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Szemerédi’s theorem

Theorem

For every δ > 0 and every positive integer k there exists N such that every
subset A ⊂ {1, 2, . . . ,N} of cardinality at least δN contains an arithmetic
progression of length k.
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An equivalent formulation of Szemerédi’s theorem

Let ZN stand for Z/NZ.

Theorem

For every δ > 0 and every positive integer k there exists c = c(δ, k) > 0
such that if f is any function from ZN to [0, 1] and Ex f (x) ≥ δ then

Ex ,d f (x)f (x + d)f (x + 2d) . . . f (x + (k − 1)d) ≥ c.

If A ⊂ ZN and f = χA then the above expectation is closely related to the
number of arithmetic progressions of length k in A.
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Discrete Fourier analysis

The discrete Fourier transform for functions f : ZN → C is defined by the
following formula:

f̂ (r) = Ex f (x)eN(−rx),

where eN(y) stands for exp 2πiy/N.

Compare with the formula for functions defined on [0,1]:

f̂ (α) =

∫
f (x)e(−αx)dx ,

where e(y) stands for exp(2πiy).
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Basic facts about the discrete Fourier transform.

〈f̂ , ĝ〉 = 〈f , g〉 Parseval’s identity

f̂ ∗ g(r) = f̂ (r)ĝ(r) Convolution identity

Here, 〈f , g〉 means Ex f (x)g(x), 〈f̂ , ĝ〉 means
∑

r f̂ (r)ĝ(r), and f ∗ g(u) is
defined to be Ex+y=uf (x)g(y).
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Discrete Fourier analysis and progressions of length 3

Important observation:

If ‖f̂ − ĝ‖∞ is small then so is

Ex ,d f (x)f (x + d)f (x + 2d)− Ex ,dg(x)g(x + d)g(x + 2d)

Here we are assuming that both f and g are functions from ZN to [0, 1].
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Sketch of proof (1)

We can rewrite the expression as a sum of three terms as follows:

Ex ,d(f (x)− g(x))f (x + d)f (x + 2d)

+Ex ,dg(x)(f (x + d)− g(x + d))f (x + 2d)

+Ex ,dg(x)g(x + d)(f (x + 2d)− g(x + 2d))

Each one of these terms involves the function f − g .
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Sketch of proof (2)

Ex ,d f (x)g(x + d)h(x + 2d) = Ex+z=2y f (x)h(z)g(y)

= 〈f ∗ h, g2〉

where g2(y) = g(y/2).

By Parseval + convolution this equals

〈f̂ ĥ, ĝ2〉 =
∑

r

f̂ (r)ĥ(r)ĝ(−2r),

which is, for example, at most

‖ĝ‖∞
∑

r

|f̂ (r)||ĥ(r)| ≤ ‖ĝ‖∞‖f̂ ‖2‖ĝ‖2 ≤ ‖ĝ‖∞.
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A second important observation

If f : ZN → [−1, 1] then ‖f̂ ‖∞ ≤ ‖f̂ ‖4 ≤ ‖f̂ ‖1/2
∞ .

In other words, ‖f̂ ‖∞ is “roughly equivalent” to ‖f̂ ‖4.

Proof.

maxr |f̂ (r)|4 ≤
∑

r |f̂ (r)|4 ≤ (maxr |f̂ (r)|2)
∑

r |f̂ (r)|2.

This is useful because ‖f̂ ‖4 has a non-Fourier interpretation.
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The non-Fourier interpretation of ‖f̂ ‖4.

‖f̂ ‖44 =
∑

r

|f̂ (r)|4 = 〈f̂ 2, f̂ 2〉 = 〈f ∗ f , f ∗ f 〉

= Ex+y=z+w f (x)f (y)f (z)f (w)

= Ex ,a,bf (x)f (x + a)f (x + b)f (x + a + b).

This is useful because it generalizes.
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Non-Fourier analysis and progressions of length 3.

‖f ∗ g‖22 = 〈f ∗ g , f ∗ g〉 = 〈f ∗ f ∗, g ∗ g∗〉 ≤ ‖f ∗ f ∗‖2‖g ∗ g∗‖2,

where f ∗(x) = f (−x). But

‖f ∗ f ∗‖22 = 〈f ∗ f ∗, f ∗ f ∗〉 = 〈f ∗ f , f ∗ f 〉 = ‖f ∗ f ‖22

and similarly for g . So

‖f ∗ g‖22 ≤ ‖f ∗ f ‖2‖g ∗ g‖2

Therefore,

Ex+z=2y f (x)h(z)g2(y) = 〈f ∗ h, g2〉
≤ ‖f ∗ h‖2‖g2‖2
≤ ‖f ∗ f ‖1/2

2 ‖h ∗ h‖1/2
2
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The morals of the previous slide

With an eye to later generalizations, let us write ‖f ‖U2 for the norm
defined by the formula

‖f ‖4U2 = ‖f ∗ f ‖2 = Ex ,a,bf (x)f (x + a)f (x + b)f (x + a + b).

The following facts summarize why the U2 norm is important.

The expression Ex ,d f (x)f (x + d)f (x + 2d) is approximately invariant
under small perturbations of f in the U2 norm.

In particular, if f is close in the U2 norm to the constant function δ1,
then Ex ,d f (x)f (x + d)f (x + 2d) ≈ δ3.

The definition of the U2 norm, and basic facts about it (including the
fact that it is a norm) can be given without the help of Fourier
analysis.
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A simple inverse theorem for the U2 norm.

Theorem

If f : ZN → [−1, 1] and ‖f ‖U2 ≥ c, then there is some r such that
|Ex f (x)eN(−rx)| ≥ c2.

Proof.

As we have seen, ‖f̂ ‖∞ ≥ ‖f̂ ‖24 = ‖f ‖2U2 .

Many proofs in arithmetic combinatorics rely on dichotomies , of which a
typical one is the following.

Either ‖f ‖U2 is small (in which case use one argument) or f correlates
significantly with a trignometric function (in which case use another).

In particular, this dichotomy underlies Roth’s proof of Szemerédi’s theorem
for progressions of length 3.
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Enter quadratic functions.

The earlier results hold also when f : ZN → C with ‖f ‖∞ ≤ 1. Now
observe that the identity

x2 − 3(x + d)2 + 3(x + 2d)2 − (x + 3d)2 = 0

implies that if f (x) = eN(x2) and g(x) = eN(3x2), then

Ex ,d f (x)g(x + d)g(x + 2d)f (x + 3d) = 1.

But

‖f ‖4U2 = Ex ,a,beN(x2 − (x + a)2 − (x + b)2 + (x + a + b)2)

= Ex ,a,beN(2ab)

= O(N−1)
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The moral of the previous example

In that example, ‖f ‖U2 was tiny, but if we replace f by 0 in the expression

Ex ,d f (x)g(x + d)g(x + 2d)f (x + 3d),

then we get a completely different answer.

Therefore, expressions of the form

Ex ,d f1(x)f2(x + d)f3(x + 2d)f4(x + 3d)

are not robust when subjected to U2 perturbations. Moreover, the
simplest examples that show this have a quadratic character.

The above fact is (one manifestation of) the reason that Szemerédi’s
theorem for progressions of length 3 is significantly easier than the general
case.
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Generalizing the U2 norm.

It turns out that a simple generalization will do instead: the U3 norm.
This is defined by the formula

‖f ‖8U3 = Ex ,a,b,c f (x)f (x + a)f (x + b)f (x + a + b)

f (x + c)f (x + a + c)f (x + b + c)f (x + a + b + c)

A reasonably straightforward argument can be used to show that if
f1, f2, f3, f4 are functions from ZN to C and ‖fi‖∞ ≤ 1 for each i , then the
expression

Ex ,d f1(x)f2(x + d)f3(x + 2d)f4(x + 3d)

is not sensitive to small U3 perturbations. What’s more, this generalizes in
an obvious way to progressions of length k and the Uk−1 norm.
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One major difficulty: completing the square

The density of progressions of
length 3 is robust when
subjected to small U2

perturbations.

The density of progressions of
length 4 is robust when
subjected to small U3

perturbations

If f does not have small U2

norm then f correlates
significantly with a
trigonometric function.

If f does not have small U2

norm then f correlates
significantly with ???
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A natural conjecture

A trigonometric function on ZN is a function f such that

f (x)f (x + a)f (x + b)f (x + a + b) = 1

for every x , a, b. Equivalently, it is a function such that

f (x + d)

f (x)
=

f (y + d)

f (y)

for every x , y , d . [Proof: First show that |f (x)| = 1 for every x , then write
f (x) = e(g(x)). We find that g(x + 1)− g(x) = g(y + 1)− g(y) for
every y , so g is linear.]
In other words, a trigonometric function is one that trivially maximizes the
quantity

Ex ,a,bf (x)f (x + a)f (x + b)f (x + a + b)

over all functions f with ‖f ‖∞ ≤ 1.
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It is therefore natural to conjecture the following inverse theorem.

Let f be a function from ZN such that ‖f ‖∞ ≤ 1 and ‖f ‖U3 ≥ c. Then
there is a quadratic function q : ZN → ZN such that
Ex f (x)eN(−q(x)) ≥ c ′, where c ′ depends on c only.

This has some plausibility because it is not hard to show that if f is a
function that takes values of modulus 1 and if

f (x)f (x + a)f (x + b)f (x + a + b)

f (x + c)f (x + a + c)f (x + b + c)f (x + a + b + c) = 1

for every x , a, b, c , then f (x) must be of the form eN(q(x)).

However, the above statement is false.
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Quadratic homomorphisms

Definition

Let A ⊂ ZN . A quadratic homomorphism from A to ZN is a function q
with the property that

q(x)− q(x + a)− q(x + b) + q(x + a + b)− q(x + c)

+q(x + a + c) + q(x + b + c)− q(x + a + b + c) = 0

for every x , a, b, c such that all the above linear combinations belong to A.

Equivalently,

q(x)− q(x + a)− q(x + b) + q(x + a + b)

is a function of a and b only.
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The rough reason the naive conjecture is false

A quadratic homomorphism from ZN to ZN has to be a quadratic
function, but quadratic homomorphisms on more general (dense) subsets
A ⊂ ZN can be genuinely different.

More precisely, if A is a dense subset of ZN and q is a quadratic
homomorphism from A to ZN , then let f (x) = eN(q(x)) if x ∈ A and let
f (x) = 0 otherwise. Then ‖f ‖U3 is large but f does not have to correlate
with a function of the form eN(ax2 + bx + c).
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Example: multidimensional arithmetic progressions

A set A of the form

{x0 +
d∑

i=1

siui : 0 ≤ si < ri}

is a d-dimensional arithmetic progression with common differences
(u1, . . . , ud) and side lengths (r1, . . . , rd).

Typically, a quadratic homomorphism on such a set will have a formula of
the form

q(x0 +
∑

siui ) =
∑
i ,j

aijsi sj +
∑

i

bi si + c

In other words, it is like a (not necessarily homogeneous) quadratic form
on a d-dimensional vector space.
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Towards an inverse theorem for the U3 norm

Definition

A linear (or Freiman) homomorphism on a set A is a function φ such that
φ(x + d)− φ(x) depends only on d .

A linear homomorphism on a d-dimensional progression has a formula of
the form

φ(x0 +
∑

i

siui ) =
∑

i

bi si + c .
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Theorem

Let ‖f ‖∞ ≤ 1 and let ‖f ‖U3 ≥ c. Then there is a d-dimensional
progression P and a constant c ′, with d and c ′ depending on c only, such
that

Ex ,aEb∈P f (x)f (x + a)f (x + b)f (x + a + b)eN(−aφ(b)) ≥ c ′

A key tool in proving this result is Freiman’s theorem and in particular

Ruzsa’s proof of Freiman’s theorem.
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From bilinear to quadratic

We know that

2λab = λ(x2 − (x + a)2 − (x + b)2 + (x + a + b)2).

From this it follows that

Ex ,a,bf (x)f (x + a)f (x + b)f (x + a + b)eN(−2λab)

is equal to

Ex ,a,bg(x)g(x + a)g(x + b)g(x + a + b) = ‖g‖4U2 ,

where g(x) = f (x)eN(−λx2).
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But there is a rough equivalence between ‖g‖U2 and ‖ĝ‖∞, which tells us
that if

Ex ,a,bf (x)f (x + a)f (x + b)f (x + a + b)eN(−2λab) ≥ c

then there exists r such that |ĝ(r)| = |Ex f (x)eN(−λx2 − rx)| ≥ c1/2.

Rough principle: bilinear correlation implies quadratic correlation.

Correction: symmetric bilinear correlation implies quadratic correlation.
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A weak inverse theorem

Unfortunately, the “bilinear form” (a, b) 7→ aφ(b) is not usually symmetric.
One can nevertheless use the bilinear theorem to prove a “weak inverse
theorem”.

Theorem

If ‖f ‖U3 ≥ c then it is possible to partition ZN into arithmetic progressions
Pi of length Nc1 and find for each i a quadratic polynomial qi such that
the average correlation |Ex∈Pi

f (x)eN(−qi (x))| is at least c2.

This is enough for a proof of Szemerédi’s theorem for progressions of
length 4. However, it is weak in the sense that the converse does not hold,
even roughly.
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The Green-Tao symmetry argument

Green and Tao found a way of replacing the bilinear form aφ(b) by a
symmetric bilinear form. This allowed them to obtain the following strong
inverse theorem (which has many equivalent formulations).

Theorem

If ‖f ‖U3 ≥ c then there is a dense d-dimensional arithmetic progression
A ⊂ ZN and a quadratic homomorphism q : A→ ZN such that
|Ex∈Af (x)eN(−q(x))| ≥ c ′.

In other words, f must correlate with a generalized quadratic phase
function.

A crucial ingredient in the asymptotic estimate for the number of APs
of length 4 in the primes.

Other applications, to be discussed ...
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