mathbb{Q}_0} \ln \frac{d\mathbb{Q}^{\lambda}}{d\mathbb{Q}_0} \right] \tag{14}$$

under the constraint that the model \mathbb{Q}^{λ} prices correctly the observed CDO tranches, where \mathbb{Q}^{λ} is the law of the point process with intensity process λ and \mathbb{Q}_0 is the law of the point process with intensity λ^0 .

Problem 2 (Calibration via relative entropy minimization). Given a prior loss process with law \mathbb{Q}_0 , find a default intensity $(\lambda_t)_{t \in [0,T^*]}$ which minimizes

$$\inf_{\mathbb{Q}^{\lambda} \in \Lambda} E^{\mathbb{Q}_0} \left[\frac{d\mathbb{Q}^{\lambda}}{d\mathbb{Q}_0} \ln \frac{d\mathbb{Q}^{\lambda}}{d\mathbb{Q}_0} \right] \quad \text{under} \quad E^{\mathbb{Q}^{\lambda}} [H_{i,k}] = 0 \tag{15}$$

$$H_{ik} = S_0(K_i, K_{i+1}, T_k) \sum_{t_j \le T_k} B(0, t_j)(t_j - t_{j-1})[(K_{i+1} - L(t_j))^+ - (K_i - L(t_j))^+]$$

$$- \sum_{t_j \le T_k} B(0, t_j)[(K_{i+1} - L(t_j))^+ - (K_i - L(t_j))^+ - (K_{i+1} - L(t_{j-1}))^+ + (K_i - L(t_{j-1}))^+))]$$
(16)

and \mathbb{Q}^{λ} denotes the law of the point process with intensity $(\lambda_t)_{t\in[0,T^*]}$ and \mathbb{Q}_0 is the law of the point process with intensity λ^0 .

Using the previous result we can restrict Λ to Markovian intensities $\lambda(t, L_t)$.

Computation of entropy

Equivalent change of measure for point processes (Jacod 1980, Bremaud 1981)

Proposition 2. Let N_t be a Poisson process with intensity γ_0 on $(\Omega, \mathcal{F}_t, \mathbb{Q}_0)$. Let $\lambda = (\lambda_t)_{t \in [0,T]}$ be an \mathcal{F}_t -predictable process such that

$$\int_0^t \lambda_s ds < \infty \quad \mathbb{Q}_0 - a.s. \tag{17}$$

Define the probability measure \mathbb{Q}^{λ} on \mathcal{F}_{T} by

$$\frac{d\mathbb{Q}^{\lambda}}{d\mathbb{Q}_{0}} = Z_{T} \quad \text{where} \quad Z_{t} = \left(\prod_{\tau_{j} \leq t} \frac{\lambda_{\tau_{j}}}{\gamma_{0}}\right) \exp\left\{\int_{0}^{t} (\gamma_{0} - \lambda_{s}) \ ds\right\}$$

Then N_t is a point process with \mathcal{F}_t intensity $(\lambda_t)_{t\in[0,T]}$ under \mathbb{Q}^{λ} .

Proposition 3 (Computation of relative entropy). Denote by

- \mathbb{Q}_0 the law on [0,T] of a (standard unit intensity) Poisson process and
- \mathbb{Q}^{λ} the law on [0,T] of the point process with intensity $(\lambda_t)_{t\in[0,T]}$ verifying hypothesis (17).

The relative entropy of \mathbb{Q}^{λ} with respect to \mathbb{Q}_0 is given by:

$$E^{\mathbb{Q}_0}\left[\frac{d\mathbb{Q}^{\lambda}}{d\mathbb{Q}_0}\ln\frac{d\mathbb{Q}^{\lambda}}{d\mathbb{Q}_0}\right] = E^{\mathbb{Q}^{\lambda}}\left[\int_0^T \lambda_t \ln \lambda_t dt + T - \int_0^T \lambda_t dt\right]$$
(18)

Duality

Define the Lagrangian

$$\mathcal{L}(\lambda,\mu) = E^{\mathbb{Q}^{\lambda}} \left[\int_0^T \lambda_s \ln \lambda_s ds + T - \int_0^T \lambda_s ds - \sum_{i=1}^I \sum_{k=1}^m \mu_{i,k} H_{ik} \right]$$

Using convex duality arguments, the primal problem:

$$\inf_{\mathbb{Q}^{\lambda} \in \Lambda} E^{\mathbb{Q}_0} \left[\frac{d\mathbb{Q}^{\lambda}}{d\mathbb{Q}_0} \ln \frac{d\mathbb{Q}^{\lambda}}{d\mathbb{Q}_0} \right] \quad \text{under} \quad E^{\mathbb{Q}^{\lambda}} [H_{ik}] = 0 \tag{19}$$

is equivalent to the dual problem

$$\sup_{\mu \in \mathbb{R}^{m.I}} \inf_{\lambda \in \Lambda} E^{\mathbb{Q}^{\lambda}} \left[\int_{0}^{T} \lambda_{s} \ln \lambda_{s} ds + T - \int_{0}^{T} \lambda_{s} ds - \sum_{i=1}^{I} \sum_{k=1}^{m} \mu_{i,k} H_{ik} \right]$$
(20)

Intensity control problem

An *intensity control* problem is an optimization problem with a criterion of the type

$$E^{\mathbb{Q}^{\lambda}}\left[\int_{0}^{T} \varphi(t, \lambda_{t}, L_{t})dt + \sum_{j=1}^{J} \Phi_{j}(t_{j}, L_{t_{j}})\right],$$

where $\varphi(t, \lambda_t, N_t)$ is a running cost and $\Phi_j(t_j, L_{t_j})$ represents the terminal cost. Here

$$\varphi(t, \lambda, L) = \lambda \ln \lambda + 1 - \lambda$$
 and $\Phi_j(t_j, L_{t_j}) = \sum_{i=1}^{I} M_{ij} (K_i - L_{t_j})^+$
where $M_{ij} = B(0, t_{j+1}) \sum_{T_k \ge t_{j+1}} (\mu_{ik} - \mu_{i-1,k}) +$

$$B(0,t_j) \sum_{T_k \ge t_j} \left[\mu_{ik} (1 - \Delta S(K_i, K_{i+1}, T_k)) - \mu_{i-1,k} (1 - \Delta S(K_{i-1}, K_i, T_k)) \right]$$

Single horizon case

$$E^{\mathbb{Q}^{\lambda}}\left[\int_{0}^{T} (\lambda_{t} \ln \lambda_{t} + 1 - \lambda_{t}) dt + \Phi(T, L_{T})\right],$$

Solution by dynamic programming: introduce the value function

$$V(t,k) = E^{\mathbb{Q}^{\lambda}} \left[\int_0^T \varphi(t,\lambda_t, L_t) dt + \Phi(T, L_T) | N_t = k \right]$$

The value function can be characterized in terms of a Hamilton Jacobi equation (Bismut 1975, Bremaud 1982).

Proposition 4. (Hamilton-Jacobi equations) Suppose there exists a bounded function $V:[0,T^*]\times N\to V(t,n)$ differentiable in t, such that

$$\frac{\partial V}{\partial t}(t,k) + \inf_{\lambda \in]0,infty[} \{\lambda [V(t,k+1) - V(t,k)] + \lambda \ln \lambda - \lambda + 1\} = 0$$
(21) for $t \in [0,T]$ and $V(T,k) = \Phi(T,k\delta)$ (22)

and suppose there exists for each $n \in N^+$ an \mathcal{F}_t -predictable mapping $t \to u^*(t, N_t)$ such that for each $n \in N^+$, $t \in [t_0, T]$

$$\lambda^*(t,k) = \underset{\lambda \in]0,\infty[}{\operatorname{argmin}} \{ \lambda[V(t,k+1) - V(t,k)] + \lambda \ln \lambda - \lambda + 1 \} \quad (23)$$

Then $\lambda_t^* = \lambda^*(t, N_t)$ is an optimal control. Moreover $V(t_0, N_{t_0}) = \inf_{\lambda \in \Lambda_t} E^{\mathbb{Q}_{\lambda}} \left[\int_{t_0}^T C_s(\lambda) ds + \Phi_T(\lambda) | \mathcal{F}_{t_0} \right].$

In our problem, in the case of a single maturity, the dual problem is an intensity control problem with running cost

$$(\ln \lambda(t, N_t) - 1)\lambda(t, N_t) + 1$$

and terminal cost is of the type $\Phi_j(L) = \sum M_{ij}(K_i - L)^+$.

The Hamilton Jacobi equations are given by

$$\frac{\partial V}{\partial t}(t,n) + \inf_{\lambda \in \Lambda} \{\lambda[V(t,n+1) - V(t,n)] + (\ln \lambda(t,n) - 1)\lambda(t,n) + 1) = 0$$

which is a system of n = 125 coupled nonlinear ODEs.

The maximum in the nonlinear term can be explicitly computed:

$$\lambda^*(t,n) = e^{-[V(t,n+1) - V(t,n)]}$$
(24)

$$\lambda^*(t,n) = e^{-[V(t,n+1)-V(t,n)]}$$

$$\frac{\partial V}{\partial t}(t,n) + 1 - e^{-[V(t,n+1)-V(t,n)]} = 0$$
(24)

$$V(T,k) = \Phi(T,k) \tag{26}$$

Proposition 5 (Value function). Consider any terminal condition Φ such that $\Phi(x) = 0$ for $x > n\delta$. Then the solution of (26)-27 is given by

$$V(t,k,\mu) = T - t - \ln \sum_{j=0}^{n-k} \frac{(T-t)^j}{j!} e^{-\Phi(T,(j+k)\delta)}$$
 (27)

The key is to note that if we consider the exponential change of variable $u(t, k) = e^{-V(t,k)}$ then u solves a linear equation

$$\frac{\partial u(t,k)}{\partial t} + u(t,k+1) - u(t,k) = 0 \quad \text{with} \quad u(T,k) = \exp(-\Phi(T,k\delta))$$

which is recognized as the backward Kolmogorov equation associated with the Poisson process (i.e. the prior process, with law \mathbb{Q}_0). The solution is thus given by the Feynman-Kac formula

$$u(t, k; \mu) = E^{\mathbb{Q}_0}[e^{-\Phi(T, \delta N_T)}|N_t = k] = E^{\mathbb{Q}_0}[e^{-\Phi(T, k\delta + \delta N_{T-t})}]$$

using the Markov property and the independence of increments of the Poisson process. The expectation is easily computed using the Poisson distribution:

$$u(t,k;\mu) = \sum_{j=0}^{n-k} e^{-(T-t)} \frac{(T-t)^j}{j!} e^{-\Phi(T,(k+j)\delta)}$$
 (28)

which leads to (28).

Case of several maturities

Recursive algorithm via dynamic programming principle

- 1. Start from the last payment date j = J and set $F_J(k) = \Phi_J(t_J, \delta k)$.
- 2. Solve the Hamilton-Jacobi equations (26) on $]t_{j-1}, t_j]$ backwards starting from the terminal condition

$$V(t_j, k) = F_j(k) \tag{29}$$

which can be explicitly solved to yield $V(t, k; \mu)$ on $t \in]t_{j-1}, t_j]$ using (28).

- 3. Set $F_{j-1}(k) = V(t_{j-1}, k) + \Phi_{j-1}(t_{j-1}, k\delta)$
- 4. Go to step 2 and repeat.

Discontinuities may appear in value function at junction dates.

Reconstruction algorithm

- 1. Solve the dynamic programming equations (26)–(27) $\mu \in \mathbb{R}^I$ to compute $V(0,0,\mu)$.
- 2. Optimize $V(0,0,\mu)$ over $\mu \in \mathbb{R}^{I \times J}$ using a gradient-based method:

$$\inf_{\mu \in \mathbb{R}^I} V(0,0,\mu) = V(0,0,\mu^*) = V^*(0,0)$$

3. Compute the calibrated default intensity (optimal control) as follows:

$$\lambda^*(t,k) = e^{V(t,k) - V(t,k+1)}$$
(30)

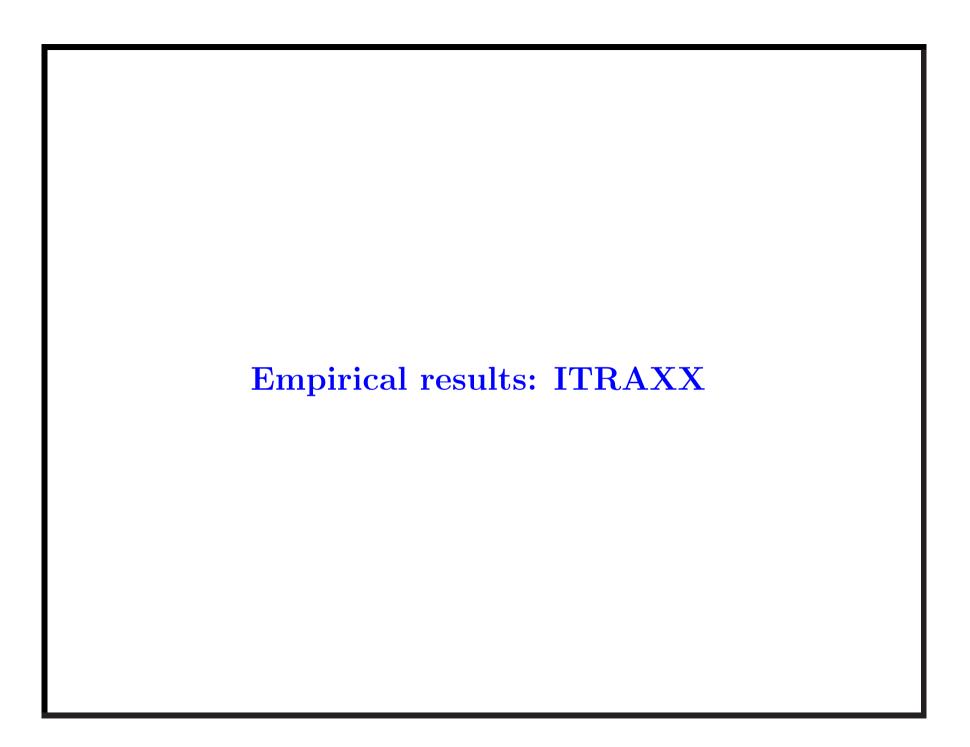
- 4. Compute the term structure of loss probabilities by solving the Fokker-Planck equations.
- 5. The calibrated default intensity $\lambda^*(.,.)$ can then be used to compute CDO spreads for different tranches, forward tranches

etc. in a straightforward manner: first we compute the expected tranche loss C(T,K) by solving the forward equation:

$$\frac{\partial C(T,K)}{\partial T} = -\lambda^*(T,K - \delta K)C(T,K)$$
$$-(\lambda^*(T,K - 2\delta K) - 2\lambda^*(T,K - \delta K))C(T,K - \delta K)$$
$$-\sum_{i=1}^{k-2} (\lambda^*(T,(i-1)\delta K) - 2\lambda^*(T,i\delta K) + \lambda^*(T,(i+1)\delta K))C(T,K)$$

$$-\sum_{i=1}^{k-2} (\lambda^*(T, (i-1)\delta K) - 2\lambda^*(T, i\delta K) + \lambda^*(T, (i+1)\delta K))C(T, K)$$

In particular the calibrated default intensity can be used to "fill the gaps" in the base correlation surface in an arbitrage-free manner, by first computing the expected tranche loss for all strikes and then computing the base correlation for that strike.



Maturity	Low	High	Bid\ Upfront	Ask\ Upfront
5Y	0%	3%	11.75%	12.00%
	3%	6%	53.75	55.25
	6%	9%	14.00	15.50
	9%	12%	5.75	6.75
	12%	22%	2.13	2.88
	22%	100%	0.80	1.30
7Y	0%	3%	26.88%	27.13%
	3%	6%	130	132
	6%	9%	36.75	38.25
	9%	12%	16.50	18.00
	12%	22%	5.50	6.50
	22%	100%	2.40	2.90

Maturity	Low	High	Bid\ Upfront	Ask\ Upfront
10Y	0%	3%	41.88%	42.13%
	3%	6%	348	353
	6%	9%	93	95
	9%	12%	40	42
	12%	22%	13.25	14.25
	22%	100%	4.35	4.85

Table 2: ITRAXX tranche spreads, in bp. For the equity tranche the periodic spread is 500bp and figures represent upfront payments.

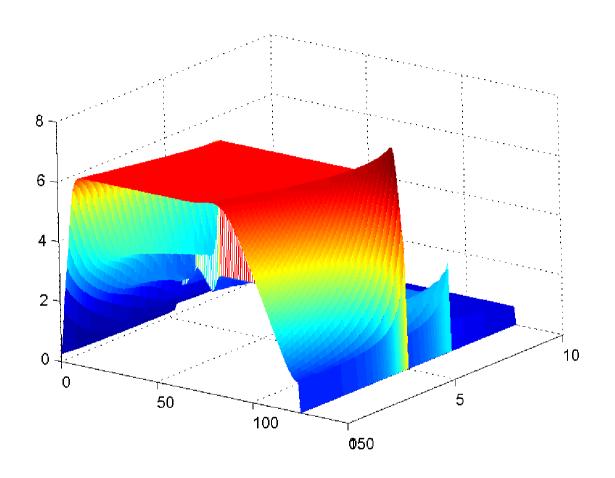


Figure 1: Calibrated intensity function $\lambda(t,L)$: ITRAXX Europe Series 6, March 15 2007.

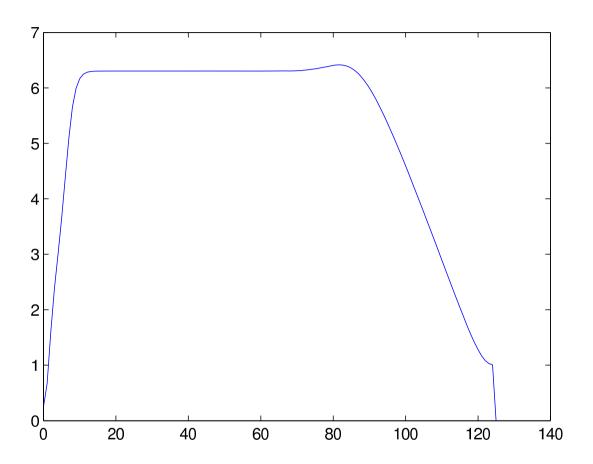


Figure 2: Dependence of default intensity on number of defaults for t=1year: ITRAXX Europe Series 6, March 15 2007..

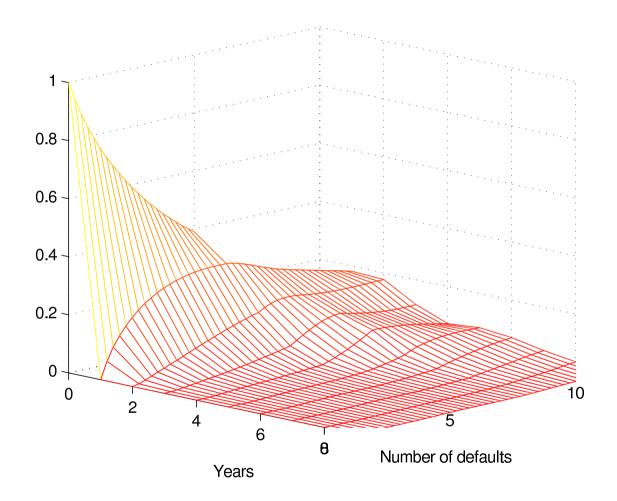


Figure 3: Term structure of loss distributions computed from calibrated default intensity: ITRAXX Europe Series 6, March 15 2007...

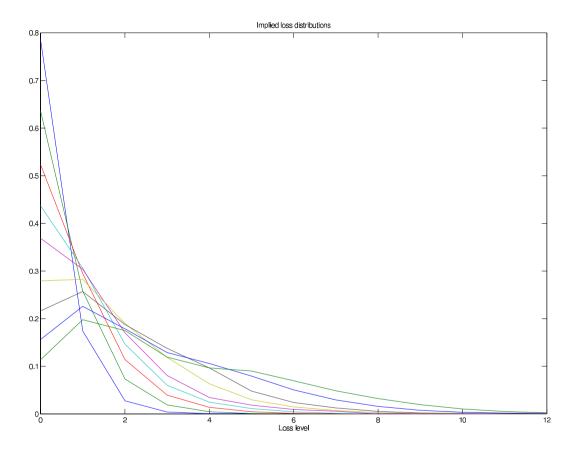


Figure 4: Implied loss distributions at various maturities: ITRAXX Europe Series 6, March 15 2007.

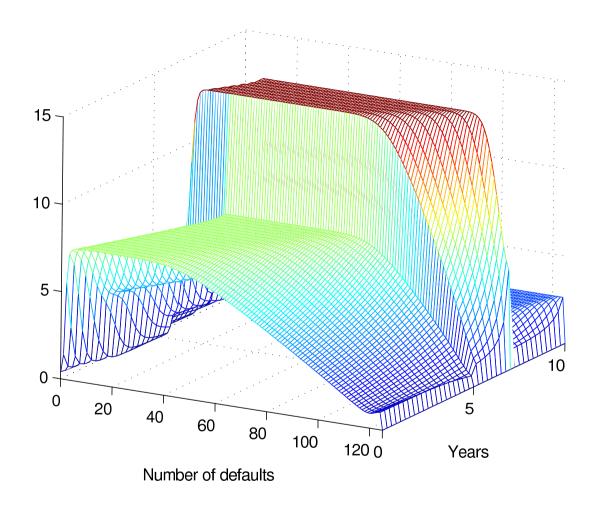


Figure 5: Calibrated intensity function $\lambda(t,L)$: ITRAXX September 26, 2005

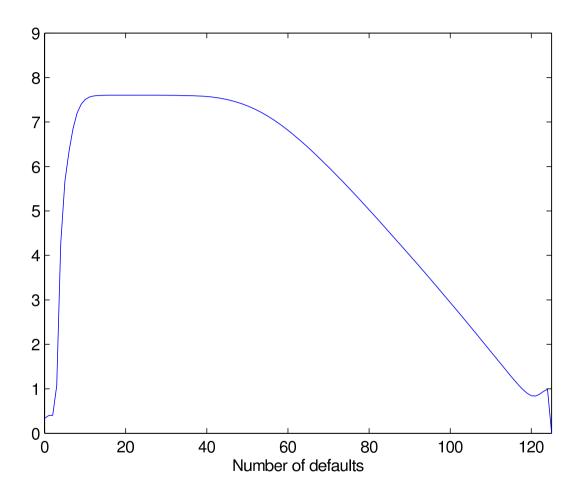


Figure 6: Dependence of default intensity on number of defaults for t=1year: ITRAXX September 26, 2005.

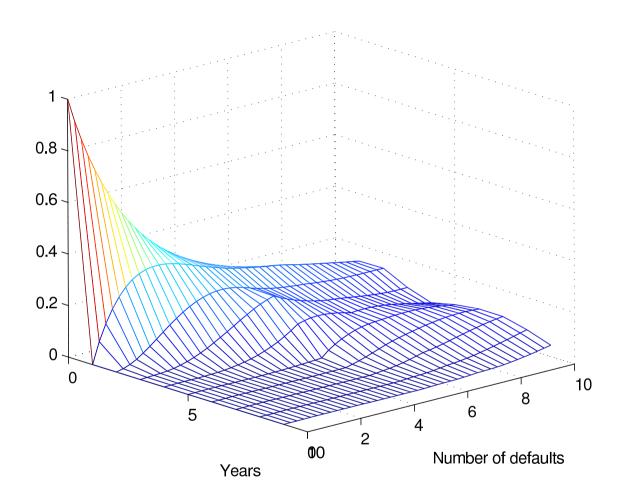


Figure 7: Term structure of loss distributions computed from calibrated default intensity: ITRAXX September 26, 2005.

Conclusion

- Stochastic control method for solving a model calibration problem.
- Rigorous methodology for calibrating a top-down CDO pricing model to market data.
- Stable calibration algorithm based on intensity control method.
- No black box optimization.
- Nonparametric: no arbitrary functional form for the default intensity.
- No need to interpolate CDO data in maturity or strike!
- Involves unconstrained convex minimization in dimension $\simeq 20$: few seconds on laptop!
- Results point to default contagion effects in the riskneutral loss process.