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A few reminders from yesterday

Definition

Let ‖.‖ be a norm on Rn. Then ‖φ‖∗ is defined to be
max{〈f , φ〉 : ‖f ‖ ≤ 1}.

Trivial Lemma

〈f , φ〉 ≤ ‖f ‖‖φ‖∗ for every f , φ ∈ Rn.

Hahn-Banach Corollary

If K1, . . . ,Kr are closed convex sets that contain 0 and if
f /∈ K1 + · · ·+ Kr , then there is a function φ such that 〈f , φ〉 > 1 and
〈gi , φ〉 ≤ 1 for every i .
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A rudimentary structure theorem

Theorem

Let ‖.‖ be a norm on Rn, let c > 0 and let f be a function with ‖f ‖2 ≤ 1.
Then f can be written as g + h in such a way that ‖g‖∗ ≤ c−1 and
‖h‖ ≤ c.

Proof.

Suppose not. Let K = {g : ‖g‖∗ ≤ c−1} and let K ′ = {h : ‖h‖ ≤ c}. By
the Hahn-Banach corollary, there exists φ such that 〈f , φ〉 > 1, ‖φ‖ ≤ c
and ‖φ‖∗ ≤ c−1. It follows that ‖φ‖22 = 〈φ, φ〉 ≤ 1. But then 〈f , φ〉 ≤ 1
by Cauchy-Schwarz. This is a contradiction.
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Drawbacks

Unfortunately, this structure theorem is too weak to be useful. There are
two major reasons for this.

We usually need ‖h‖ to be much smaller than ‖g‖∗ is large. That is,
we want ‖h‖ ≤ η(‖g‖∗) for some function η that we can choose.

We often need control on the ranges of g and h (given control on the
range of f ).

We shall see that, with the help of two additional ideas, we can get these
properties from the Hahn-Banach method as well.
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A less rudimentary structure theorem

Theorem

Let ‖.‖ be a norm on Rn, let ε > 0, let f be a function with ‖f ‖2 ≤ 1 and
let η be an arbitrary positive decreasing function from R to R. Then there
exists M ≤ M(η, ε) such that we can write f = f1 + f2 + f3 with
‖f1‖∗ ≤ M, ‖f2‖ ≤ η(M) and ‖f3‖2 ≤ ε.

In other words, we can arbitrarily strengthen the first structure theorem if
we’re prepared to allow a small L2 error. This general phenomenon is far
from new.
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Sketch of proof

We begin by applying Hahn-Banach in the same way as before: if we
can’t find a decomposition of the required kind for a particular choice
of M, then we get a function φ such that 〈f , φ〉 ≥ 1, ‖φ‖ ≤ M−1 and
‖φ‖∗ ≤ η(M)−1. But now we also have that ‖φ‖2 ≤ ε−1.

Choose a sequence M1,M2, . . . ,Mr such that Mi+1 >> η(Mi )
−1 and

for each Mi choose φi in this way.

Then ‖φi‖2 ≤ ε−1 for each i , and when i < j we have

〈φi , φj〉 ≤ ‖φi‖∗‖φj‖ ≤ M−1
j η(Mi )

−1,

which is small.

This means that ‖φ1 + · · ·+ φr‖2 grows like ε−1√r , while
〈f , φ1 + · · ·+ φr 〉 ≥ r . Since we assume that ‖f ‖2 ≤ 1, this
contradicts Cauchy-Schwarz when r ≥ 2ε−2.
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Outline of proof of Green-Tao theorem

Basic idea: the primes are too sparse for the usual methods to apply;
however, the expression Ex ,d f (x)f (x + d) . . . f (x + (k − 1)d) is
robust under small Uk−1 perturbations, so we’d be done if we could
approximate the von Mangoldt function Λ in Uk−1 by a bounded
function.

This is not possible, but one can use the “W-trick” to pass to an
arithmetic progression inside which Λ is dominated by a non-negative
function ν that is close in Uk−1 to a constant function (and has other
good pseudorandomness properties). This was closely based on work
of Goldston and Yildirim.

This reduced the problem to a purely arithmetico-combinatorial one.
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The Green-Tao transference theorem

They were left needing to prove the following result.

Theorem

Let ν be a pseudorandom measure, and let 0 ≤ f ≤ ν. Then f can be
approximated in Uk−1 by a function g that takes values in [0, 1].

This was enough, since Szemerédi’s theorem (in its functional form) shows
that Ex ,dg(x)g(x + d) . . . g(x + (k − 1)d) ≥ c(δ), where δ is an absolute
constant (arising from the construction of ν). Since f is a Uk−1

perturbation of g , one expects the same of f .

That is not immediate because f is not bounded, but Green and Tao could
prove it under the weaker assumption that they did have: that f is
bounded above by a pseudorandom measure. (Similar to other counting
lemmas “relative to a random set.”)
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Obtaining transference via Hahn-Banach

We shall consider the following general statement, and try to prove it,
adding extra assumptions when we need them.

Theorem

Let µ and ν be positive functions with Eµ(x) = Eν(x) = 1, and suppose
that ‖µ− ν‖ is very small. Let 0 ≤ f ≤ µ. Then there exists a function g
such that 0 ≤ g ≤ ν and ‖f − g‖ is pretty small.

W. T. Gowers (University of Cambridge) Structure, transference, and Hahn-Banach April 11, 2008 9 / 22



Step 1: Apply Hahn-Banach

Theorem

Let µ and ν be positive functions with Eµ(x) = Eν(x) = 1, and suppose
that ‖µ− ν‖ is very small. Let 0 ≤ f ≤ µ. Then there exists a function g
such that 0 ≤ g ≤ ν and ‖f − g‖ is pretty small.

Let B be the unit ball of ‖.‖ and let K be the set of all functions g such
that 0 ≤ g ≤ ν. Then we would like to prove that (1 + δ)−1f ∈ εB + K
for some small ε.

The sets εB and K are convex, so we can apply Hahn-Banach. If we can’t
decompose (1 + δ)−1f as we want, then we can find φ such that
〈f , φ〉 ≥ 1 + δ, ‖φ‖∗ ≤ ε−1, and 〈g , φ〉 ≤ 1 whenever 0 ≤ g ≤ ν.

The last condition is equivalent to the assertion that 〈ν, φ+〉 ≤ 1.
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Conditional completion of proof

We are given: ‖µ− ν‖ tiny, 0 ≤ f ≤ µ. We have obtained: 〈f , φ〉 > 1 + δ,
‖φ‖∗ ≤ ε−1, 〈ν, φ+〉 ≤ 1.

If only we knew that ‖φ+‖∗ was not too large, then we’d be done, since it
would follow that 〈µ− ν, φ+〉 was tiny, so 〈µ, φ+〉 ≤ 1 + δ/2, so
〈f , φ+〉 ≤ 1 + δ/2, so 〈f , φ〉 ≤ 1 + δ/2, a contradiction.

It is not in general true that ‖φ+‖∗ can be bounded in terms of ‖φ‖∗, so
we need to make extra assumptions about the norm ‖.‖∗.
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Polynomial approximation

Suppose we have a norm such that an upper bound for ‖φ‖∗ implies
control on both ‖φ‖∞ and on ‖φm‖∗ for every positive integer m. Then it
also implies that φ+ can be uniformly approximated by a function with not
too large ‖.‖∗ norm.

Proof.

Let δ > 0 and suppose that ‖φ‖∞ ≤ K . Let J(x) = 0 if x ≤ 0 and x if
x ≥ 0, and let P be a polynomial that approximates J to within δ on
[−K ,K ]. Then Jφ = φ+ and ‖Pφ− Jφ‖∞ ≤ δ. Since Pφ is built out of
powers of φ, we have control on ‖Pφ‖∗.
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A soft inverse theorem, or approximate duality

For the Green-Tao theorem we need ‖.‖ to be ‖.‖Uk for an appropriate k .
Unfortunately, one cannot control ‖φm‖∗

Uk in terms of ‖φ‖∗
Uk . However,

for certain functions φ one can.
Green and Tao define a class of functions called basic anti-uniform
functions and prove the following three facts about them, under the
assumption that ν is a pseudorandom measure.

If |f | ≤ 1 + ν and ‖f ‖Uk ≥ c then there is a basic anti-uniform

function φ such that 〈f , φ〉 ≥ c2k
.

If φ is a basic anti-uniform function then ‖φ‖∞ ≤ 22k−1
.

A product of m basic anti-uniform functions has (Uk)∗ norm bounded
above by a function of k and m.
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Using an approximate dual norm

Let ‖φ‖∗BAU be the norm whose unit ball is the (symmetric) convex
hull of all basic anti-uniform functions. Explicitly, ‖φ‖∗BAU is the
minimum of

∑
i |λi | over all ways of writing φ =

∑
i λiβi with each βi

a basic anti-uniform function.

Now suppose that ‖h‖Uk is small. Then 〈h, ψ〉 is small for every basic
anti-uniform function ψ, since we have a uniform bound for ‖ψ‖∗

Uk . It
follows that ‖h‖BAU is small too.

Applying this to h = µ− ν we deduce that ‖µ− ν‖BAU is small.

But now everything works, because we have the properties we want of
‖.‖∗BAU .

It follows that we can find g with ‖f − g‖BAU small. But this implies
that ‖f − g‖Uk is small (or else we could find a basic anti-uniform
function that correlated with it).
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A comparison with the approach of Green and Tao

Green and Tao prove the transference theorem using an energy
incrementation argument.

Many of the same ingredients: e.g., polynomial approximations, same
lemmas about basic anti-uniform functions, etc.

The energy approach builds an approximating function g in stages;
the Hahn-Banach approach merely derives a contradiction if such a
function does not exist.

The Hahn-Banach approach is a lot shorter than the energy approach
and avoids some awkward technicalities.

The Hahn-Banach approach uses the Weierstrass approximation
theorem in a much simpler way. It just uses the fact that one can
approximate |x | on a bounded interval, and it uses it once. Green and
Tao use a multidimensional theorem several times at each iteration,
and moreover they are approximating level sets, so they need to worry
about cutoffs.
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The same method works with only minor changes for the transference
results used by Green and Tao in their paper on linear equations in primes,
and by Tao and Ziegler in their paper on polynomial progressions in the
primes.

One possible moral: the connection between transference theorems and
ergodic theory is less significant than it looks.
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A generalization of Tao’s structure theorem

Let us return to structure theorems. Earlier we saw how to decompose f
as f1 + f2 + f3 with ‖f1‖∗ ≤ M, ‖f2‖ ≤ η(M) and ‖f3‖2 ≤ ε. However, in
applications we nearly always want more. E.g., if f takes values in [0, 1]
then we want f1 to do so too. In fact, even that is not enough.

Theorem

If ‖.‖∗ is an algebra norm and f takes values in [0, 1], then we can
decompose f as f1 + f2 + f3 in such a way that ‖f1‖∗ ≤ M, ‖f2‖ ≤ η(M)
and ‖f3‖ ≤ ε. Moreover, we can do so in such a way that the functions f1
and f1 + f3 both take values in [0, 1].

An algebra norm is one that satisfies ‖fg‖∗ ≤ ‖f ‖∗‖g‖∗, which implies
that ‖f ‖∗ ≥ ‖f ‖∞.
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Outline of proof

The first step is to apply the previous structure theorem and obtain a
decomposition f1 + f2 + f3 with ‖f1‖∗ ≤ M, ‖f2‖ ≤ η(M) and
‖f3‖2 ≤ ε. We shall then make adjustments to the functions in order
to obtain the extra information about their ranges.

Let J(x) = 0 if x ≤ 0, x if 0 ≤ x ≤ 1 and 1 if x ≥ 1. Then J can be
uniformly approximated by a polynomial P on the interval [−M,M],
in which f1 takes its values. By the algebra property, ‖Pf1‖∗ is not
too big, so we can uniformly approximate Jf1 by a function with not
too large ‖.‖∗ norm.

A slightly fiddly lemma shows that ‖f1 − Pf1‖2 is small, so we can
replace f1 by Pf1, at a small cost to the norm. Now we have the right
range for our new f1 (after a very small shrinking).
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Outline of proof, continued

We now have f = f1 + f2 + f3 and we know that f1 (and f ) take values in
[0, 1]. Next, we turn attention to f2.

We want 0 ≤ f1 + f3 ≤ 1. This is equivalent to f − 1 ≤ f2 ≤ f .

We shall go about this in a disastrously simple-minded way and then
mitigate the disaster. So to begin with, replace f2 by g2 = min{f2, f }.
Another fiddly lemma shows that the difference has small L2 norm.
The disaster is that there is no reason for ‖g2‖ to be small.

To deal with this, we use transference! Let µ = (f2)+ and ν = (f2)−.
Then ‖µ− ν‖ = ‖f2‖ is very small. Also, 0 ≤ (g2)+ ≤ µ. So by the
transference principle earlier (in the easy case where ‖.‖∗ is an algebra
norm) we can find a function h such that 0 ≤ h ≤ ν and ‖(g2)+ − h‖
is small. Take as our new f2 the function (g2)+ − h.

Another fiddly lemma: h is close to (g2)− = (f2)− in L2.
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Outline of proof, continued

We now have f = f1 + f2 + f3 and we know that f and f1 take values in
[0, 1] and that f2 ≤ f . It remains to get f2 ≥ f − 1.

To do this we just turn everything upside down and repeat the argument
of the previous slide. So the structure theorem is proved.
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Wild speculation

Tao proved the structure theorem (for some particular algebras that he
constructed, but the method is a general one) using energy arguments.
Can one complete the following square?

Energy arguments used to
prove a structure theorem for
bounded functions.

Inductive construction of
characteristic factors.

The Hahn-Banach theorem
used to prove a structure
theorem for bounded
functions.

A softer approach to
characteristic factors.
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More wild speculation

More generally, can the Hahn-Banach theorem do everything that energy
arguments can do?

There certainly are several examples, e.g. connected with regularity
lemmas.

What about the rest of Tao’s quantitative ergodic proof of Szemerédi’s
theorem?

Might it even be possible to simplify the ergodic-theory proof itself?
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