General Characteristics of Stratospheric Singular Vectors

Ronald M. Errico^{1,2}
Ronald Gelaro²
Elena Novakovskaia^{2,3}
Ricardo Todling^{2,3}

¹Goddard Earth Sciences and Technology Center (UMBC) ²Global Modeling and Assimilation Office (NASA Goddard) ³Science Applications International Corporation

Motivation

- 1. We now have the ability to compute SVs with the NASA model, so what can we do that is new and interesting?
- 2. What can SVs tell us about the stratosphere?
- 3. Can we learn some new things about SSW or about stratospheric/tropospheric interactions?
- 4. In what ways are SVs determined for the stratosphere similar or different than those for the troposphere.

Singular Vectors

Given a linearized model

$$y = Mx$$

Find the \mathbf{x} that maximizes

$$L_2 = \mathbf{y}^{\mathrm{T}} \mathbf{L}_2 \mathbf{y}$$

Given

$$L_1 = \mathbf{x}^{\mathrm{T}} \mathbf{L}_1 \mathbf{x}$$

The solution:

$$\mathbf{x} = \mathbf{L}_1^{-rac{1}{2}}\mathbf{z}$$

where

$$\mathbf{L}_1^{-\frac{1}{2}\mathrm{T}}\mathbf{M}^{\mathrm{T}}\mathbf{L}_2\mathbf{M}\mathbf{L}_1^{-\frac{1}{2}}\mathbf{z} = \lambda^2\mathbf{z}$$

 λ is a singular value of $\mathbf{L}_{2}^{\frac{1}{2}}\mathbf{M}\mathbf{L}_{1}^{-\frac{1}{2}}$, \mathbf{z} is the corresponding right singular vector, and λ^{2} may be interpreted as L_{2}/L_{1} .

The Energy Norm

(Talagrand 1981 Tellus; Errico 2000 QJRMS)

$$E = \frac{1}{2} \sum_{i.j.k} \left(\frac{\Delta p}{p_s - p_t} \right)_{i,j,k} (\delta A)_j \left[u'^2 + v'^2 + \frac{C_P}{T_r} T'^2 + \frac{RT_r}{p_{sr}} p_s'^2 \right]_{i,j,k}$$
 KE + APE

For tropospheric SVs, $T_r = 300$ K and $p_{sr} = 10^5$ Pa

NASA's GEOS-5

- 1. Finite-Volume dynamical core (Lin and Rood 1996)
- 2. Full physics package
- 3. Resolution 1.25 x 1 degrees on 72 levels
- 4. Top at 1 Pa
- 5. 40 levels at p<150 hPa

Spacing of NASA GEOS-5 vertical grid

Adjoint version of NASA's GEOS-5

- 1. Exact adjoint of dynamical core
- 2. Simplified physics:
 - a. Del**4 horizontal diffusion
 - b. vertical diffusion with K-coefficients specified by NLM
 - c. "sponge" replaces radiation etc. high in atmosphere
 - d. surface drag
- 3. Resolution 5x4 degrees on 72 levels

E at final time measured only N. of 30°N for 10h Pa < p < 90 hPa E at initial time measured globally 10-20 iterations of Lanczos algorithm to solve for SVs. Results presented for only leading SVs

50 hPa Geopotential Height

21 January 2006

26 January 2006

Perturbation E distribution in the vertical

Initial KE/APE = 1.0 Final KE/APE = 2.0

NON-LOCAL INITIAL STRUCTURES

The V-norm

$$V = \frac{1}{2} \sum_{i,j,k} \left(\frac{\Delta \ln p}{\ln p_s - \ln p_t} \right)_{i,j,k} (\delta A)_j \left[u'^2 + v'^2 + \frac{C_P}{T_r} T'^2 + \frac{RT_r}{p_{sr}} p_s'^2 \right]_{i,j,k}$$

V=1 applied globally as initial constraint E norm, restricted as before, applied at final time

Perturbation *E* distribution in the vertical

Leading SV for 21-26 Jan. using initial V-norm, but final E-norm in restricted vol.

Conclusions

5-day stratospheric SVs are like tropospheric ones:

- 1. Singular values much smaller in winter than summer.
- 2. Perturbation shapes change strongly over time.
- 3. Rotational winds strongly dominate divergent ones.
- 4. The initial *E*-norm SVs exhibit a strong westward tilt with increasing height, which becomes less pronounced as the SV evolves.

Conclusions

5-Day stratospheric SVs are unlike tropospheric ones:

- 1. Their singular values are much less than tropospheric ones.
- 2. Their structures are nonlocal.
- 3. The agreement between TLM and NLM evolution remains close up to 5 days for initially large perturbations.
- 4. The interpretations are strongly dependent on the vertical weighting in the choice of norm.

Conclusions

SVs are potentially useful for understanding stratospheric behavior and interactions with the troposphere.

Errico et al., Meteorologische Zeitschrift, late 2007 or early 2008.

Hooghoudt and Barkmeijer, same issue.