Applying Quadratic Methods

W. T. Gowers
University of Cambridge

April 10, 2008

Revision

Definition

$$
\|f\|_{U^{2}}^{4}=\mathbb{E}_{x, a, b} f(x) \overline{f(x+a) f(x+b)} f(x+a+b)
$$

Definition

$$
\begin{aligned}
\|f\|_{U^{3}}^{8}= & \mathbb{E}_{x, a, b, c} f(x) \overline{f(x+a) f(x+b)} f(x+a+b) \overline{f(x+c)} \\
& f(x+a+c) f(x+b+c) \overline{f(x+a+b+c)}
\end{aligned}
$$

The expression $\mathbb{E}_{x, d} f_{1}(x) f_{2}(x+d) \ldots f_{k}(x+(k-1) d)$ is robust under small perturbations in the U^{k-1} norm.

How would we like to generalize "linear" Fourier analysis?

A function with large U^{2} norm correlates with a linear phase function.

A function with large U^{3} norm correlates with a generalized quadratic phase function.

How would we like to generalize "linear" Fourier analysis?

A function with large U^{2} norm correlates with a linear phase function.

A function with large U^{3} norm correlates with a generalized quadratic phase function.

The generalized quadratic phase functions do not form a basis.

How would we like to generalize "linear" Fourier analysis?

A function with large U^{2} norm correlates with a linear phase function.

Every function f with $\|f\|_{2} \leq 1$ can be written as a linear combination of a few trigonometric functions plus a small U^{2} error.

A function with large U^{3} norm correlates with a generalized quadratic phase function.

Can every function f with $\|f\|_{2} \leq 1$ can be written as a linear combination of a few generalized quadratic phase functions plus a small U^{3} error?

Normed spaces and duality

Let $X=\left(\mathbb{R}^{n},\|\|.\right)$ be an n-dimensional normed space and let $f \in X$. Then the dual space X^{*} is the space $\left(\mathbb{R}^{n},\|\cdot\|^{*}\right)$, where $\|\phi\|^{*}$ is defined to be $\max \{|\langle f, \phi\rangle|:\|f\| \leq 1\}$.

Trivial lemma: $\langle f, \phi\rangle \leq\|f\|\|\phi\|^{*}$ for every $f, \phi \in \mathbb{R}^{n}$.

Similar definitions for norms on \mathbb{C}^{n}.
Example: if $\|f\|_{p}=\left(\mathbb{E}_{x}|f(x)|^{p}\right)^{1 / p}$ then $\|\phi\|_{p}^{*}=\|\phi\|_{q}$, where $\frac{1}{p}+\frac{1}{q}=1$.
(This depends on the normalization used to define the inner product:
$\langle f, \phi\rangle=\mathbb{E}_{x} f(x) \overline{\phi(x)}$. $)$

The finitary Hahn-Banach theorem

Definition

Let $X=\left(\mathbb{R}^{n},\|\|.\right)$ be a normed space and let $f \in X$. A support functional for f is a non-zero function $\phi \in \mathbb{R}^{n}$ such that $\langle f, \phi\rangle=\|f\|\|\phi\|^{*}$.

Theorem

Every function f in a finite-dimensional normed space has a support functional.

"Proof"

WLOG $\|f\|=1$, so take a tangent plane P at f to the unit ball of $\|$.$\| and$ define ϕ to be the unique function such that $P=\{g:\langle g, \phi\rangle=1\}$.

More generally ...

Theorem

Let K be a convex body in \mathbb{R}^{n} such that $0 \in K$, and let $f \notin K$. Then there is a function $\phi \in \mathbb{R}^{n}$ such that $\langle f, \phi\rangle \geq 1$ and such that $\langle g, \phi\rangle \leq 1$ for every $g \in K$.

Corollary

Let K_{1}, \ldots, K_{r} be closed convex bodies in \mathbb{R}^{n}, each containing 0 and suppose that $f \notin K_{1}+\cdots+K_{r}$. Then there exists a function $\phi \in \mathbb{R}^{n}$ and non-negative constants $\lambda_{1}, \ldots, \lambda_{r}$ such that

- $\lambda_{1}+\cdots+\lambda_{r}=1$,
- $\langle f, \phi\rangle>1$
- $\left\langle g_{i}, \phi\right\rangle \leq \lambda_{i}$ for every $i \leq r$ and every $g_{i} \in K_{i}$.

Proof of the corollary

```
f# K
\langlef,\phi\rangle>1; \lambdai\geq0; \sum i}\mp@subsup{\lambda}{i}{}\leq1;\langle\mp@subsup{g}{i}{},\phi\rangle\leq\mp@subsup{\lambda}{i}{}\forall\mp@subsup{g}{i}{}\in\mp@subsup{K}{i}{}
```


Proof of the corollary

```
f# K
\langlef,\phi\rangle>1; \lambdai\geq0; \sum i}\mp@subsup{\lambda}{i}{}\leq1;\langle\mp@subsup{g}{i}{},\phi\rangle\leq\mp@subsup{\lambda}{i}{}\forall\mp@subsup{g}{i}{}\in\mp@subsup{K}{i}{}
```

- Easy to see that $K_{1}+\cdots+K_{r}$ is closed and convex.

Proof of the corollary

$$
\begin{aligned}
& f \notin K_{1}+\cdots+K_{r} . \text { Want } \phi \text { with } \\
& \langle f, \phi\rangle>1 ; \lambda_{i} \geq 0 ; \sum_{i} \lambda_{i} \leq 1 ;\left\langle g_{i}, \phi\right\rangle \leq \lambda_{i} \forall g_{i} \in K_{i} .
\end{aligned}
$$

- Easy to see that $K_{1}+\cdots+K_{r}$ is closed and convex.
- Therefore, there is some $\delta>0$ such that $(1-\delta) f \notin K_{1}+\cdots+K_{r}$.

Proof of the corollary

$$
\begin{aligned}
& f \notin K_{1}+\cdots+K_{r} . \text { Want } \phi \text { with } \\
& \langle f, \phi\rangle>1 ; \lambda_{i} \geq 0 ; \sum_{i} \lambda_{i} \leq 1 ;\left\langle g_{i}, \phi\right\rangle \leq \lambda_{i} \forall g_{i} \in K_{i} .
\end{aligned}
$$

- Easy to see that $K_{1}+\cdots+K_{r}$ is closed and convex.
- Therefore, there is some $\delta>0$ such that $(1-\delta) f \notin K_{1}+\cdots+K_{r}$.
- Therefore, there is a ϕ such that $\langle(1-\delta) f, \phi\rangle \geq 1$ and $\langle g, \phi\rangle \leq 1$ for every $g \in K_{1}+\cdots+K_{r}$.

Proof of the corollary

$$
\begin{aligned}
& f \notin K_{1}+\cdots+K_{r} . \text { Want } \phi \text { with } \\
& \langle f, \phi\rangle>1 ; \lambda_{i} \geq 0 ; \sum_{i} \lambda_{i} \leq 1 ;\left\langle g_{i}, \phi\right\rangle \leq \lambda_{i} \forall g_{i} \in K_{i} .
\end{aligned}
$$

- Easy to see that $K_{1}+\cdots+K_{r}$ is closed and convex.
- Therefore, there is some $\delta>0$ such that $(1-\delta) f \notin K_{1}+\cdots+K_{r}$.
- Therefore, there is a ϕ such that $\langle(1-\delta) f, \phi\rangle \geq 1$ and $\langle g, \phi\rangle \leq 1$ for every $g \in K_{1}+\cdots+K_{r}$.
- Let $\lambda_{i}=\max \left\{\left\langle g_{i}, \phi\right\rangle: g_{i} \in K_{i}\right\}$.

Proof of the corollary

$$
\begin{aligned}
& f \notin K_{1}+\cdots+K_{r} . \text { Want } \phi \text { with } \\
& \langle f, \phi\rangle>1 ; \lambda_{i} \geq 0 ; \sum_{i} \lambda_{i} \leq 1 ;\left\langle g_{i}, \phi\right\rangle \leq \lambda_{i} \forall g_{i} \in K_{i} .
\end{aligned}
$$

- Easy to see that $K_{1}+\cdots+K_{r}$ is closed and convex.
- Therefore, there is some $\delta>0$ such that $(1-\delta) f \notin K_{1}+\cdots+K_{r}$.
- Therefore, there is a ϕ such that $\langle(1-\delta) f, \phi\rangle \geq 1$ and $\langle g, \phi\rangle \leq 1$ for every $g \in K_{1}+\cdots+K_{r}$.
- Let $\lambda_{i}=\max \left\{\left\langle g_{i}, \phi\right\rangle: g_{i} \in K_{i}\right\}$.
- Then $\lambda_{i} \geq 0$ and $\lambda_{1}+\cdots+\lambda_{r} \leq 1$, or we could just pick $g_{i} \in K_{i}$ with $\left\langle g_{i}, \phi\right\rangle=\lambda_{i}$ and we'd have $\left\langle g_{1}+\cdots+g_{r}, \phi\right\rangle>1$.

Simpler version of the corollary

Let K_{1}, \ldots, K_{r} be convex bodies in \mathbb{R}^{n} that all contain 0 and suppose that $f \notin K_{1}+\cdots+K_{r}$. Then there is a function $\phi \in \mathbb{R}^{n}$ such that $\langle f, \phi\rangle>1$ and such that $\left\langle g_{i}, \phi\right\rangle \leq 1$ for every $i \leq r$ and every $g_{i} \in K_{i}$.

Inverse theorems imply decomposition theorems

Recall the inverse theorem of Green and Tao.
Theorem
Let $\|f\|_{\infty} \leq 1$ and $\|f\|_{U^{3}} \geq c$. Then there is a generalized quadratic phase function Q of complexity at most C such that $\langle f, Q\rangle \geq c^{\prime}$.

Inverse theorems imply decomposition theorems

Recall the inverse theorem of Green and Tao.

Theorem

Let $\|f\|_{\infty} \leq 1$ and $\|f\|_{U^{3}} \geq c$. Then there is a generalized quadratic phase function Q of complexity at most C such that $\langle f, Q\rangle \geq c^{\prime}$.

We shall deduce from this the following result (from a forthcoming joint paper with Julia Wolf).

Theorem

Let $\|f\|_{2} \leq 1$. Then for every $\epsilon>0$ one can decompose f as a sum

$$
\sum_{i} \lambda_{i} Q_{i}+g+h
$$

with $\sum_{i}\left|\lambda_{i}\right| \leq M=M(\epsilon),\|g\|_{U^{3}} \leq \epsilon$ and $\|h\|_{1} \leq \epsilon$. The Q_{i} are generalized quadratic phase functions of complexity at most $C(\epsilon)$.

Proof of the decomposition theorem

```
Want \(f=\sum_{i} \lambda_{i} Q_{i}+g+h\) with \(\sum_{i}\left|\lambda_{i}\right| \leq M,\|g\|_{U^{3}} \leq \epsilon,\|h\|_{1} \leq \epsilon\).
Given \(\|f\|_{2} \leq 1\).
```


Proof of the decomposition theorem

```
Want \(f=\sum_{i} \lambda_{i} Q_{i}+g+h\) with \(\sum_{i}\left|\lambda_{i}\right| \leq M,\|g\|_{U^{3}} \leq \epsilon,\|h\|_{1} \leq \epsilon\).
Given \(\|f\|_{2} \leq 1\).
```

- Suppose that no such decomposition exists.

Proof of the decomposition theorem

```
Want \(f=\sum_{i} \lambda_{i} Q_{i}+g+h\) with \(\sum_{i}\left|\lambda_{i}\right| \leq M,\|g\|_{U^{3}} \leq \epsilon,\|h\|_{1} \leq \epsilon\).
Given \(\|f\|_{2} \leq 1\).
```

- Suppose that no such decomposition exists.
- Then there is a function $\phi \in \mathbb{C}^{n}$ such that $\langle f, \phi\rangle>1$, and such that ϕ is small in the following three respects:

Proof of the decomposition theorem

```
Want \(f=\sum_{i} \lambda_{i} Q_{i}+g+h\) with \(\sum_{i}\left|\lambda_{i}\right| \leq M,\|g\|_{U^{3}} \leq \epsilon,\|h\|_{1} \leq \epsilon\).
Given \(\|f\|_{2} \leq 1\).
```

- Suppose that no such decomposition exists.
- Then there is a function $\phi \in \mathbb{C}^{n}$ such that $\langle f, \phi\rangle>1$, and such that ϕ is small in the following three respects:
- $\|\phi\|_{U^{3}}^{*} \leq \epsilon^{-1}$ (since $\langle g, \phi\rangle \leq 1$ whenever $\|g\|_{U^{3}} \leq \epsilon$)

Proof of the decomposition theorem

```
Want \(f=\sum_{i} \lambda_{i} Q_{i}+g+h\) with \(\sum_{i}\left|\lambda_{i}\right| \leq M,\|g\|_{U^{3}} \leq \epsilon,\|h\|_{1} \leq \epsilon\).
Given \(\|f\|_{2} \leq 1\).
```

- Suppose that no such decomposition exists.
- Then there is a function $\phi \in \mathbb{C}^{n}$ such that $\langle f, \phi\rangle>1$, and such that ϕ is small in the following three respects:
- $\|\phi\|_{U^{3}}^{*} \leq \epsilon^{-1}$ (since $\langle g, \phi\rangle \leq 1$ whenever $\|g\|_{U^{3}} \leq \epsilon$)
- $\|\phi\|_{\infty} \leq \epsilon^{-1}$ (for a very similar reason)

Proof of the decomposition theorem

```
Want \(f=\sum_{i} \lambda_{i} Q_{i}+g+h\) with \(\sum_{i}\left|\lambda_{i}\right| \leq M,\|g\|_{U^{3}} \leq \epsilon,\|h\|_{1} \leq \epsilon\).
Given \(\|f\|_{2} \leq 1\).
```

- Suppose that no such decomposition exists.
- Then there is a function $\phi \in \mathbb{C}^{n}$ such that $\langle f, \phi\rangle>1$, and such that ϕ is small in the following three respects:
- $\|\phi\|_{U^{3}}^{*} \leq \epsilon^{-1}$ (since $\langle g, \phi\rangle \leq 1$ whenever $\|g\|_{U^{3}} \leq \epsilon$)
- $\|\phi\|_{\infty} \leq \epsilon^{-1}$ (for a very similar reason)
- $\left\langle\sum_{i} \lambda_{i} Q_{i}, \phi\right\rangle \leq 1$ whenever $\sum_{i}\left|\lambda_{i}\right| \leq M$ and the Q_{i} are generalized quadratic phase functions of complexity at most $C(\epsilon)$ - which implies that $\langle Q, \phi\rangle \leq M^{-1}$ for every Q.

Proof of the decomposition theorem

Want $f=\sum_{i} \lambda_{i} Q_{i}+g+h$ with $\sum_{i}\left|\lambda_{i}\right| \leq M,\|g\|_{U^{3}} \leq \epsilon,\|h\|_{1} \leq \epsilon$. Given $\|f\|_{2} \leq 1$.

- Suppose that no such decomposition exists.
- Then there is a function $\phi \in \mathbb{C}^{n}$ such that $\langle f, \phi\rangle>1$, and such that ϕ is small in the following three respects:
- $\|\phi\|_{U^{3}}^{*} \leq \epsilon^{-1}$ (since $\langle g, \phi\rangle \leq 1$ whenever $\|g\|_{U^{3}} \leq \epsilon$)
- $\|\phi\|_{\infty} \leq \epsilon^{-1}$ (for a very similar reason)
- $\left\langle\sum_{i} \lambda_{i} Q_{i}, \phi\right\rangle \leq 1$ whenever $\sum_{i}\left|\lambda_{i}\right| \leq M$ and the Q_{i} are generalized quadratic phase functions of complexity at most $C(\epsilon)$ - which implies that $\langle Q, \phi\rangle \leq M^{-1}$ for every Q.
- But $\langle f, \phi\rangle>1$ and $\|\phi\|_{U^{3}}^{*} \leq \epsilon^{-1}$ imply that $\|\phi\|_{U^{3}} \geq \epsilon$.

Proof of the decomposition theorem

Want $f=\sum_{i} \lambda_{i} Q_{i}+g+h$ with $\sum_{i}\left|\lambda_{i}\right| \leq M,\|g\|_{U^{3}} \leq \epsilon,\|h\|_{1} \leq \epsilon$. Given $\|f\|_{2} \leq 1$.

- Suppose that no such decomposition exists.
- Then there is a function $\phi \in \mathbb{C}^{n}$ such that $\langle f, \phi\rangle>1$, and such that ϕ is small in the following three respects:
- $\|\phi\|_{U^{3}}^{*} \leq \epsilon^{-1}$ (since $\langle g, \phi\rangle \leq 1$ whenever $\|g\|_{U^{3}} \leq \epsilon$)
- $\|\phi\|_{\infty} \leq \epsilon^{-1}$ (for a very similar reason)
- $\left\langle\sum_{i} \lambda_{i} Q_{i}, \phi\right\rangle \leq 1$ whenever $\sum_{i}\left|\lambda_{i}\right| \leq M$ and the Q_{i} are generalized quadratic phase functions of complexity at most $C(\epsilon)$ - which implies that $\langle Q, \phi\rangle \leq M^{-1}$ for every Q.
- But $\langle f, \phi\rangle>1$ and $\|\phi\|_{U^{3}}^{*} \leq \epsilon^{-1}$ imply that $\|\phi\|_{U^{3}} \geq \epsilon$.
- This contradicts the inverse theorem!

Arithmetic progressions in uniform sets

Definition

A subset $A \subset \mathbb{Z}_{N}$ of density δ is uniform of degree k if $\|A-\delta \mathbf{1}\|_{U^{k+1}}$ is small.

Theorem

If A is uniform of degree $k-1$, then

$$
\mathbb{E}_{x, d} A(x) A(x+d) \ldots A(x+(k-1) d) \approx \delta^{k}
$$

Reminder of proof

If we can approximate A by $\delta \mathbf{1}$ in the U^{k-1} norm, then the left-hand side does not change by much if we replace A by $\delta \mathbf{1}$. But if we do that then we get δ^{k}.

What about more general linear configurations?

Suppose we had an expression such as

$$
\mathbb{E}_{x, y, z} A(x-y) A(x+y+z) A(3 y-z) A(x+2 y-5 z) A(z)
$$

If A is a random set of density δ then this will be about δ^{5}. This suggests that there may well be some k such that the above expectation will be about δ^{5} if A is uniform of degree k.

What about more general linear configurations?

Suppose we had an expression such as

$$
\mathbb{E}_{x, y, z} A(x-y) A(x+y+z) A(3 y-z) A(x+2 y-5 z) A(z)
$$

If A is a random set of density δ then this will be about δ^{5}. This suggests that there may well be some k such that the above expectation will be about δ^{5} if A is uniform of degree k.

Green and Tao worked out the most general result that followed from the techniques used to prove the assertion for APs. This analysis led to the notion of the complexity of a system of linear forms.

The Green-Tao notion of complexity

Definition

A system of linear forms L_{1}, \ldots, L_{r} has complexity at most k at i if it is possible to partition the set $\left\{L_{j}: j \neq i\right\}$ into at most $k+1$ subsets such that L_{i} is not in the linear span of any of those subsets.

The Green-Tao notion of complexity

Definition

A system of linear forms L_{1}, \ldots, L_{r} has complexity at most k at i if it is possible to partition the set $\left\{L_{j}: j \neq i\right\}$ into at most $k+1$ subsets such that L_{i} is not in the linear span of any of those subsets.

Example 1. If L_{i} is the form $x+i y, i=0,1, \ldots, k-1$, then any two forms span the whole set of forms. Therefore, any partition has to be into singletons. So the complexity of this system is $k-2$ at every individual form.

The Green-Tao notion of complexity

Definition

A system of linear forms L_{1}, \ldots, L_{r} has complexity at most k at i if it is possible to partition the set $\left\{L_{j}: j \neq i\right\}$ into at most $k+1$ subsets such that L_{i} is not in the linear span of any of those subsets.

Example 1. If L_{i} is the form $x+i y, i=0,1, \ldots, k-1$, then any two forms span the whole set of forms. Therefore, any partition has to be into singletons. So the complexity of this system is $k-2$ at every individual form.

Example 2. For $1 \leq i<j \leq r$ let $L_{i j}$ be the form $x_{i}+x_{j}$. If we exclude $L_{i j}$ then we can partition the rest into two sets of forms such that one set never involves x_{i} and the other never involves x_{j}. Therefore, the complexity is 1 at every form (a fact implicitly exploited by Balog).

The U^{k+1} norm controls systems of complexity k.

Theorem

If a system of forms L_{1}, \ldots, L_{r} has complexity at most k at every i, and if $A \subset \mathbb{Z}_{N}$ is a set of density δ that is uniform of degree k, then

$$
\mathbb{E}_{\mathbf{x}} A\left(L_{1}(\mathbf{x})\right) A\left(L_{2}(\mathbf{x})\right) \ldots A\left(L_{r}(\mathbf{x})\right) \approx \delta^{r}
$$

From this we can recover the earlier result about arithmetic progressions.

The U^{k+1} norm controls systems of complexity k.

Theorem

If a system of forms L_{1}, \ldots, L_{r} has complexity at most k at every i, and if $A \subset \mathbb{Z}_{N}$ is a set of density δ that is uniform of degree k, then

$$
\mathbb{E}_{\mathbf{x}} A\left(L_{1}(\mathbf{x})\right) A\left(L_{2}(\mathbf{x})\right) \ldots A\left(L_{r}(\mathbf{x})\right) \approx \delta^{r}
$$

From this we can recover the earlier result about arithmetic progressions.
What about the converse?

Polynomial phase functions again

Recall the example that proves that expressions such as

$$
\mathbb{E}_{x, d} f_{1}(x) f_{2}(x+d) f_{3}(x+2 d) f_{4}(x+3 d)
$$

are not robust under small U^{2} perturbations.

Polynomial phase functions again

Recall the example that proves that expressions such as

$$
\mathbb{E}_{x, d} f_{1}(x) f_{2}(x+d) f_{3}(x+2 d) f_{4}(x+3 d)
$$

are not robust under small U^{2} perturbations.
We took $f_{1}(x)=e_{N}\left(x^{2}\right), f_{2}(x)=e_{N}\left(-3 x^{2}\right), f_{3}(x)=e_{N}\left(3 x^{2}\right)$, and $f_{4}(x)=e_{N}\left(-x^{2}\right)$.

Polynomial phase functions again

Recall the example that proves that expressions such as

$$
\mathbb{E}_{x, d} f_{1}(x) f_{2}(x+d) f_{3}(x+2 d) f_{4}(x+3 d)
$$

are not robust under small U^{2} perturbations.
We took $f_{1}(x)=e_{N}\left(x^{2}\right), f_{2}(x)=e_{N}\left(-3 x^{2}\right), f_{3}(x)=e_{N}\left(3 x^{2}\right)$, and $f_{4}(x)=e_{N}\left(-x^{2}\right)$.

Crucial to this was the fact that

$$
x^{2}-3(x+d)^{2}+3(x+2 d)^{2}-(x+3 d)^{2} \equiv 0
$$

In particular, the squares of the linear forms $x, x+d, x+2 d$ and $x+3 d$ are linearly dependent.

Three easy facts.

Three easy facts.

- The polynomial phase function $e_{N}\left(x^{k}\right)$ has small U^{k} norm but its U^{k+1} norm is 1 .

Three easy facts.

- The polynomial phase function $e_{N}\left(x^{k}\right)$ has small U^{k} norm but its U^{k+1} norm is 1 .
- If the linear forms $L_{1}, L_{2}, \ldots, L_{r}$ have k th powers that are linearly dependent, then we can use functions of the form $e_{N}\left(a x^{k}\right)$ to prove that expressions of the form

$$
\mathbb{E}_{\mathbf{x}} f_{1}\left(L_{1}(\mathbf{x})\right) f_{2}\left(L_{2}(\mathbf{x})\right) \ldots f_{r}\left(L_{r}(\mathbf{x})\right)
$$

are not robust under small U^{k+1} perturbations.

Three easy facts.

- The polynomial phase function $e_{N}\left(x^{k}\right)$ has small U^{k} norm but its U^{k+1} norm is 1 .
- If the linear forms $L_{1}, L_{2}, \ldots, L_{r}$ have k th powers that are linearly dependent, then we can use functions of the form $e_{N}\left(a x^{k}\right)$ to prove that expressions of the form

$$
\mathbb{E}_{\mathbf{x}} f_{1}\left(L_{1}(\mathbf{x})\right) f_{2}\left(L_{2}(\mathbf{x})\right) \ldots f_{r}\left(L_{r}(\mathbf{x})\right)
$$

are not robust under small U^{k+1} perturbations.

- The system $x, y, z, x+y+z, x-y+2 z, x+y-2 z$ is square-independent but has complexity 2 .

Which U^{k} norm is needed for which linear configuration?

For example, for which k is it the case that the expression

$$
\mathbb{E}_{x, y, z} f_{1}(x) f_{2}(y) f_{3}(z) f_{4}(x+y+z) f_{5}(x-2 y+z) f_{6}(x+y-2 z)
$$

is robust under small U^{k} perturbations of the f_{i} ?

Which U^{k} norm is needed for which linear configuration?

For example, for which k is it the case that the expression

$$
\mathbb{E}_{x, y, z} f_{1}(x) f_{2}(y) f_{3}(z) f_{4}(x+y+z) f_{5}(x-2 y+z) f_{6}(x+y-2 z)
$$

is robust under small U^{k} perturbations of the f_{i} ?

- Since the complexity of the system is 2 , it's enough if $k \geq 3$.

Which U^{k} norm is needed for which linear configuration?

For example, for which k is it the case that the expression

$$
\mathbb{E}_{x, y, z} f_{1}(x) f_{2}(y) f_{3}(z) f_{4}(x+y+z) f_{5}(x-2 y+z) f_{6}(x+y-2 z)
$$

is robust under small U^{k} perturbations of the f_{i} ?

- Since the complexity of the system is 2 , it's enough if $k \geq 3$.
- However, it is not possible to prove that $k \geq 3$ is necessary using quadratic (or even generalized quadratic) phase functions.

The following theorem is a joint result with Julia Wolf. It applies to functions defined on the group \mathbb{F}_{p}^{n} rather than the group \mathbb{Z}_{N}.

Theorem

Let \mathcal{L} be a collection of linear forms of complexity 2. Then the expression

$$
\mathbb{E}_{x_{1}, \ldots, x_{m}} \prod_{L \in \mathcal{L}} f_{L}\left(L\left(x_{1}, \ldots, x_{m}\right)\right)
$$

is robust under small U^{2} perturbations of the functions f_{L} if and only if the squares of the linear forms $L \in \mathcal{L}$ are linearly independent.

Very very rough idea of proof

Very very rough idea of proof

- First, use the decomposition theorem to decompose each f_{i} as a combination of the form $\sum_{i} \lambda_{i} Q_{i}+g+h$, where the Q_{i} are (slightly more general than) generalized quadratic phase functions, $\sum_{i}\left|\lambda_{i}\right|$ is not too large, and $\|g\|_{U^{3}}$ and $\|h\|_{1}$ are small.

Very very rough idea of proof

- First, use the decomposition theorem to decompose each f_{i} as a combination of the form $\sum_{i} \lambda_{i} Q_{i}+g+h$, where the Q_{i} are (slightly more general than) generalized quadratic phase functions, $\sum_{i}\left|\lambda_{i}\right|$ is not too large, and $\|g\|_{U^{3}}$ and $\|h\|_{1}$ are small.
- Next, prove that if $\|f\|_{U^{2}}$ is very small, then the decomposition can be carried out in such a way that the Q_{i} have "high rank" (in particular, each $\left\|Q_{i}\right\|_{U^{2}}$ is small).

Very very rough idea of proof

- First, use the decomposition theorem to decompose each f_{i} as a combination of the form $\sum_{i} \lambda_{i} Q_{i}+g+h$, where the Q_{i} are (slightly more general than) generalized quadratic phase functions, $\sum_{i}\left|\lambda_{i}\right|$ is not too large, and $\|g\|_{U^{3}}$ and $\|h\|_{1}$ are small.
- Next, prove that if $\|f\|_{U^{2}}$ is very small, then the decomposition can be carried out in such a way that the Q_{i} have "high rank" (in particular, each $\left\|Q_{i}\right\|_{U^{2}}$ is small).
- Then, using these decompositions, explicitly calculate the expectation over the product of linear forms. The error terms make small contributions, and because of the square independence, the purely quadratic terms do too.

Very very rough idea of proof

- First, use the decomposition theorem to decompose each f_{i} as a combination of the form $\sum_{i} \lambda_{i} Q_{i}+g+h$, where the Q_{i} are (slightly more general than) generalized quadratic phase functions, $\sum_{i}\left|\lambda_{i}\right|$ is not too large, and $\|g\|_{U^{3}}$ and $\|h\|_{1}$ are small.
- Next, prove that if $\|f\|_{U^{2}}$ is very small, then the decomposition can be carried out in such a way that the Q_{i} have "high rank" (in particular, each $\left\|Q_{i}\right\|_{U^{2}}$ is small).
- Then, using these decompositions, explicitly calculate the expectation over the product of linear forms. The error terms make small contributions, and because of the square independence, the purely quadratic terms do too.
- Rough philosophy: constructions of quadratic type don't work, but quadratic Fourier analysis shows that they are essentially the only constructions around.

A different way of proving decomposition results

Another way to deduce decomposition theorems from inverse theorems, due to Green and Tao, but with precedents in combinatorics (Szemerédi's regularity lemma) and ergodic theory (the "Furstenberg tower"), is to use energy arguments.

A different way of proving decomposition results

Another way to deduce decomposition theorems from inverse theorems, due to Green and Tao, but with precedents in combinatorics (Szemerédi's regularity lemma) and ergodic theory (the "Furstenberg tower"), is to use energy arguments.

Rough idea: try to find a partition \mathcal{B} of the group (that is, \mathbb{Z}_{N} or \mathbb{F}_{p}^{n}) into sets of "quadratic type," in such a way that $f-\mathbb{E}(f \mid \mathcal{B})$ is small.

A different way of proving decomposition results

Another way to deduce decomposition theorems from inverse theorems, due to Green and Tao, but with precedents in combinatorics (Szemerédi's regularity lemma) and ergodic theory (the "Furstenberg tower"), is to use energy arguments.

Rough idea: try to find a partition \mathcal{B} of the group (that is, \mathbb{Z}_{N} or \mathbb{F}_{p}^{n}) into sets of "quadratic type," in such a way that $f-\mathbb{E}(f \mid \mathcal{B})$ is small.
(Definition: $\mathbb{E}(f \mid \mathcal{B})(x)$ is the average of f over the cell of \mathcal{B} that contains x. So $\mathbb{E}(f \mid \mathcal{B})$ is the orthogonal projection of f to the space of functions that are constant on the cells of \mathcal{B}.)

Energy increments

Rough idea: try to find a partition \mathcal{B} of the group (that is, \mathbb{Z}_{N} or \mathbb{F}_{p}^{n}) into sets of "quadratic type," in such a way that $f-\mathbb{E}(f \mid \mathcal{B})$ is small.

Energy increments

Rough idea: try to find a partition \mathcal{B} of the group (that is, \mathbb{Z}_{N} or \mathbb{F}_{p}^{n}) into sets of "quadratic type," in such a way that $f-\mathbb{E}(f \mid \mathcal{B})$ is small.

Suppose that $\|f-\mathbb{E}(f \mid \mathcal{B})\|_{U^{3}}$ is not small. Since f is bounded and $\mathbb{E}(. \mid \mathcal{B})$ is an averaging projection, $f-\mathbb{E}(f \mid \mathcal{B})$ is bounded as well. Therefore, the inverse theorem implies that it correlates with a generalized quadratic phase function Q.

Energy increments

Rough idea: try to find a partition \mathcal{B} of the group (that is, \mathbb{Z}_{N} or \mathbb{F}_{p}^{n}) into sets of "quadratic type," in such a way that $f-\mathbb{E}(f \mid \mathcal{B})$ is small.

Suppose that $\|f-\mathbb{E}(f \mid \mathcal{B})\|_{U^{3}}$ is not small. Since f is bounded and $\mathbb{E}(. \mid \mathcal{B})$ is an averaging projection, $f-\mathbb{E}(f \mid \mathcal{B})$ is bounded as well. Therefore, the inverse theorem implies that it correlates with a generalized quadratic phase function Q.

Now pass to a refinement \mathcal{B}^{\prime} of \mathcal{B} on the cells of which Q is (approximately) constant. Then the correlation implies that $\left\|\mathbb{E}\left(f \mid \mathcal{B}^{\prime}\right)\right\|_{2}$ is substantially bigger than $\|\mathbb{E}(f \mid \mathcal{B})\|_{2}$.

Energy increments

Rough idea: try to find a partition \mathcal{B} of the group (that is, \mathbb{Z}_{N} or \mathbb{F}_{p}^{n}) into sets of "quadratic type," in such a way that $f-\mathbb{E}(f \mid \mathcal{B})$ is small.

Suppose that $\|f-\mathbb{E}(f \mid \mathcal{B})\|_{U^{3}}$ is not small. Since f is bounded and $\mathbb{E}(\mid \mathcal{B})$ is an averaging projection, $f-\mathbb{E}(f \mid \mathcal{B})$ is bounded as well. Therefore, the inverse theorem implies that it correlates with a generalized quadratic phase function Q.

Now pass to a refinement \mathcal{B}^{\prime} of \mathcal{B} on the cells of which Q is (approximately) constant. Then the correlation implies that $\left\|\mathbb{E}\left(f \mid \mathcal{B}^{\prime}\right)\right\|_{2}$ is substantially bigger than $\|\mathbb{E}(f \mid \mathcal{B})\|_{2}$.

The cells of these partitions are "quadratic" in the sense that they are (approximate) level sets of generalized quadratic phase functions.

Comparison of the two methods

Comparison of the two methods

- The energy-increment argument preserves boundedness because it is based on averaging projections, whereas the decomposition using the Hahn-Banach theorem is not necessarily into bounded parts.

Comparison of the two methods

- The energy-increment argument preserves boundedness because it is based on averaging projections, whereas the decomposition using the Hahn-Banach theorem is not necessarily into bounded parts.
- In both methods, technical difficulties arise if the quadratic sets/functions have low rank. It seems that dealing with these difficulties is more expensive for the energy-increment method.

Comparison of the two methods

- The energy-increment argument preserves boundedness because it is based on averaging projections, whereas the decomposition using the Hahn-Banach theorem is not necessarily into bounded parts.
- In both methods, technical difficulties arise if the quadratic sets/functions have low rank. It seems that dealing with these difficulties is more expensive for the energy-increment method.
- For our purposes, the advantage of Hahn-Banach outweighed the disadvantage. (That is, we obtained a weaker result with a much better bound and were able to apply it.)

Comparison of the two methods

- The energy-increment argument preserves boundedness because it is based on averaging projections, whereas the decomposition using the Hahn-Banach theorem is not necessarily into bounded parts.
- In both methods, technical difficulties arise if the quadratic sets/functions have low rank. It seems that dealing with these difficulties is more expensive for the energy-increment method.
- For our purposes, the advantage of Hahn-Banach outweighed the disadvantage. (That is, we obtained a weaker result with a much better bound and were able to apply it.)
- In one respect, our result was stronger: our initial assumption was that $\|f\|_{2} \leq 1$. But we don't use this and we pay for it with an L_{1} error term.

Comparison of the two methods

- The energy-increment argument preserves boundedness because it is based on averaging projections, whereas the decomposition using the Hahn-Banach theorem is not necessarily into bounded parts.
- In both methods, technical difficulties arise if the quadratic sets/functions have low rank. It seems that dealing with these difficulties is more expensive for the energy-increment method.
- For our purposes, the advantage of Hahn-Banach outweighed the disadvantage. (That is, we obtained a weaker result with a much better bound and were able to apply it.)
- In one respect, our result was stronger: our initial assumption was that $\|f\|_{2} \leq 1$. But we don't use this and we pay for it with an L_{1} error term.
- The Hahn-Banach method is often simpler and more direct.

The main difficulty

Recall the decomposition theorem:

If f is any bounded function and $\epsilon>0$ then we can write it as $\sum_{i} \lambda_{i} Q_{i}+g+h$ such that $\sum_{i}\left|\lambda_{i}\right| \leq M(\epsilon)$, each Q_{i} is a generalized quadratic phase function, $\|g\|_{U^{3}} \leq \epsilon$ and $\|h\|_{1} \leq \epsilon$.

The main difficulty

Recall the decomposition theorem:

If f is any bounded function and $\epsilon>0$ then we can write it as $\sum_{i} \lambda_{i} Q_{i}+g+h$ such that $\sum_{i}\left|\lambda_{i}\right| \leq M(\epsilon)$, each Q_{i} is a generalized quadratic phase function, $\|g\|_{U^{3}} \leq \epsilon$ and $\|h\|_{1} \leq \epsilon$.

We needed to know something more: that if $\|f\|_{U^{2}}$ is small enough, then the functions Q_{i} have large rank, which is equivalent to saying that they too have small U^{2} norms.

The main difficulty

Recall the decomposition theorem:

If f is any bounded function and $\epsilon>0$ then we can write it as $\sum_{i} \lambda_{i} Q_{i}+g+h$ such that $\sum_{i}\left|\lambda_{i}\right| \leq M(\epsilon)$, each Q_{i} is a generalized quadratic phase function, $\|g\|_{U^{3}} \leq \epsilon$ and $\|h\|_{1} \leq \epsilon$.

We needed to know something more: that if $\|f\|_{U^{2}}$ is small enough, then the functions Q_{i} have large rank, which is equivalent to saying that they too have small U^{2} norms.

It can be shown that if Q has small rank, then $\|Q\|_{U^{2}}^{*}$ is small, so $\langle f, Q\rangle$ is small. Therefore, it ought not to be necessary to use Q in a decomposition of f. However, proving this is surprisingly tricky.

Uniform functions need just high-rank quadratics

The rough idea is this. First, write $f=\sum_{i} \lambda_{i} Q_{i}+g+h$ as before. Then find an interval $I=[r, s(r)]$ such that r is fairly large and not many Q_{i} have rank in I.

Uniform functions need just high-rank quadratics

The rough idea is this. First, write $f=\sum_{i} \lambda_{i} Q_{i}+g+h$ as before. Then find an interval $I=[r, s(r)]$ such that r is fairly large and not many Q_{i} have rank in l.

Then write $f=f_{L}+f_{H}+g+h$. Here, f_{L} is "low-rank part" and f_{H} is "high-rank part" of the quadratic decomposition. (The intermediate part is absorbed into the error term.)

Uniform functions need just high-rank quadratics

The rough idea is this. First, write $f=\sum_{i} \lambda_{i} Q_{i}+g+h$ as before. Then find an interval $I=[r, s(r)]$ such that r is fairly large and not many Q_{i} have rank in I.

Then write $f=f_{L}+f_{H}+g+h$. Here, f_{L} is "low-rank part" and f_{H} is "high-rank part" of the quadratic decomposition. (The intermediate part is absorbed into the error term.)

Then $\left\|f_{L}\right\|_{U^{2}}^{*}$ is not too large. Standard techniques allow us to convolve with a function β in such a way that $\beta * f_{L} \approx f_{L}$ in L_{2}. But that $\|\beta * f\|_{2}$ and $\left\|\beta * f_{H}\right\|_{2}$ are small (since $\|f\|_{U^{2}}$ and $\left\|f_{H}\right\|_{U^{2}}$ are small). Also, $\|\beta * g\|_{U^{3}} \leq\|g\|_{U^{3}}$ and $\|\beta * h\|_{1} \leq\|h\|_{1}$.

Uniform functions need just high-rank quadratics

The rough idea is this. First, write $f=\sum_{i} \lambda_{i} Q_{i}+g+h$ as before. Then find an interval $I=[r, s(r)]$ such that r is fairly large and not many Q_{i} have rank in l.

Then write $f=f_{L}+f_{H}+g+h$. Here, f_{L} is "low-rank part" and f_{H} is "high-rank part" of the quadratic decomposition. (The intermediate part is absorbed into the error term.)

Then $\left\|f_{L}\right\|_{U^{2}}^{*}$ is not too large. Standard techniques allow us to convolve with a function β in such a way that $\beta * f_{L} \approx f_{L}$ in L_{2}. But that $\|\beta * f\|_{2}$ and $\left\|\beta * f_{H}\right\|_{2}$ are small (since $\|f\|_{U^{2}}$ and $\left\|f_{H}\right\|_{U^{2}}$ are small). Also, $\|\beta * g\|_{U^{3}} \leq\|g\|_{U^{3}}$ and $\|\beta * h\|_{1} \leq\|h\|_{1}$.

It follows that f_{L} can be absorbed into the error terms.

A clustering argument

The following is an oversimplification of a true statement:
If Q and Q^{\prime} are generalized quadratic phase functions, then either $\left\langle Q, Q^{\prime}\right\rangle$ is small or $\left\|Q Q^{\prime}\right\|_{U^{2}}^{*}$ is not too large.

In the second case, we think of Q and Q^{\prime} as "linearly related".

A clustering argument

The following is an oversimplification of a true statement:
If Q and Q^{\prime} are generalized quadratic phase functions, then either $\left\langle Q, Q^{\prime}\right\rangle$ is small or $\left\|Q \bar{Q}^{\prime}\right\|_{U^{2}}^{*}$ is not too large.

In the second case, we think of Q and Q^{\prime} as "linearly related".
We also prove a lemma along the following lines.
A sum of the form $\sum_{i} \lambda_{i} Q_{i}$ such that $\sum_{i}\left|\lambda_{i}\right| \leq M$ can be split into "clusters" of linearly related Q_{i} plus a remainder that is small in L_{2}.

This result is basically a simple statement about vectors in Hilbert spaces combined with the fact that if Q and Q^{\prime} are not approximately orthogonal then they are linearly related.

A more precise decomposition theorem

These ideas lead to the following refinement of the decomposition theorem.

Theorem

Let f be a function with $\|f\|_{2} \leq 1$ and let $\epsilon>0$. Then it is possible to write f as a sum of the form $\sum_{i=1}^{k} Q_{i} U_{i}+g+h$, such that $k \leq k(\epsilon)$, $\sum_{i}\left\|U_{i}\right\|_{U^{2}}^{*} \leq M(\epsilon),\|g\|_{U^{3}} \leq \epsilon$ and $\|h\|_{1} \leq \epsilon$.

