3D-FGAT assimilation of MIPAS-IMK (and GOMOS) chemical data

- S. Chabrillat⁽¹⁾, Y.J. Rochon⁽²⁾, Y. Yang⁽²⁾, R. Ménard⁽²⁾,
- T. von Clarmann⁽³⁾, A. Robichaud⁽²⁾ and C. Charette⁽²⁾
- (1) Institut d'Aéronomie de Belgique (BIRA-IASB), Belgium
- (2) Atmospheric Science & Technology Directorate, Environment Canada
- (3) Institut für Meteorologie und Klimaforschung (IMK), Germany

SPARC Data Assimilation workshop

Toronto, 4 September 2007

Outline

- Description of MIPAS-IMK dataset & set-up for assimilation of NO₂, HNO₃, ClONO₂, O₃
- Optimization and impact of error statistics
- Comparison between MIPAS-ESA analyses and MIPAS-IMK analyses
- Assimilation of Overhead Column Densities
- One slide on GOMOS assimilation
- Conclusions

Page 2

Setup of chemistry assimilation experiments

- Forward model (GEM-BACH) has full and interactive chemistry but assimilation system does not have adjoint of chemistry → 4D-VAR chem not available. (120x240 grid, 80 levels up to 0.1hPa)
- Using 3D-FGAT scheme with window of 6h:
 O-F computed at obs time but analysis increments
 (A-F) do not account for temporal correlation over
 6h.
- Dyn variables overwritten every 6h by analyses from a previous 4D-VAR experiment (similar to CTM-based assimilation)
- Short experiments: 2003/08/11 2003/09/05

Datasets actually assimilated

- MIPAS-ESA retrievals: offline dataset (v4.61). T; N₂O, CH₄ (tracers); H₂O, O₃, HNO₃ (chem & adv); NO₂ (chem).
- MIPAS-IMK retrievals: same + CIONO₂ (intermediate-lived chlorine reservoir; very important for polar ozone depletion).

Tailor-made dataset with full coverage for 2003/08/11 to 2003/09/05.

- Each profile was delivered with averaging kernels and a priori profiles (T, H₂O, NO₂).
- Did not assimilate H₂O (lack of time), N₂O and CH₄ (more biased than MIPAS-ESA w.r.t. HALOE)
- GOMOS retrievals: offline ESA dataset (v6.0f). Used only O₃ and NO₂ during *night time* (dark limb)

Approx. in dealing with retrieval products

Retrievals and constraints applied in retrievals give rise to non-diagonal solution covariance matrices **R** (for random error).

In addition, constraints also result in non-identity averaging kernel matrices Δ.

In data assimilation (of the retrieval products) via minimization of the cost function: $=\frac{1}{2}(x-x^f)^T \mathbf{B}^{-1}(x-x^f) + \frac{1}{2}(y-\mathbf{H}(x))^T \mathbf{R}^{-1}(y-\mathbf{H}(x))$

- Assim. system assumes obs error covariance matrix R is diagonal.
- Never the case but we should keep vertical correlations between errors as small as possible.
- Correct way to compare obs y and model profiles x at different resolutions is to apply the averaging kernels A to the model variable x.

A becomes part of the obs operator H.

MIPAS-IMK chemical data assimilation
Application of A (varying for each profile) not implemented in this

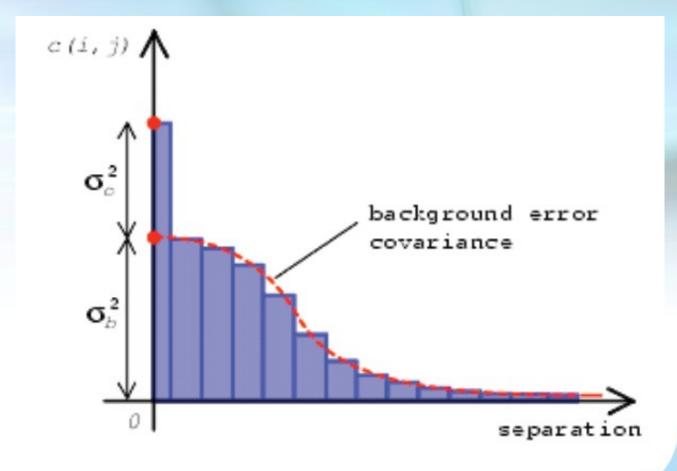
MIPAS-IMK retrieval products: Dealing with artificially high vertical resolution

MIPAS-IMK data is delivered with an artificially high vertical resolution relying on a regularization constraint to ensure smoothness.

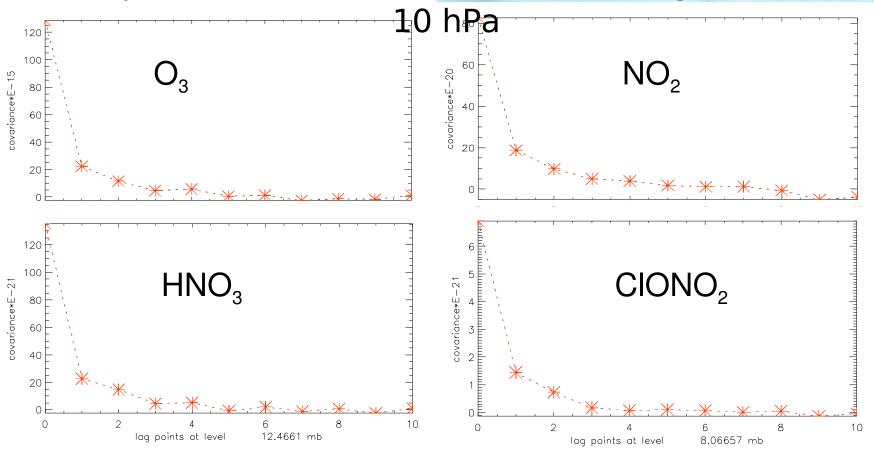
This is another type of a priori information and impacts both **R** and **A**.

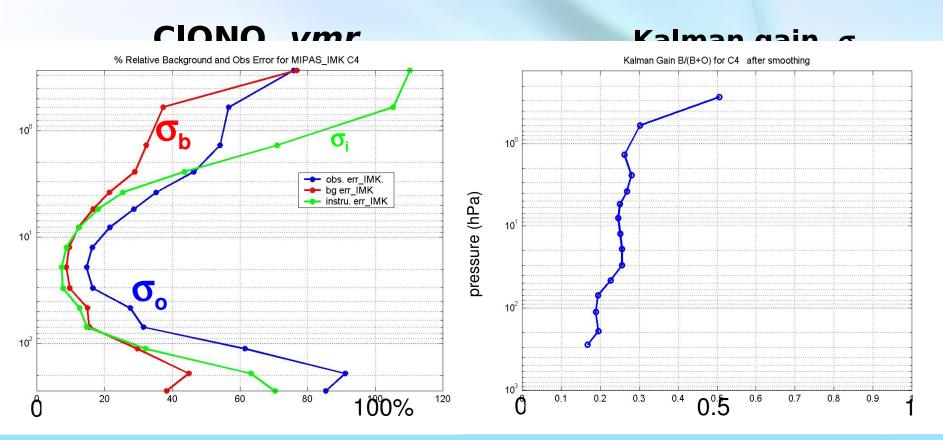
For assimilation, it was decided to at least reduce the retrieved profiles to the same resolution as the measurement.

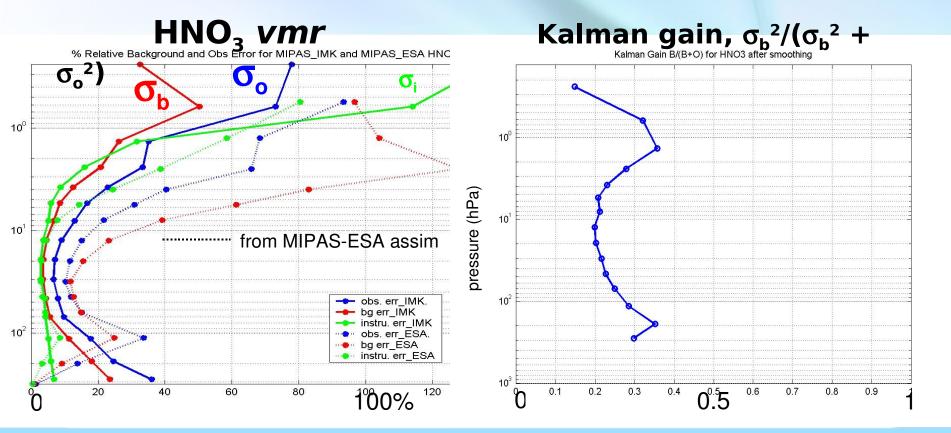
Two approaches applied:

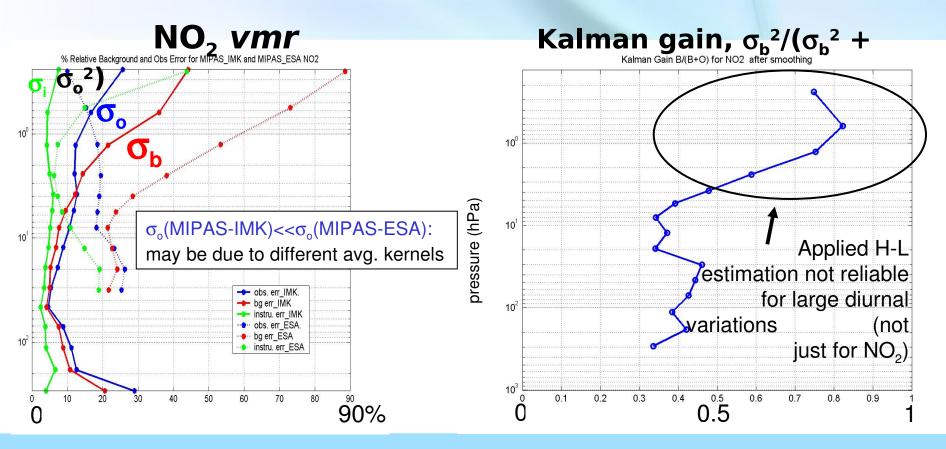

- vmr profile thinning using only altitudes closest to tangent heights.
- produce overhead column densities with lower boundaries at 4/4angent heights (for evensbetter consistency with a diagonal R) 6

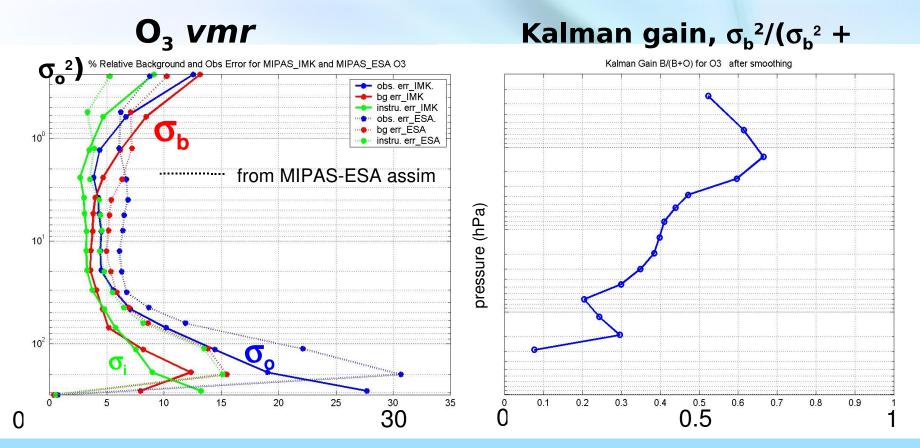
Optimization of error variances by Hollingsworth-Lönnberg (H-L) method and its impact

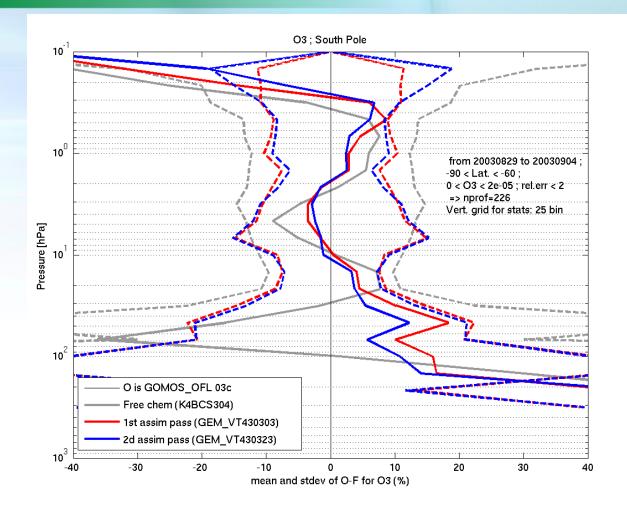

Error statistics


- <u>First assimilation pass</u>
 uses "educated guesses" for error std. dev.:
 - Background error std. dev. σ_b from previous MIPAS-ESA experiments
 - Observation error std. dev. $\sigma_o = \sqrt{(0.1*vmr)^2 + \sigma_i^2}$ (σ_i =precision error std. dev. from retrieval team)
- <u>Second assimilation pass</u>
 uses the result of first pass to estimate error
 variances which allow optimal assimilation...


Plot the covariances between innovations (O-F) as a function of distance along the satellite track. Assuming that σ_h are spatially correlated and σ horizontally uncorrelated (Hollingsworth and Lonnberg, 1986):




Exemple: covariance of innovations along track at ~

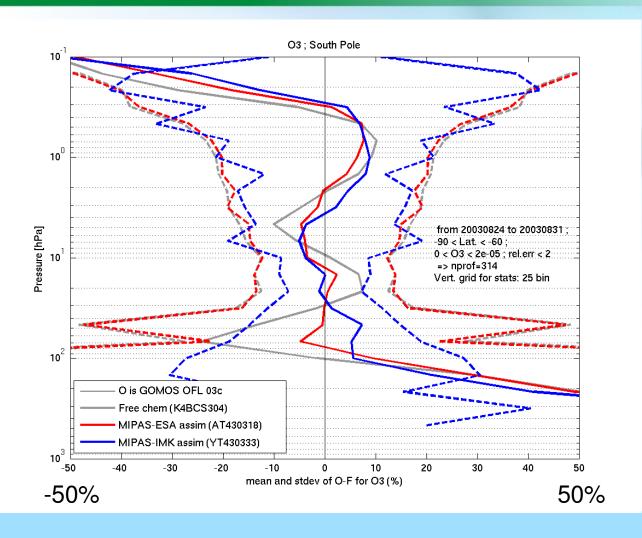

Impact of optimized error variances

Best case:

Ozone, South Pole

Compared with GOMOS (independent instr), the 2d assim pass has a smaller bias than the 1st assim pass

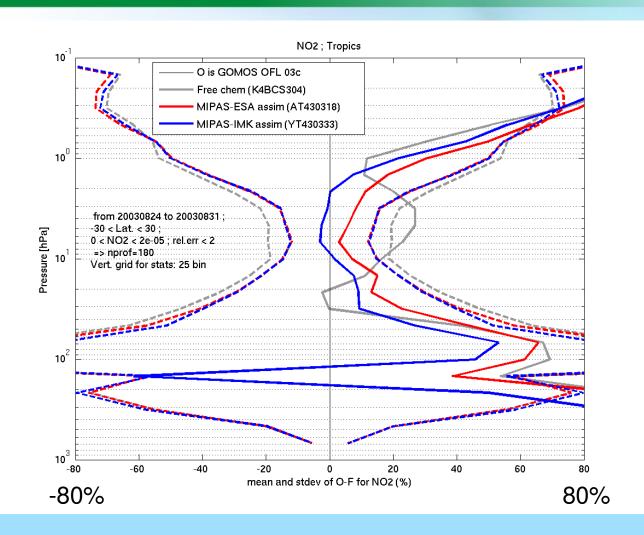
(12% instead of 17% at 45hPa)



Comparison of MIPAS-IMK assimilation (O₃, NO₂, HNO₃, <u>ClONO₂</u>) With MIPAS-ESA assimilation (O₃, NO₂)

Setup is identical:

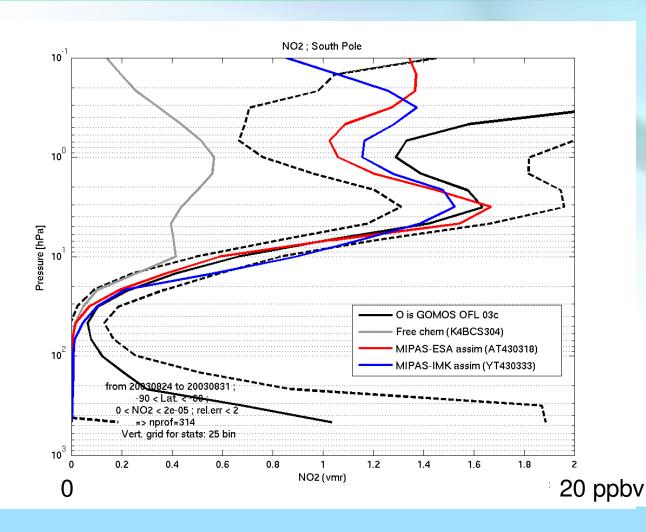
- dyn variables from same 4D-VAR experiment
- same model, same 3D-FGAT assimilation scheme
- error variances obtained from 1st pass + H-L method in both cases
- → All differences should be due to:
 - different retrievals (for same MIPAS obs) and different data selection criteria
- presence/absence of Clono and HNO MIPAS-IMK chemical data essimilation


MIPAS-ESA vs MIPAS-IMK: ozone (South Pole)

Ozone at South Pole, comparing with GOMOS (indep obs): bias similar but stdev(O-F) smaller using MIPAS-IMK than MIPAS-ESA, especially in lower strato

In tropics, analyses of both retrievals compare equally well with GOMOS (not shown)

MIPAS-ESA vs MIPAS-IMK: NO2 (tropics)

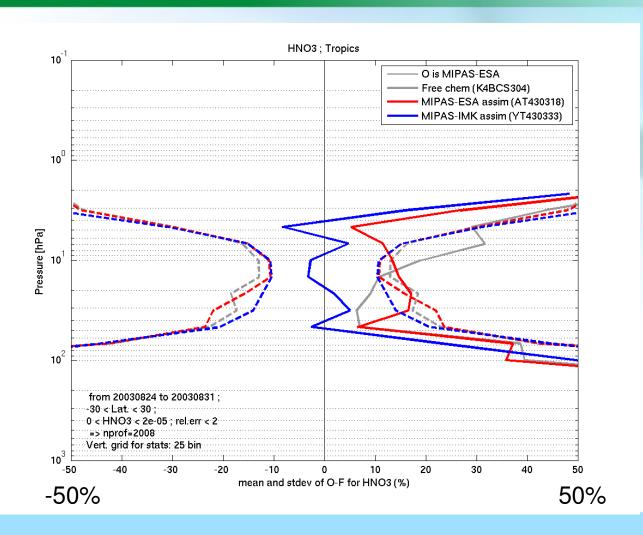


Tropical NO2 (at night),
comparing with GOMOS
(indep obs): forecasts
using
MIPAS-IMK have much
smaller bias than
forecasts using
MIPAS-ESA

Results still quite poor except in middle stratosphere:

- model deficiencies (aerosols)
- 3D-FGAT scheme and H-L implementation not appropriate for large diurnal variations

MIPAS-ESA vs MIPAS-IMK: NO₂ (South Pole)

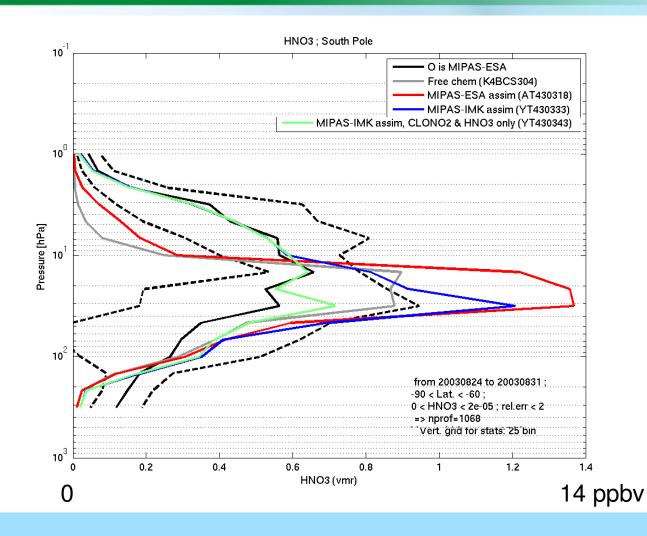


NO₂ in polar vortex is
most difficult : model
has nothing to simulate
NOx production in MLT
(aurorae etc)
→ simulated NO₂

much too small

 Assim still improves results a lot, but here MIPAS-ESA delivers better results overall than MIPAS-IMK

MIPAS-IMK: HNO₃ (tropics)



Tropical HNO3:

MIPAS-IMK assim works much better than MIPAS-ESA assim (of O₃ and NO₂ only; excluding HNO₃).

Note: Comparison with MIPAS-ESA obs

MIPAS-IMK: HNO₃ (South Pole)

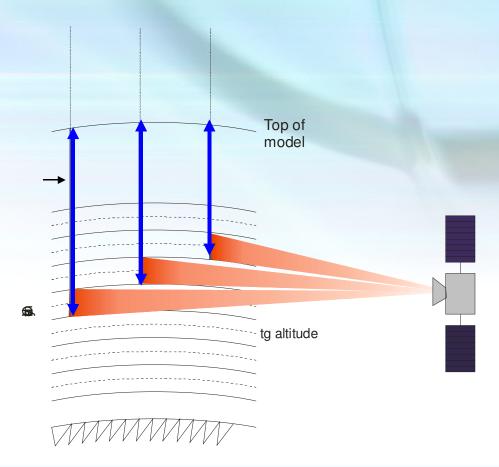
MIPAS-IMK assim as compared to MIPAS-ESA assim (excluding HNO₃) and MPAS-ESA with no assim.

Still, MIPAS-IMK is very bad in lower strato.
We know that NO₂ is a big problem at South Pole. We have another MIPAS-IMK assimilation which did not use NO₂

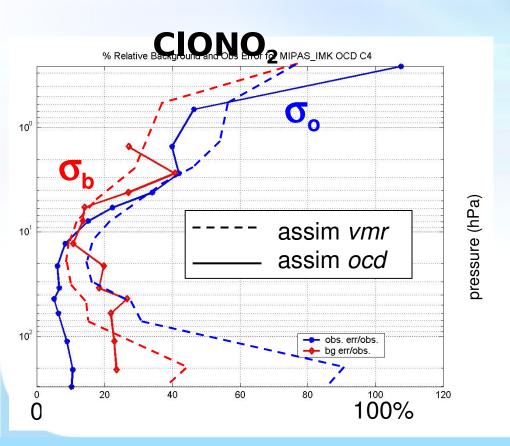
MIPAS-ESA vs MIPAS-IMK: conclusions

- For common assim. species, MIPAS-IMK retrievals provide as good or better analyses than MIPAS-ESA retrievals.
- Only exception is NO₂ in (Southern) Polar vortex,
 where MIPAS-ESA assimilation worked a little better
 than MIPAS-IMK assimilation.
 Both experiments correct most of the
 (very large) model underestimation.
- But in both experiments, this NO₂ correction has a very negative impact on HNO₃
- What about CIONO₂?

Assimilation of overhead column densities instead of volume mixing ratios: the case of CIONO₂


Conversion to overhead column densities

All results previously shown assim. the vmr closest to tg

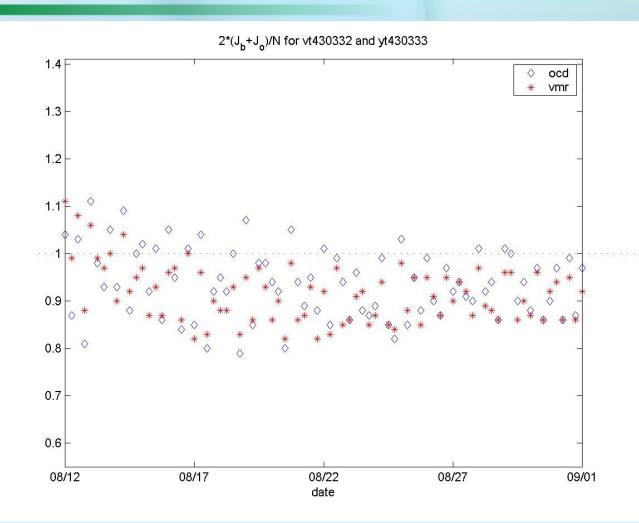

The trade reactive method: convert MIPAS-IMK vmr to overhead column densities (ocd) at each tg altitude and assim this.

ocd errors should be less correlated than the full-resolution and reduced resolution vmr profiles. This should be more consistent with the measured integrals and with a diagonal **R**.

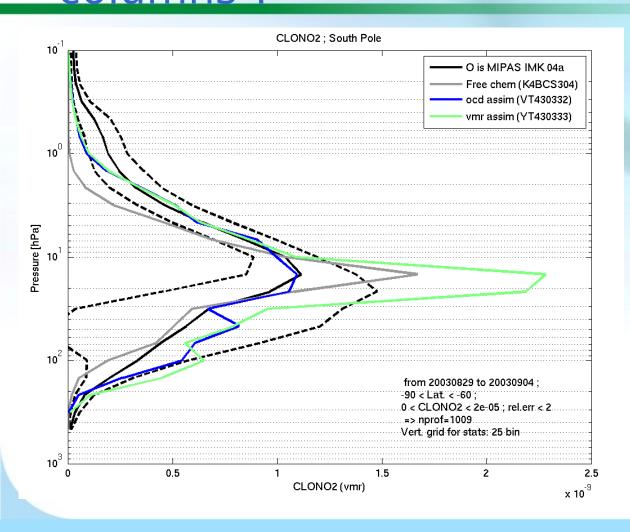
However, broad weighting functions are introduced via change in **H** as compared to the reduced resolution *vmr*.

Result: "relative error std. dev." ($\sigma/|o|$ in %), fct of p but not fct of lat:

For lower-strato CIONO₂, the H-L estimation from 1st pass assim of *ocd* delivers much larger background error std. dev. and much smaller obs error std. dev. than from 1st pass assim of *vmr*.


→ Smaller O-P relative random error std. dev. for vertical integrals/summations.

Note: For 1st pass of assimilation, assigned arbitrary relative error std. dev. of 10% for the *ocd*

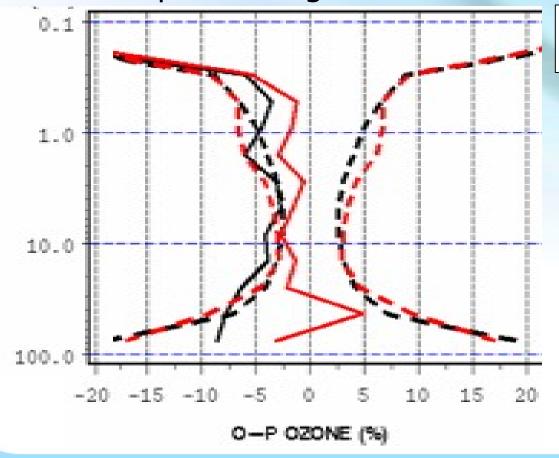

Normalized χ^2 diagnostic (2nd assim. pass

From assim. of the 4-species.

Values from the 1^{st} pass were $> \sim 2$

Is it better to assimilate overhead columns?

For CIONO₂ at South Pole, the answer is yes: ocd assim works better than vmr assim. But...


- Results partly due to interaction with NO₂: outcome not as clear when NO₂ is not assimilated
- For HNO₃ & NO₂ the answer is no
 (vmr assim works better than ocd assim)

One slide on the assimilation of GOMOS O₃

(using night-time obs from occultations of a subset of stars)

Impact of GOMOS assimilation: O₃

In the Tropics, using **HALOE** as reference:

assim MIPAS-ESA vmr assim GOMOS vmr

→ Assim of GOMOS reduces bias more than assim of MIPAS-ESA (but std dev larger)

Conclusions

- Assimilation of MIPAS-IMK
 - Optimized error statistics using 1st pass assim and Hollingsworth-Lönnberg method: improves quality of short-term forecasts (especially ozone in polar vortex...)
 - MIPAS-IMK assim compares better with independent obs (GOMOS) than MIPAS-ESA assim, except for...
 - NO₂ in polar vortex, very difficult for model (MLT production) and for assimilation scheme (NO₂ too short-lived)
 - NO₂ assimilation corrects well NO₂ simulation, but has very negative impact on HNO3 and (probably) CIONO₂
 - Tried assimilating overhead column densities (ocd) rather than vmr closest to tg altitudes. Had positive impact only for ClONO₂. Possible reason to be verified (impact from simultaneous NO₂ assim combined with applied obs error std dev?).
 - We must first improve our understanding of NO₂ assimilation and its interaction with other species
- Assimilation of GOMOS
 - Ozone analyses are less biased than MIPAS-ESA analyses but have less precision

Merci

Thank you

Grazie

Bedankt

Obrigado

Gracias

Toda

Shukran

Xiè Xiè

Arigato

Danke

Tack

Komapsumnida

Spasiba

Shukrya

Salamat

Dziekuje

Balica

