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Agenda

This talk is based on a working paper with two parts: i) theory for Markov
representations of term structures of futures curves (w. mean reversion,
stochastic volatility, jumps, and regime-switch); ii) an application for
seasonal natural gas modeling.

Here, we’ll focus on ii), thereby providing a simple, specific example of i).
Objective is to develop a practical trading model that represents the
evolution of gas futures prices over time well.

In particular, we want to model seasonality in: 1) futures levels, 2) implied
volatilities, 3) correlations, and 4) implied volatility skews (!)

...and we want the model to have call option pricing formulas of the same
complexity as Black-Scholes, with perfect fit to all ATM options

...and we want the model to have three or less Markov state-variables
describing the entire futures evolution.

...and we want the model to imply nice stationary (in a seasonality-adjusted
sense) dynamics of futures levels and volatilities.

Markov modeling of Gas Futures — p.2/31



Natural Gas Option Snapshot - |

Figure 1: Futures Prices and ATM Volatilities, USD Gas Market
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Notes: The left panel shows the futures curve F(0,7); the right shows implied ATM
volatilities for European T-maturity call options. April 2007.

Gas futures prices strongly seasonal: high in winter, low in summer

Gas ATM implied volatilities strongly decaying in option maturity, with
“lagged” seasonal overlay. Volatility approaches a constant plateau (with

seasonality) as maturity gets large.

Markov modeling of Gas Futures — p.3/31



Natural Gas Option Snapshot - I

Figure 2: Volatility Surface

Strike Offset = 6
Strike Offset = 4
Strike Offset = 2
Strike Offset = -2

Strike Offset

Notes: Left panel: volatility smile, as a function of option maturity (7°) and strike. Right
panel: “skew” (volatility minus ATM volatility). Both panels: strike= F'(0, T")+offset.

A strong “reverse” volatility skew, which dies out as maturity is increased.

Seasonality component, where skew is higher for winter delivery than for
summer delivery.
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Time Series

Figure 3: Selected USD Gas Futures
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Notes: F'(t,t + A), for A = {1 month, 13 months, 25 months, 61 months}.

F(t,T): time t gas price for delivery at time T.
Short-dated futures more volatile than long-dated (as expected).

The futures curve will occasionally (in winter) go into strong backwardation,
after a rapid “spiky” increase in the short-term futures prices.
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Correlation Analysis - |

Due to seasonality effects, care must be taken when attempting to measure
futures correlation across maturities (the term structure of correlation)

In particular, correlation structure depends strongly on the season of the
observation intervals

To get going, set X (¢,T) = In F'(¢,T') and define a correlation function

p(t, A1, Ay) = corr (dX (¢t,t+ Ay),dX(t,t+ As)).

Seasonality effects will cause p(t, A1, As) to depend on ¢, for fixed
time-to-maturity arguments A; and A,.

We are also interested in the asymptote f.(t) = lima_ o p(t,t,t + A).

Markov modeling of Gas Futures — p.6/31



Correlation Analysis - |l

Figure 4: Empirical Correlation Structure for USD Gas Futures
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Notes: Daily time-series data covering January 2000 to June 2007.

Correlations between futures observed in the winter are generally lower
than when observed in the summer.

Broadly speaking, the correlations p(t, A1, Ay) also tend to decline in
Ay — Aq| and, for fixed |As — A4 |, increase in min(Aq, As).

But seasonal “undulations”.
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Correlation Analysis -

Figure 5: Empirical Correlation Asymptotes for USD Gas Futures

Notes: f..(t), as a function of the calendar month to which ¢ belongs. Daily time-series
data covering January 2000 to June 2007.

The asymptotic correlation function f.(¢) = lima .~ p(t,t,t + A) is higher
In summer than in winter.

And also “undulates” in the typical seasonal fashion.
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Principal Components Analysis

Figure 6: Principal Components Analysis for USD Gas Futures
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—— 2nd Eigenvector (July)

Notes: PCA of 48 futures price daily log-increments (January 2000 to June 2007).

Due to seasonality, we perform PC analysis on a month-by-month basis

Generally, first PC explains about 80% of futures curve variation; first two
PCs explain about 95% of variation. First PC explains more variance in
summer than in winter.
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Implied Volatility Time Series

Figure 7: Selected USD Gas Implied Volatilities
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Notes: Implied at-the-money volatilities for options on the spot gas price.

As expected, short-term volatilities are consistently higher than long-term
volatilities

Options maturing a few months apart (not a multiple of one year) show a
“lag” and some “dampening” in their implied volatility dynamics
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Continuous-Time Model - |

PCA: suffices to have two (indep.) Brownian motions W, and Ws.
Futures are martingales in risk-neutral measure, i.e.

dF (t, T)/F(t,T) = o1(t, T)dW1(t) + o2(t, T)dWs(t), T >t.
For now assume that o; and oy are deterministic such that F(7,T) is
log-normal, and put/call options can be priced by Black-Scholes.

To ensure that the evolution of the entire futures curve can be represented
through a few (two, in fact) Markov state-variables, let us specialize to

o1(t, T) = e® @ hie #T=0) 4 eaMp - 5o(t, T) = T hpe= T,

Here k is a mean-reversion speed; a and b are seasonality functions
oscillating around zero at an annual frequency; h Is the level of volatility
for large maturities; and h, and h, are constants that together determine

the short-term volatility.
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Continuous-Time Model - |l

Defining d(T') = a(T) — b(T'), we have

-
h d(T) ,—rk(T—t) R W (1
dF(t,T)/F(t,T) _ 6a(T) ( 1€ € =+ ) d ( 1( ) ) )

hoed(D) g—=r(T—1)

So a(T) is a persistent seasonality function, d(T') is a transitory one.

We note that the SDE (1) is of the separable type, in the sense that

Wa(t)

a(T)+d(T) ,—kT hiet R

e e 1€ -
sy =| Ca=| .

e(T) hoe™ 0

A shown in paper (unsurprisingly), this allows for a representation of all
futures prices as functions of two Markov variables. We return to this later.
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Basic Option Pricing

Consider a T' -maturity option on a gas futures contract that matures at
time T > T;. The implied Black-Scholes term volatility is, at time ¢ < T; :
—2rk(T-T1) _ 6—2&(T—t)

2K (T1 — t)
—k(T—t)

Uterm

2 (t,T;T) = e2(T) {(h% + h%) e2d(1) &
—H:(T—Tl) —e

o hyedDE
el o (Th — 1)

+h§o}. 2)

Normally, we calibrate the model to spot options, where T' = T;.

An aside: swaptions can be easily priced, too, through the Markov
representation we shall show shortly.

Note that rolling futures price F'(¢,t + A) has volatility

or(t,t+ A) m e®0HATAHA) \/(hw"<QA + hoo)? 4 h3e—2rA,

so as A is increased volatilities should — as seen earlier — be dampened
due to mean-reversion and be “time-shifted” by e*(t+2)+d(t+4)
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Correlation Structure

Recall p(t, A1, As) = corr (dIn F'(t,t + A1), dIn F(t,t + As)) . In our model:

ed(T1) ed(T2) g=r(A1+A2) 4 g (ed(T1)g=rAL 4 ¢d(T2)e—KAZ) 4 ¢
p(t,A1,Az) = ( )

_ \/eQd(Tl)e—QliAl + 2qed(T1)e—K‘,A1 + w\/eQd(Tg)e—QliAQ + 2qed(T2)e—I{A2 + w ,

where 77 =t + A; and T =t + A, and
hyhoo h2, e

1R U m+rz Th

q

For the case A; = 0 and Ay = oo, we get

o qe®®) 4w
B /e24(®) 1 2ged®) 1\ /w

which depends on time through d(¢) only (not a(t)). If we know f.(¢), we
can use this to back out d(¢) analytically.

p(t,0,00) = foo(?) (3)
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Parameter Reformulation

The model so far has been parameterized through constants A1, hs, heo, &
and two seasonality functions. In a trading setting, it is sometimes easier to
work through more “intuitive” parameters:

gy = UF(t7t) — \/(hl +hoo)2+h%a
O = 0p(t,00) = heo,
hl + hoo
Poo = -
o0

P IS the correlation function f..(¢) when d(T)) = 0. So: the
seasonality-free correlation between the short and long futures prices.

There is a one-to-one mapping between hq, ho, hoo and oy, 00, poo- We use
both representations interchangeably going forward.
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Markov Representation of Futures Curve

Define X (¢,T) = In F'(t,T) and set
dzy(t) = ™ (hidW1(t) + hadWs(t)), dxa(t) = hoodWi(t).
with 2, (0) = 22(0) = 0. Then F(t,T) = eX(:T)  where

X (t,T) = In F(0,T) 4 e*™ (a;l(t)e—“”d”) + azg(t))

5 EGQG(T) e2d(T)—2xT (e”t — 1) (h% + h%) + 4dhihooeT) =T (e”t — 1) + 2R tk
2 o .

The state variables z; and x5, are martingales, with the former having
exponential variance. A better choice of state-variables:

le (t) — —KRkZz1 (t)dt + hldW1 (t) + thWQ (t), dZ2 (t) = hoodwl (t)

SDE easy to implement by Monte Carlo or by 2-D finite difference methods.
Entire futures curve can be reconstituted at time t from 2 (¢) and 25 (¢).
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Calibration Algorithm

By working in a futures curve setting (rather than with the spot gas price)
our model is auto-calibrated to the seasonal futures curve. It remains to
calibrate the model to ATM spot option volatilities and to correlation
structure. (We deal with skew later).

Here is an algorithm:

1. Pick a value of p.., based on empirical data.

2. Seta(T) = d(T) = 0 (temporarily), and best-fit oy, 0o, and « to the
decaying ATM implied volatility term structure. This should give good
stationarity properties.

3. Decide if we want to model correlation seasonality. If no, set d(T") = 0; if
yes, use (3) to set d from empirical observations. Some smoothing may
be useful.

4. Find the function a(T") by matching perfectly ATM option volatilities,
using (2). This can be done algebraically involving no root-search.

Note: we may specify 0y, 0, .. t0 be functions of time.
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Calibration Example (to Snapshot Data)

We select p. = 0.5 (Step 1); a subsequent fitting procedure (Step 2) then
gives k = 1.35, 09 = 0.50, 0o, = 0.17. We can compute that then A, = 0.08,
ho = 0.43, and h., = 0.17.

To demonstrate the effects from the selection of d(T"), in Step 3 of our
calibration algorithm we use two choices for fo.(1): 1) foo(t) = poo = 0.5,
and ii) foo(t) = q(t), where ¢(t) is a sine-function loosely fitted to the
empirical data in Figure 5:

q(t) =0.5+0.1sin (27 (t — 0.4)). (4)

Note: convention is that ¢ = 0 is April 2007, such that ¢(¢) has peaks and
valleys in summers and winters, respectively.

(Note: if we want to ignore correlation completely, we can work with a
single-factor model by setting po, = 1)
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Calibration Example - Il

Figure 8: a(T") for USD Gas Options, April 2007

Notes: The graph shows two cases: i) d(71') = 0 and ii) d(T") set to match the correlation
seasonality implied by the function ¢(¢) above.

Seasonality function is close to stationary — a good sign.
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Calibration Example - I

Figure 9: ATM Term Volatilities

No Seasonality
t=0.0

Notes: At-the-money term volatility o (t,T") as function of T'— ¢ at two different points
in time. For reference, the term volatilities corresponding to a(7") = 0 are also shown.

ATM volatility structure also close to stationary — after considering
seasonality effects

Note: figure shows case where d(7') = 0. Even more stationary if d(7T)
allowed to model seasonality in correlations (where f.. () = q(t))
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Calibration Example - IV

Figure 10: Model Correlation Structure
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Notes: Model-predicted correlation p(t, A1, As) for various values of A; and As.

The correlation structure is qualitatively quite similar to empirical data in
Figure 4.

The seasonality effects are somewhat more pronounced in model than in
data; a closer fit can (if needed) be obtained by a more elaborate choice of
d-function.
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Calibration Example - V

Figure 11: Model vs. Empirical Correlation Structure
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Notes: Left panel: model-predicted values of p(¢,1/12, A) for ¢ = 0.1 (summer) and
t = 0.6 (winter). Right panel: empirical data.
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Skew Modeling - Basics

As discussed in paper, there are (at least) three approaches to skew
modeling, all of which can be mixed-and-matched: stochastic volatility
(positive correlation between spot and volatility); mean-reverting
jump-diffusion; or regime-switch modeling.

Stochastic volatility has some empirical support, but comes with
complications: i) an increase in the number of state-variables (from 2 to 6,
see paper); i) the need for Fourier transformations when pricing puts/calls.
1) is the main concern as it rules out finite difference grids. See paper.

Strongly mean-reverting jump-diffusion can be used to model the upward
winter-spikes in the time-series data, and adds (in its simplest form) only a
single state-variable. However, put/call option pricing involves Fourier
transforms which are quite time-consuming to compute unless mean
reversion is zero (which precludes spike-behavior). See paper for details.

Regime-switching is a natural alternative to mean-reverting jump-diffusion
that, as we shall see, can allow for much simpler call/put pricing.
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Two-State Regime Switch Model -

Consider a simple two-state model (paper has more complicated models)

F(t,T) = F.(t, T)Fy(t,T),

(5)

where F is generated by the diffusion model from earlier, and F'; is a
jump-martingale, i.d. of I, driven by a regime switch mechanism.

The regime switch model has two states: ¢ = 0 (“low”) and ¢ = 1 (*high”).
The “up” move (from ¢ = 0 to ¢ = 1) is characterized by an intensity h(%);

the “down” move is characterized by an intensity ho(t).

Transition probabilities can be found by Markov chain methods (see paper).

Define h; = h;( ft
pg(t, T) = Pr(ce(T)=0|c(t)=0) =
pcl)(t,T) = Pr(c(T) =1|c(t) =0) =
pi(t, T) = Pr(c(T)=0lc(t)=1)=
pi(t,T) = Pr(c(T)=10lc(t) =1) =

u)du, ¢ = 0,1. Then
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Two-State Regime Switch Model - Il

To generate futures price dynamics from the Markov chain ¢, introduce a
jump process J. When ¢(t) = 0, J(t) will also be zero; however, if ¢(t)
jumps to 1 then J(¢) will simultaneously jump to a random value drawn
from a Gaussian distribution AV (u7, 7).

We assume that Pr (J(t) = 0|c(t) = 1) = 0, which requires that either
~vy7 > 0o0r uy # 0.

For some freely specifiable deterministic function s(7"), we then finally set

B, (e5(1)7(T)
E (es(T)J(T))

Fy(t,T) = = B, (e<@V@O-60)) ©)

where
G(T)=InE (eS(T)‘](T)) :

Notice that hat F;(¢,T") by construction is a martingale in the risk-neutral
measure and that our scaling with exp (—G(T')) ensures that F;(0,7) =1
for all T
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Two-State Regime Switch Model -

Since c¢(t) = 1;)x0, the regime-switch model above adds only a single
Markov state variable (J(t)) to our setup.

We already know how to reconstitute F.(¢,T") from our two continuous state
variables; we need to do the same for F;(¢,T) given J(t). The required
result is below:

E, (est(T)) _ (es<T>J<T>| J(t)>

(B85, T) + b (8, TersD+o23/2) J(t) =0,
e_G(T) (p(l)(t,T) 4 (p%(t,T) o e—ﬁo) e,qu(T)—Fs(T)ng/Q 4 e—ﬁoes(T)J(t)) : J(t) 7§ 0.

The same result can be used to establish G(T'), such that
EFy(t,T) = E; (e5MJ(M=CT)) can be computed in closed form.
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Call Option Pricing in Regime Switch Model - |

Call option pricing in the regime switch model is simple. To demonstrate,
set the spot price

S(T) — F’(T‘7 T) — G_G(T)FC(T, T>€S(T)J(T)7

where F.(T,T) is known to be log-normal with mean F'(0, 7)) and term
volatility orerm, (0,7).

Conditional on ¢(T") = 0, S(T) is log-normal with mean and non-central 2nd
moment

mo = e D F0,T), so=e29TDF(0, T)Qeat”m(o’T)QT.

Further, from known properties of log-normal distributions, conditional on
c(T) = 1 we know that S(T') is log-normal with moments

my = e~ GO F(0, T)esDHa+s(D)73/2

51 = €—2G(T)F(O7T>2€at6rm(O,T)2T623(T)MJ—|—28(T)273.
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Call Option Pricing in Regime Switch Model - Il

Therefore (ignoring discounting), for a call we get, assuming ¢(0) = 0,

CO,T) = B((ST)—K)"|e(T) =0) pd(0,T) + E ((S(T) — K)* [e(T) = 1) p5(0,T)

= p3(0,7) (mo® (d) = K& (d)) +p5 (0,T) (ma® () — K@ (d))

where

' In (2 :I:lln(s—g)
dgz): <K) 2 m; , i:O,l.

VIn (s;/m7)
(2)

In the expression for d..’, we can use

In 8—02 — O-term(ov T>2T7 In 8—12 — Oterm (07 T)2T + S(T)27
mg my

The expression for call options if ¢(0) = 1 is simple, too — left to the

audience (or see paper)
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Calibration Example - |

The combination of regime-switching with continuous dynamics give us a
range of parameters (h1, hg, n; and o) that we can use to calibrate the
volatility smile surface.

On top of this, we now have three sources of seasonality in the model: the
functions a(T'), d(T'), and s(T"). [We can also make h; and hy dependent
on calendar time, but this does not give much seasonality effect]. In
practice, we would normally parameterize two of these functions directly
(most likely d and s), and solve for the last one to perfectly match
at-the-money volatilities.

The seasonality in the volatility skew originates with the function s(7).
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Calibration Example - Il

Figure 12: Skew Fit for USD Gas Options

Strike Offset = 6

Strike Offset = 2

Strike Offset = -2

Notes: Volatility skew (= difference between the implied volatility minus ATM volatility)
as a function of option maturity 7. The function s(7") was a simple periodic function;
a(T") was set to provide a perfect fit to the ATM volatilities in Figure 1.

Fit is decent, particularly given the somewhat rough market data.

A better fit will require a more complicated s-function, and/or stochastic
volatility.
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Conclusion

We have shown a simple, practical model for the evolution of seasonal
futures prices. Model has general applicability (oil, gas, electricity,..); we
focused on its fit to gas

With one factor, the model can handle seasonality in futures prices and in
ATM volatilities; with fwo factors, the model can also handle seasonality in
correlations; with three factors, the model can also handle seasonality in
the volatility skews

More factors can be added for additional realism, at the expense of
tractability.

For this, and for numerical methods, see paper.
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