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Revision

Definition

‖f ‖4U2 = Ex ,a,bf (x)f (x + a)f (x + b)f (x + a + b)

Definition

‖f ‖8U3 = Ex ,a,b,c f (x)f (x + a)f (x + b)f (x + a + b)f (x + c)

f (x + a + c)f (x + b + c)f (x + a + b + c)

The expression Ex ,d f1(x)f2(x + d) . . . fk(x + (k − 1)d) is robust under
small perturbations in the Uk−1 norm.
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How would we like to generalize “linear” Fourier analysis?

A function with large U2

norm correlates with a linear
phase function.

A function with large U3

norm correlates with a
generalized quadratic phase
function.
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How would we like to generalize “linear” Fourier analysis?

A function with large U2

norm correlates with a linear
phase function.

A function with large U3

norm correlates with a
generalized quadratic phase
function.

The trigonometric functions
form an orthonormal basis.

The generalized quadratic
phase functions do not form
a basis.
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How would we like to generalize “linear” Fourier analysis?

A function with large U2

norm correlates with a linear
phase function.

A function with large U3

norm correlates with a
generalized quadratic phase
function.

Every function f with
‖f ‖2 ≤ 1 can be written as a
linear combination of a few
trigonometric functions plus a
small U2 error.

Can every function f with
‖f ‖2 ≤ 1 can be written as a
linear combination of a few
generalized quadratic phase
functions plus a small U3

error?
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Normed spaces and duality

Let X = (Rn, ‖.‖) be an n-dimensional normed space and let f ∈ X . Then
the dual space X ∗ is the space (Rn, ‖.‖∗), where ‖φ‖∗ is defined to be
max{|〈f , φ〉| : ‖f ‖ ≤ 1}.

Trivial lemma: 〈f , φ〉 ≤ ‖f ‖‖φ‖∗ for every f , φ ∈ Rn.

Similar definitions for norms on Cn.

Example: if ‖f ‖p = (Ex |f (x)|p)1/p then ‖φ‖∗p = ‖φ‖q, where 1
p + 1

q = 1.
(This depends on the normalization used to define the inner product:
〈f , φ〉 = Ex f (x)φ(x).)
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The finitary Hahn-Banach theorem

Definition

Let X = (Rn, ‖.‖) be a normed space and let f ∈ X . A support functional
for f is a non-zero function φ ∈ Rn such that 〈f , φ〉 = ‖f ‖‖φ‖∗.

Theorem

Every function f in a finite-dimensional normed space has a support
functional.

“Proof”

WLOG ‖f ‖ = 1, so take a tangent plane P at f to the unit ball of ‖.‖ and
define φ to be the unique function such that P = {g : 〈g , φ〉 = 1}.
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More generally ...

Theorem

Let K be a convex body in Rn such that 0 ∈ K , and let f /∈ K . Then
there is a function φ ∈ Rn such that 〈f , φ〉 ≥ 1 and such that 〈g , φ〉 ≤ 1
for every g ∈ K .

Corollary

Let K1, . . . ,Kr be closed convex bodies in Rn, each containing 0 and
suppose that f /∈ K1 + · · ·+ Kr . Then there exists a function φ ∈ Rn and
non-negative constants λ1, . . . , λr such that

λ1 + · · ·+ λr = 1,

〈f , φ〉 > 1

〈gi , φ〉 ≤ λi for every i ≤ r and every gi ∈ Ki .
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Proof of the corollary

f /∈ K1 + · · ·+ Kr . Want φ with
〈f , φ〉 > 1; λi ≥ 0;

∑
i λi ≤ 1; 〈gi , φ〉 ≤ λi ∀gi ∈ Ki .

Easy to see that K1 + · · ·+ Kr is closed and convex.

Therefore, there is some δ > 0 such that (1− δ)f /∈ K1 + · · ·+ Kr .

Therefore, there is a φ such that 〈(1− δ)f , φ〉 ≥ 1 and 〈g , φ〉 ≤ 1 for
every g ∈ K1 + · · ·+ Kr .

Let λi = max{〈gi , φ〉 : gi ∈ Ki}.
Then λi ≥ 0 and λ1 + · · ·+ λr ≤ 1, or we could just pick gi ∈ Ki

with 〈gi , φ〉 = λi and we’d have 〈g1 + · · ·+ gr , φ〉 > 1.
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Simpler version of the corollary

Let K1, . . . ,Kr be convex bodies in Rn that all contain 0 and suppose that
f /∈ K1 + · · ·+ Kr . Then there is a function φ ∈ Rn such that 〈f , φ〉 > 1
and such that 〈gi , φ〉 ≤ 1 for every i ≤ r and every gi ∈ Ki .
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Inverse theorems imply decomposition theorems

Recall the inverse theorem of Green and Tao.

Theorem

Let ‖f ‖∞ ≤ 1 and ‖f ‖U3 ≥ c. Then there is a generalized quadratic phase
function Q of complexity at most C such that 〈f ,Q〉 ≥ c ′.

We shall deduce from this the following result (from a forthcoming joint
paper with Julia Wolf).

Theorem

Let ‖f ‖2 ≤ 1. Then for every ε > 0 one can decompose f as a sum∑
i

λiQi + g + h

with
∑

i |λi | ≤ M = M(ε), ‖g‖U3 ≤ ε and ‖h‖1 ≤ ε. The Qi are
generalized quadratic phase functions of complexity at most C (ε).
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Proof of the decomposition theorem

Want f =
∑

i λiQi + g + h with
∑

i |λi | ≤ M, ‖g‖U3 ≤ ε, ‖h‖1 ≤ ε.
Given ‖f ‖2 ≤ 1.

Suppose that no such decomposition exists.

Then there is a function φ ∈ Cn such that 〈f , φ〉 > 1, and such that
φ is small in the following three respects:

‖φ‖∗U3 ≤ ε−1 (since 〈g , φ〉 ≤ 1 whenever ‖g‖U3 ≤ ε)
‖φ‖∞ ≤ ε−1 (for a very similar reason)

〈
∑

i λiQi , φ〉 ≤ 1 whenever
∑

i |λi | ≤ M and the Qi are generalized
quadratic phase functions of complexity at most C (ε) — which
implies that 〈Q, φ〉 ≤ M−1 for every Q.

But 〈f , φ〉 > 1 and ‖φ‖∗U3 ≤ ε−1 imply that ‖φ‖U3 ≥ ε.
This contradicts the inverse theorem!
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Arithmetic progressions in uniform sets

Definition

A subset A ⊂ ZN of density δ is uniform of degree k if ‖A− δ1‖Uk+1 is
small.

Theorem

If A is uniform of degree k − 1, then

Ex ,dA(x)A(x + d) . . .A(x + (k − 1)d) ≈ δk .

Reminder of proof

If we can approximate A by δ1 in the Uk−1 norm, then the left-hand side
does not change by much if we replace A by δ1. But if we do that then we
get δk .
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What about more general linear configurations?

Suppose we had an expression such as

Ex ,y ,zA(x − y)A(x + y + z)A(3y − z)A(x + 2y − 5z)A(z).

If A is a random set of density δ then this will be about δ5. This suggests
that there may well be some k such that the above expectation will be
about δ5 if A is uniform of degree k .

Green and Tao worked out the most general result that followed from the
techniques used to prove the assertion for APs. This analysis led to the
notion of the complexity of a system of linear forms.
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The Green-Tao notion of complexity

Definition

A system of linear forms L1, . . . , Lr has complexity at most k at i if it is
possible to partition the set {Lj : j 6= i} into at most k + 1 subsets such
that Li is not in the linear span of any of those subsets.

Example 1. If Li is the form x + iy , i = 0, 1, . . . , k − 1, then any two
forms span the whole set of forms. Therefore, any partition has to be into
singletons. So the complexity of this system is k − 2 at every individual
form.

Example 2. For 1 ≤ i < j ≤ r let Lij be the form xi + xj . If we exclude Lij

then we can partition the rest into two sets of forms such that one set
never involves xi and the other never involves xj . Therefore, the
complexity is 1 at every form (a fact implicitly exploited by Balog).
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The Uk+1 norm controls systems of complexity k .

Theorem

If a system of forms L1, . . . , Lr has complexity at most k at every i , and if
A ⊂ ZN is a set of density δ that is uniform of degree k, then

ExA(L1(x))A(L2(x)) . . .A(Lr (x)) ≈ δr

From this we can recover the earlier result about arithmetic progressions.

What about the converse?
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Polynomial phase functions again

Recall the example that proves that expressions such as

Ex ,d f1(x)f2(x + d)f3(x + 2d)f4(x + 3d)

are not robust under small U2 perturbations.

We took f1(x) = eN(x2), f2(x) = eN(−3x2), f3(x) = eN(3x2), and
f4(x) = eN(−x2).

Crucial to this was the fact that

x2 − 3(x + d)2 + 3(x + 2d)2 − (x + 3d)2 ≡ 0.

In particular, the squares of the linear forms x , x + d , x + 2d and x + 3d
are linearly dependent.
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Three easy facts.

The polynomial phase function eN(xk) has small Uk norm but its
Uk+1 norm is 1.

If the linear forms L1, L2, . . . , Lr have kth powers that are linearly
dependent, then we can use functions of the form eN(axk) to prove
that expressions of the form

Exf1(L1(x))f2(L2(x)) . . . fr (Lr (x))

are not robust under small Uk+1 perturbations.

The system x , y , z , x + y + z , x − y + 2z , x + y − 2z is
square-independent but has complexity 2.
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Which Uk norm is needed for which linear configuration?

For example, for which k is it the case that the expression

Ex ,y ,z f1(x)f2(y)f3(z)f4(x + y + z)f5(x − 2y + z)f6(x + y − 2z)

is robust under small Uk perturbations of the fi?

Since the complexity of the system is 2, it’s enough if k ≥ 3.

However, it is not possible to prove that k ≥ 3 is necessary using
quadratic (or even generalized quadratic) phase functions.
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The following theorem is a joint result with Julia Wolf. It applies to
functions defined on the group Fn

p rather than the group ZN .

Theorem

Let L be a collection of linear forms of complexity 2. Then the expression

Ex1,...,xm

∏
L∈L

fL(L(x1, . . . , xm))

is robust under small U2 perturbations of the functions fL if and only if the
squares of the linear forms L ∈ L are linearly independent.
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Very very rough idea of proof

First, use the decomposition theorem to decompose each fi as a
combination of the form

∑
i λiQi + g + h, where the Qi are (slightly

more general than) generalized quadratic phase functions,
∑

i |λi | is
not too large, and ‖g‖U3 and ‖h‖1 are small.

Next, prove that if ‖f ‖U2 is very small, then the decomposition can
be carried out in such a way that the Qi have “high rank” (in
particular, each ‖Qi‖U2 is small).

Then, using these decompositions, explicitly calculate the expectation
over the product of linear forms. The error terms make small
contributions, and because of the square independence, the purely
quadratic terms do too.

Rough philosophy: constructions of quadratic type don’t work, but
quadratic Fourier analysis shows that they are essentially the only
constructions around.
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A different way of proving decomposition results

Another way to deduce decomposition theorems from inverse theorems,
due to Green and Tao, but with precedents in combinatorics (Szemerédi’s
regularity lemma) and ergodic theory (the “Furstenberg tower”), is to use
energy arguments.

Rough idea: try to find a partition B of the group (that is, ZN or Fn
p) into

sets of “quadratic type,” in such a way that f − E(f |B) is small.

(Definition: E(f |B)(x) is the average of f over the cell of B that contains
x . So E(f |B) is the orthogonal projection of f to the space of functions
that are constant on the cells of B.)

W. T. Gowers (University of Cambridge) Applying Quadratic Methods April 10, 2008 20 / 26



A different way of proving decomposition results

Another way to deduce decomposition theorems from inverse theorems,
due to Green and Tao, but with precedents in combinatorics (Szemerédi’s
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Energy increments

Rough idea: try to find a partition B of the group (that is, ZN or Fn
p) into

sets of “quadratic type,” in such a way that f − E(f |B) is small.

Suppose that ‖f − E(f |B)‖U3 is not small. Since f is bounded and E(.|B)
is an averaging projection, f − E(f |B) is bounded as well. Therefore, the
inverse theorem implies that it correlates with a generalized quadratic
phase function Q.

Now pass to a refinement B′ of B on the cells of which Q is
(approximately) constant. Then the correlation implies that ‖E(f |B′)‖2 is
substantially bigger than ‖E(f |B)‖2.

The cells of these partitions are “quadratic” in the sense that they are
(approximate) level sets of generalized quadratic phase functions.
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Comparison of the two methods

The energy-increment argument preserves boundedness because it is
based on averaging projections, whereas the decomposition using the
Hahn-Banach theorem is not necessarily into bounded parts.

In both methods, technical difficulties arise if the quadratic
sets/functions have low rank. It seems that dealing with these
difficulties is more expensive for the energy-increment method.

For our purposes, the advantage of Hahn-Banach outweighed the
disadvantage. (That is, we obtained a weaker result with a much
better bound and were able to apply it.)

In one respect, our result was stronger: our initial assumption was
that ‖f ‖2 ≤ 1. But we don’t use this and we pay for it with an L1

error term.

The Hahn-Banach method is often simpler and more direct.
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The main difficulty

Recall the decomposition theorem:

If f is any bounded function and ε > 0 then we can write it as∑
i λiQi + g + h such that

∑
i |λi | ≤ M(ε), each Qi is a generalized

quadratic phase function, ‖g‖U3 ≤ ε and ‖h‖1 ≤ ε.

We needed to know something more: that if ‖f ‖U2 is small enough, then
the functions Qi have large rank, which is equivalent to saying that they
too have small U2 norms.

It can be shown that if Q has small rank, then ‖Q‖∗U2 is small, so 〈f ,Q〉 is
small. Therefore, it ought not to be necessary to use Q in a decomposition
of f . However, proving this is surprisingly tricky.
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Uniform functions need just high-rank quadratics

The rough idea is this. First, write f =
∑

i λiQi + g + h as before. Then
find an interval I = [r , s(r)] such that r is fairly large and not many Qi

have rank in I .

Then write f = fL + fH + g + h. Here, fL is “low-rank part” and fH is
“high-rank part” of the quadratic decomposition. (The intermediate part
is absorbed into the error term.)

Then ‖fL‖∗U2 is not too large. Standard techniques allow us to convolve
with a function β in such a way that β ∗ fL ≈ fL in L2. But that ‖β ∗ f ‖2
and ‖β ∗ fH‖2 are small (since ‖f ‖U2 and ‖fH‖U2 are small). Also,
‖β ∗ g‖U3 ≤ ‖g‖U3 and ‖β ∗ h‖1 ≤ ‖h‖1.

It follows that fL can be absorbed into the error terms.
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A clustering argument

The following is an oversimplification of a true statement:

If Q and Q ′ are generalized quadratic phase functions, then either 〈Q,Q ′〉
is small or ‖QQ ′‖∗U2 is not too large.

In the second case, we think of Q and Q ′ as “linearly related”.

We also prove a lemma along the following lines.

A sum of the form
∑

i λiQi such that
∑

i |λi | ≤ M can be split into
“clusters” of linearly related Qi plus a remainder that is small in L2.

This result is basically a simple statement about vectors in Hilbert spaces
combined with the fact that if Q and Q ′ are not approximately orthogonal
then they are linearly related.
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If Q and Q ′ are generalized quadratic phase functions, then either 〈Q,Q ′〉
is small or ‖QQ ′‖∗U2 is not too large.

In the second case, we think of Q and Q ′ as “linearly related”.

We also prove a lemma along the following lines.

A sum of the form
∑

i λiQi such that
∑

i |λi | ≤ M can be split into
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A more precise decomposition theorem

These ideas lead to the following refinement of the decomposition theorem.

Theorem

Let f be a function with ‖f ‖2 ≤ 1 and let ε > 0. Then it is possible to
write f as a sum of the form

∑k
i=1 QiUi + g + h, such that k ≤ k(ε),∑

i ‖Ui‖∗U2 ≤ M(ε), ‖g‖U3 ≤ ε and ‖h‖1 ≤ ε.
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