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In the context of discrete computation there is a well understood
theory for the concept of an algorithm.

Namely, the Church-Turing computability definition is
well accepted and we agree on what is and what is not computable.
For computation over the reals see, for example, Braverman [15] for
a discussion of the Blum, Shub, Smale model vs the oracle bit

Turing machine model.

Computer Science is the systematic study of
algorithms.
Richard Karp in “Computing, 2016: What Won’t Be Possible?”

symposium.




Proving upper bounds on computation time

This is done by presenting algorithms
Rich, well-developed methodology:

Linear Programming

Dynamic Programming

Greedy Algorithms

Divide and Conquer Algorithms,...

Taught in every undergraduate CS curriculum.




Proving lower bounds on computation time

Methods:

Diagonalization
Reduction (reduce hard problem to your problem)
Counting (for Boolean circuit size)

Good success for very hard problems (super exponential complexity)
No success for common practical problems which appear difficult

Scheduling and other NP-complete problems
Factoring integers ...




We (in theory) continue to equate “efficient computation” with
polynomial time computation by a Turing machine or appropriate

RAM (or maybe quantum computers if that is your computational

orientation) and quasi-linear time O(nlog” n) with “very efficient”.

Complexity theory has been very successful in many regards (e.g.
(ZK)IP and PCP proofs, unique games hardness, derandomization,
natural proofs and algebrization barriers, applications to
cryptography, pseudo-randomness, coding theory, ....but

Algorithm design has also been very active with (for example) the
development of SDP approximations, and new areas such as

algorithmic game theory, mechanism design, and social networks.




New modest title: An attempt at a more systematic study of some
“simple”, “combinatorial” algorithms for combinatorial search and

optimization problems.

And even more accurate, focus is on such problems where a feasible

solution is (naturally) represented by decisions about input items.

Furthermore the perspective (in terms of stated results) is that of

worst case analysis. However, the definitions of the algorithmic
models and their potential applicability do not depend on the worst
case perspective. Furthermore, algorithmic concepts such as
dynamic programming clearly have application beyond search and

optimization problems.




Conceptually simple algorithms are usually the first thing one tries
when faced with (say) an optimization problem and sometimes
these simple algorithms provide good (or even optimal) results or
at least benchmarks for more sophisticated approaches.

For years, I have taught a standard course in the Design and
Analysis of Algorithms,
. This is a theory course,

Yes we do prove theorems about particular algorithms for
particular problems. Many courses and texts (Brassard and
Bratley, Kleinberg and Tardos, Cormen et al, DasGupta et al) on
this subject organize the material in terms of these undefined

(albeit intuitively understood) conceptually simple algorithmic

paradigms (or meta-algorithms).




The big three: greedy, divide and conquer, dynamic

programming.

Other common paradigms: graph searching, network flows,
local search.

Somewhat more advanced topics: LPs, IP/LP rounding, primal

dual algorithms, backtracking, branch and bound, algebraic
methods.

More advanced topics: semi-definite programming, metric
embeddings, multiplicative weights update.

And orthogonal to all this: reductions and randomization.




Occasionally, good students may ask (or I pretend they ask):

e Is Dijkstra’s shortest path algorithm a greedy algorithm or is it

dynamic programming?

e Do we need dynamic programming for shortest paths when

edge costs can be negative? Or is there a greedy algorithm?

e Can we efficiently compute maximum (bipartite) matching by

dynamic programming?




“ ... trying to define what may be indefinable. .... I shall not today
attempt further to define the kinds of material...But
[ know 1t when I see it ... "

Justice Potter Stewart in discussing obscenity, 1964.

U.S. Supreme Court

Samuel Johnson (1709-1784):
all experience for it.

Anonymous speaking for many: what kind of an

algorithm it is?




We have purposely left the description a little vague, since it is the

spirit of the approach to these processes that is significant, rather

than a letter of some rigid formulation. It is extremely important
to realize that
a . In some problems, the
state variables and the transformations are forced upon us; in
others, there is a choice in these matters and the analytic solution
stands or falls upon this choice; in still others, the state variables
and sometimes the transformations must be artificially constructed.
Experience alone, combined with often
laboriuous trial and error, will yield suitable

formulations of involved processes.

2] take this to mean that one cannot axiomatize or completely formalize an
intuitive concept.







Graham [25] (list scheduling algorithms 1966), Chvatal [17] (branch
and bound 1980), Helman and Rosenthal, Helman [27, 26] (DP +
branch and bound 1985, 1989), Khanna, et al [35] (local search
2000), Lovész and Schrijver (1991), Sherali and Adams (1990),
Lasserre(2001), Arora, et al |7, 8] [2002,2006] (lift and project
2002,2006), Orecchia et al [39] (cut-matching game 2008).

comparison based algorithms; oracle models ; online algorithms;

data stream algorithms.

For example, resolution refutations.




The term greedy algorithms (attributed by Edmonds to Fulkerson)
seems to have been first used in print by Edmonds [21]. Hoffman
129] describes such algorithms in the context of LP as follows:

There are a small number of (say maximizing) linear programming

problems which can be solved very easily. After (possibly)

renumbering the variables, the algorithm successively maximizes
x1,T2, ... meaning that if z1,...,x; have already been determined
then Zy.1 is the largest value of x;1 1 such that this partial solution
can be extended to a vector in the desired polytope.

Hoffman states that “in ancient times” (e.g. as used in inventory
theory) such algorithms were called myopic. For my purpose, I
think myopic is more general and suggestive than greedy but greedy

algorithms (les algorithmes gloutons) is the popular terminology.




Matroids, greedoids, k-independence systems, polymatroids,
submodular functions and the greedy algorithm.

Beautiful development starting in the 1950’s with the work of Rado
[43], Gale [20] and Edmonds [21, 22], (extended by Korte and
Lovész [37, 38], and others) as to contexts in which “the natural”

ogreedy algorithm will produce an optimal solution. In particular,
matroids characterize those hereditary set systems for which the
natural greedy algorithm (determined by the order ¢; > ¢ ... for
maximization) will optimize a linear objective function > ¢;x; for a
maximal independent set {i : z; = 1} in a matroid M = (F,Z)
where 7 are the independent subsets of E. Here the best known
example is perhaps the minimum (or maximum) spanning tree
problem where the edges of a graph are the elements and the
indepedent sets are forests in the graph. Kruskal’s greedy
algorithm is the natural greedy MST algorithm which sorts edges
by the non-decreasing weight.




Greedoids are set system relaxations of matroids for which the
greedy algorithm has been studied in terms of optimal algorithms.
Polymatroids extend matroids from {0, 1} vectors to real vectors
providing a linear programming framework which can be solved
optimally by a natural matroid greedy algorithm extension.
Series-parallel network flows can be solved by the same natural
greedy algorithm which can be viewed as a combinatorial gradiant
method.

Transportation problems, Monge sequences and greedy algorithms.
In a related development, beginning with the 1963 work of Hoffman
28] on the transportation problem, a necessary and sufficent

condition (the existence of a Monge sequence) determines when the

transportation problem can be solved greedily (using the fixed
order of the Monge sequence). Significant body of research on the
exploitation of Monge sequences and arrays to greedy and dynamic
programming algorithms.




Canonical greedy for the maximization of modular and submodular
functions subject to a matroid (and more generally k-indepedence)
constraint following Edmonds and starting with Jenkyns [31],
Korte and Hausmann [36], and Fisher, Nemhauser and Wosley [42].
Recent interest due to application to combinatorial auctions.

S =10
While E # ()
Let e* = argmaz.cp f(SU{e}) — f(S)
If Su{e*} €I then S:=SU{e*}
E:=F —{e*}
End While
This canonical greedy algorithm provides a k (resp.

(k+1))-approximation for maximizing modular (resp. submodular)

objective functions subject to a k-indpendence set system (F, 7).




However, the term greedy algorithm has taken on a more general
meaning and this is my starting point for thinking about a more
systematic study of algorithms. Not counting brute force
enumeration, greedy approximation algorithms are perhaps the
simplest algorithms to design; yet it is not easy to define nor
understand the ultimate power and limitations of such algorithms.
The design and analysis of a greedy algorithm can be quite
sophisticated. Surprisingly, relatively little attention so far as to
the scope and power of what we call greedy algorithms.

Ignoring Socratic reservation, I will present a precise model,
priority algorithms (Borodin, Nielsen, Rackoff [14]), that I believe

captures most (but not all) known greedy algorithms. Extending

the priority algorithm formulation, we also obtain models for some
basic types of dynamic programming, backtracking, and primal
dual algorithms.




Model should capture all (almost all, most, many, or at least

some) known specific algorithms within this class.
Model should be intuitive and reasonably “appealing”.

Model should be amenable to analysis. In particular, we should

be able to provably establish (interesting) limitations on the

power of an algorithmic model.

The Holy Grail: Model should lead to new insights! For most
people such models are perhaps only valuable if they lead to
better algorithms! Complexity theory religiously advocates
that studying limitations can lead to new algorithms. In this
regard we need some more observed miracles. More
ambitiously, one might even pray that a precise framework

might permit some semi-automation for design and analysis.




“Informally, a greedy algorithm solves a global optimization
problem by making a sequence of locally optimal decisions”.

I claim that most greedy algorithms make decisions about input
items and then we can rephrase the essential aspect of greedy
algorithms as follows: Consider input items (e.g. jobs in a
scheduling problem) in some order and make an irrevocable

decision (e.g. if and where to schedule a job) for each input item.

More formally, U = universe of possible input items; D = (finite)
set of decisions about items; problem F = is a family of functions
{F, :(Ux D))" - RU{+00,—co}n>1}; I CU,|I| =nis an
input instance of size n; a solution to instance I = {uy,...,u,} is
an assignment of decisions {(u1,d1),..., (Un,dn)}.




Contrasting (as in canonical greedy) view in DasGupta, et al text:
“Greedy algorithms build up a solution piece by piece, always
choosing the next piece that offers the most obvious and immediate
benefit.”

To make the priority algorithm framework precise for a problem:

1. Specify the input item representation; e.g. for graph problems,
items can be vertices (represented by adjacency list) or edges;
for CNF-SAT, items are variables represented by the clauses in
which they appear; for scheduling, items are jobs represented

by their parameters (e.g. processing time, deadline).

. Specify a set of possible irrevocable decisions (about an input

item); clarify “greedy” decisions as “live for today” (locally

optimal) decisions. We equate priority algorithms with myopic

or “greedy-like” and greedy as a special case.




3. Specify how input items can be ordered; fixed order (e.g.
Kruskal’s MST, Graham’s online and LPT greedy makespan)
vs adaptive order (e.g. Prim’s MST, Dijkstra’s shortest path,

greedy set cover).

We allow any “locally defineable
ordering”. In hindsight, this turns out to be precisely those
orderings that satisfy Arrow’s Independence of Irrelevant
Attributes (ITA) axiom. Notwithstanding the controversial
nature of the ITA axiom in social choice theory, the restriction
to IIA orderings seems quite permissive. For example, we can
use any ordering induced by sorting according to the values of
any function f : {possible input items}— R.

In an adaptive ordering, this can depend on items (and the

corresponding decisions) that have already been seen (as well

as those that we know will not be seen).




The priority framework (like some previous restricted models) does
not have any explicit complexity constraints. Hence one can
establish

But even though we avoid
complexity constraints, greedy and greedy-like (i.e. priority)
algorithms tend to be very efficient. The same approach is used (for

example) in the competitive anaylsis of online algorithms which can

be viewed as a special case of priority algorithms where “nature”
(or an adversary) is determining the ordering of the input items.
Unlike online algorithms and some of the other previous studies of
restricted models, the model definition is not dictated but rather
has to be justified.




Graham’s [25] online and LPT greedy approximation
algorithms for makespan on identical machines. (The beginning
of the study of worst case approximation algorithms.)

The optimal greedy algorithm for I.SP (interval selection) and
the greedy 2-approximation algorithm for JISP (job interval
selection) and unweighted maximum throughput problems.

The greedy H,-approximation set cover algorithm [32, 16, 40].

The myopic (random SAT threshold) search algorithms [1].

Various 2-approximation algorithms for vertex cover.
Huffman optimal prefix coding (with tree nodes as items).
Kruskal’s and Prim’s optimal MST algorithms for MST.

The current best polynomial time approximation (1.52) for the
uncapacitated metric facility location problem [41].




This shouldn’t be a surprise as we know that even online
algorithms (where the algorithm has no control over the order in
which items are considered) can be subtle.

From flow shop scheduling [33]:

Derive a greedy algorithm for the problem of scheduling (the order
of contestants) in a swimming-bicycling biathlon held in a one lane
swimming pool and a one lane velodrome. Given the expected
swimming-biking times (s;, b;) for each contestant, the goal is to
minimize the expected latest completion time.

Answer to this flow shop scheduling problem:

Start with those that swim faster than they bike in increasing order
of swim times, and then order the people who bike faster than they
swim in decreasing order of bike times. [33]




Johnson, Lovasz, Chvatal show that a natural greedy algorithm for

weighted vertex cover (set cover greedy algorithm applied to vertex

cover) has approximation ~ H(d) for (unweighted) degree d graphs:
S:=10
For allv eV

dc(v) = degree(v) % dc(v) will denote current degree
End For
While V' is not empty

Let v = argmin,cyv ;UC((Z))

For all u such that (u,v) € E

de(u) :==dc(u) — 1

End For

S :=SU{v}; Vi=V - {v} - {u: de(u)
End While




S = 0;

For allv eV
dc(v) = degree(v) % dc(v) will denote current degree(v)
we(v) = w(v) % we(v) will denote current weight(v)

End For

While V' is not empty

w(u)

Let v = a'rgminuevm
For all w such that (u,v) € E
de(u) == de(u) — 1

we(u) = we(u) — lec(z)g

End For

S:=SU{v}; V:i=V - {v} - {u: dc(u)
End While




Interval scheduling on m identical machines. In this problem, an
input Z is a set of intervals {I1, I, ..., I,}. The usual (but not the
only) representation of an input interval I; is (s;, f;, w;) where s;

(resp. f;) is the starting (resp. finishing) time of the i*" interval

and w; is the weight or profit of the i'"* interval (if scheduled). In

the unweighted case, w; = 1 for all 7. The goal is to maximize the
profit of a “feasible subset”. Unweighted interval scheduling has an
O(nlogn) time optimal greedy algorithm, a fixed order priority
algorithm.




Sort Z ={I1,...,I,} sothat fi < fo <...fn

% t; is the current finishing time on machine j

End For

For:=1..n
If there exists j such that ¢; < s; then

schedule I; on that machine j which minimizes s; — t;;




The ordering in the previous greedy algorithm is reasonably natural
but perhaps not the most obvious choice. One might think that
ordering so that |f1 — s1| < [fa — s2| < ...|fn — S| is more natural.

Moreover, does it matter on which machine we schedule a job?

What fixed (or adaptive) orderings might work for weighted (one
machine) interval scheduling?

e The unweighted ordering: f; < fo < ... f,. Unbounded

approximation ratio.

e Order so that w; > wy > ... w,. Unbounded approximation

ratio.

e Order so that ‘fl — 81‘/’(1}1 S ‘fg — 32|/w2 § “. |fn — sn\/wn
(Most natural greedy?) Unbounded approximation ratio.




e The (W)JISP Job Interval Scheduling Problem where an input
item is an interval I; = (s;, fi, w;, j;) where now j; is the job to
which I; belongs. As in interval scheduling, intervals cannot

intersect and additionally at most one interval per job can be

scheduled. Even in the unweighted case, the problem is
MAX-SNP hard (and hence unlikely to have a PTAS) and this

hardness holds for the case of 2 intervals per job.

The (W)TCSP Time Constrained Scheduling Problem where
an input item is a job that has a release time, a deadline, and a
processing time. Even in the unweighted case the problem
remains strongly NP-hard, and weakly NP-hard when there is

no release time.




The adaptive greedy algorithm for the unweighted one-machine
unit profit TC'SP (and JISP). [10]

S =1
t:=0 %t is the completion time of the last scheduled job
While Z # ()
Let ¢ = argmin;{min(¢,r;) + p;} Yearliest completion time
delete I; from 7
If t +p; <d; then
schedule I; to start at time ¢
End While

Perhaps surprisingly, by applying the one machine algorithm to

each machine on the remaining unscheduled intervals, [10] shows
(1+1/m)™

AF+1/m)™—1

algorithm improves with the number of machines.

for the resulting priority

that the approximation ratio




Priority algorithms for interval scheduling

e There does not exist an optimal (adaptive) priority algorithm
for the weighted interval scheduling problem even for one

machine.

In fact, the best possible approximation ratio obtainable for
max; (w; /p;)

: where
ming (w; /p;)

this problem will depend on A =
pj = Ji = 8j-

For proportional profit (when w; = p;), LPT provides a
3-approximation fixed order greedy algorithm and hence a 3A
approximation for arbitrary weights. For one machine

proportional profit, the best priority approximation ratio is 3.




e The 3-inapproximation bound for proportional profit holds for
fixed priority greedy algorithms for any number m of machines.

e For m even, there is an adaptive greedy priority algorithm for
proportional profit with approximation ratio 2.

e A 1.56 inapproximation bound for 2 machine proportional

profit priority.
Challenge for weighted interval scheduling WISP

There is an optimal dynamic programming algorithm that solves
the m machine weighted interval scheduling problem in time (and
space) O(n™) and there is also a time O(n?logn) algorithm [6]
(based on min cost-max flow) that optimally solves the problem.
What is the best approximation factor possible by an O(nlogn)
time algorithm for arbitrary or proportional profit on m > 2
machines? Can we obtain a “highly efficient FPTAS”; i.e. an

(1 + €) approximation in poly(%)nlogn steps?




A few extensions:

e We can let the algorithm have access to some easily computed
global information; eg, the number of input items, or the
maximum and minimum length of a job. In the previous
negative bound, the result still applies but allowing such
information permits some non obvious orderings. One could
also say that each input item (i.e. interval) also specifies the

number or names of its intersecting intervals.
Reverse greedy or worst out greedy (vs best in).

We could maintain some small number of partial solutions that
we continue to augment. This falls within the pBT model 2]
which we will soon discuss. In particular, any “simple DP” will
require time and space 2(n'™) for any fixed number of

machines m [2].




e We could allow some lookahead. Some forms of lookahead also
fall within pBT model but others do not. In particular,

and this is more difficult to analyze.

The local ratio (primal dual) algorithm of [9] is a 2 pass
algorithm which (using a fixed ordering) streams the input
items onto a stack and then pops the stack so as to create a

feasible solution. This algorithm solves the m machine interval

scheduling with approximation ratio 2 — (1/m) and hence

optimally for one machine.

Such stack algorithms are formalized and studied in [13]




We could allow an algorithm to make two passes over the algorithm,
using the first pass to stream the input filtering out some input

items and then using the second pass to make irrevocable decisions.

Analyzing such 2 pass algorithms seems challenging but not

impossible.




There is a more general (one pass) priority model for packing
problems where only rejections are irrevocable. The model is
exactly the same as for the (irrevocable) priority model except now
previously accepted items can (if desired) be deleted. The
algorithm must maintain a feasible solution at all times. The
(partial) power to possibly reverse a bad decision clearly adds a
great deal of flexibility to the model.

Claim: The revocable priority model has not received much
attention and it seems plausible that new algorithms can be

developed in this framework. Moreover, the revocable model is

more amenable to analysis than (say) the 2 pass model.




WJISP

The “Greedy,” of [10, 23] is a revocable priority algorithm for the
W JISP (and therefore interval scheduling) that achieves a
constant approximation ratio. The parameter o determines how
much better a new interval has to be in order to discard previously

accepted intervals. Hence, the decision as to whether or not to

accept the next interval is not strictly a “locally optimal decision”.

Erlebach and Spieksma state that “these algorithms ...seem to be
the simplest algorithms that achieve constant approximation ratios

for WJISP”.




Sort intervals so that f1 < fo... < fj,
A=
For::1..n
If I; does not conflict with intervals in A
then A := AU{[;}
else let C; C A be (the) minimum profit conflicting set;
If w(C;) <a-w; then A:=A—C; +{1;}
End If
End If
End For

Any o < 1 yields an O(1)- approximation with a = 1/2 providing a

4 (resp. 8)-approximation for interval scheduling (resp. W JISP).

(Horn [30])
(Ye).




What is dynamic programming? From a blog ... ‘there are about as
many definitions of “dynamic programming” as there are computer
scientists’.

DasGupta, Papadimitriou and U. Vazirani text:

“... identifying a collection of subproblems and tackling them one
by one, smallest first, using the answers to small problems to help
figure out larger ones...”. “DP and LP, the worlds two most general
algorithmic techniques”.

Definitions for DP appear in Helman [26] following Karp and Held
134] and Helman and Rosenthal [27]. “These papers did not have a
lot of traction”.

Following Woeginger [45], simple DP intuitively means that the

recursion is based on the number of items considered.




A well known DP algorithm solves the weighted interval scheduling
problem optimally for any fixed number of machines m. For m =1,
the DP is based on computing the array OPT[i] = optimal profit
obtainable using the first ¢ intervals where again we assume

fi < fo <...fn. OPTI]i] is computed using the recurrence:

OPT|i] = max{OPT]i — 1|,OPT |7 (i)] + w; }

where (i) = max{j|f; < s;}. (Either the best schedule uses the i*"
interval or it doesn’t use it.) The same idea can be used for any

number m > 2 of machines but now we (seem to) need an
m-dimensional array and this DP algorithm will run in time ©(n"™).

Note: The algorithm is maintaining many partial solutions.




pBT: A Model for Simple DP and Backtracking

(Alekhnovich, Borodin, Buresh-Oppenheim, Impagliazzo, Magen,
Pitassi [2])

Using the priority framework as a starting point, we [2] propose a
model that allows us to also capture some aspects of lookahead (in
priority algorithms), parallel greedy algorithms, search methods

(e.g. DPLL style) used in various SAT solvers, and Woeginger’s

45] class of “simple” dynamic programming (DP) algorithms. In

particular, the DP algorithm for weighted interval scheduling is a
simple DP (where the partial solutions are being constucted one
item at a time). In the same way, the optimal pseudo polynomial
time and FPTAS DP algorithms for the knapsack problem are
simple DPs as is the edit distance DP algorithm.




We continue to restrict attention to NP search problems where a
certificate is desired (e.g. the set of true literals that satisfy a CNF
formula) or to optimization problems whose objective function is
determined by the feasible solutions. We consider a pBT program
to be a leveled tree:

e Nodes are labeled by a priority ordering rule determining an
input item which will be accessed at this node.

e Based on the input item being considered (and the path
leading to this node), the tree can branch so as to allow
different irrevocable decisions (in our two examples, accept or
reject) about the item accessed at this node; each tree edge is
labeled by the decision being made.

e Any path can be aborted (based on the items seen thus far).




e For an optimization problem the output is taken to be the
value given by the best path in the pBT tree. For an NP-search
problem some path must verify an accepting solution if one
exists.

The ordering
of input items can be fixed or adaptive. We define an adaptive pBT
algorithm as one in which the ordering of the items is done
adaptively but at each level the same input item is being
considered. If the input item being considered depends on the path
(and not just the items considered thus far) then we say that the
pBT algorithm is fully adaptive. We measure the complexity of a

pBT program by its maximum width (i.e. a space meaure) and (for

the fully adaptive model) also its “depth first search size” (i.e. a
time measure). Any NP problem can be solved optimally with
exponential pBT trees.




Overview of Results on pBT Width and Depth First Size.

1. Interval scheduling

e Width lower bound of 2(n™) for optimal adaptive pBT for
any fixed m. Thus the curse of dimensionality is necessary

in this framework.

The optimal DP can be implemented by a n' width fixed
ordering pBT.

A (weak) constant approximation lower bound (for
proportional profit) for any bounded width fixed ordering
pBT (even allowing revocable acceptances).

An adaptive width 2 pBT achieves a 2-approximation for
one machine proportional profit in contrast to the priority
(width 1) 3-approximation lower bound.




2. Subset-sum and Knapsack

o 2°(") width and depth first size lower bound for fully adaptive

pBT using pBT preserving reduction. Also a direct proof for
adaptive case allowing revocable acceptances.

e Optimal DP algorithms and “FPTAS” algorithms are simple
DP algorithms and can be realized in pBT model.

e An Q((1)¥/317) width lower bound for any adaptive pBT that
provides a (1 + €)-approximation vs. O(e%) width upper bound.
3. CNF-SAT (pBT as model for DPLL style algorithms)
22
£ ¢

e Ve3d: any fixed order pBT requires width 2°™ to obtain 5T
approximation for MAX2SAT.

e O(n) width adaptive pBT for 2CNF-SAT.




The lower bound for 3SAT is based on a very restricted class of
3SAT formulas, namely

, = (21,...xy) is

the vector of {0,1} propositional variables and b is a {0,1} vector.

Furthermore, there are at most some constant k£ 1’s in any column
(corresponding to variables) and at most 3 1’s in any row
(corresponding to equations). Such examples have been introduced
in proof complexity [3]. Algebraically, it is easy to solve such a
system.

That is, only the b vector is
an “input” to the problem. Each non zero setting of the b vector
defines a propostional formula having a unique solution. But for a
random instance, a random path on that instance has non-negligible
probability of leading to an “indispensible partial solution”.




(or longest path in a DAG), nor does it
capture “non-serial” optimal DP algorithms (say) for constructing

a binary search tree, for the matrix chain problem, and for the
Nussinov and other DP based RNA folding algorithms.

Recent work by Buresh-Oppenheim, Davis, and Impagliazzo
extends the tree pBT model to a DAG model (called pBP for
priority branching program) which can capture the Bellman-Ford
algorithm and is still amenable to analysis (e.g. exponential width
lower bound for finding a maximum matching in a bipartite graph

when the input items are edges). A further extension is suggested

(but not studied) that can model the non-serial DP algorithms

above.




The fixed and adaptive priority pBP models can be simulated
by (respectively) fixed and adaptive pBT algorithms.

The Bellman-Ford algorithm can be realized by a O(n?) size

strongly adaptive pBP using edges as input items.

Some convincing evidence that with edge input items, any BT
that solves this version of the shortest path problem will
require exponential width although there is a O(n?) width pBT
when vertices are the input items. That is, there is convincing

evidence that simple DP algorithms are restrictive.

When edges are the inputs, any pBP algorithm for maximum
matching in an unweighted bipartite graph will require
exponential width providing evidence that DP cannot
efficiently solve bipartite graph matching.




The one stage “dual ascent primal dual scheme” (as defined for
covering problems in Williamson [44]) can be interpreted as a
priority algorithm under certain assumptions on the input items

corresponding to the IP variables.

Two stage primal dual: The more general (but still quite basic) two
stage primal dual uses a “reverse delete stage” following an initial
“priority stage”. Primal dual algorithms have been informally

shown by Bar-Yehuda and Rawitz [11] to be equivalent to local

ratio algorithms (for both covering and packing problems). Such a

two stage algorithm can optimally solve one-machine interval
scheduling [9] and can also provide a 2-approximation for WJISP.




Stack := ()

Forzz:1..n

wi :=w; % w, will be the current residual profit

End For
While Z # ()

Push I; onto Stack where I; has smallest finishing time for any

interval in 7

For all intervals [, intersecting I;
R 1.7

If w;, < 0 then Remove I from 7
End For

EndWhile




S = 0;
While Stack # ()
Pop Stack and let I be interval popped
If I can be feasibly scheduled on any machine
(having already scheduled intervals in )
Then place I on an available machine; S :=SU{[}
Else I is not scheduled.
End IF
End While

For all m > 1, the approximation ratio of this algorithm is 2 — %

and hence it is optimal for m = 1. |9]
Note: This becomes the optimal greedy algorithm for the m =1

unweighted case.




Borodin, Cashman and Magen [13] Stack model for packing
problems: A (fixed or adaptive) priority algorithm pushes (some)
items onto a stack (possibly creating a non-feasible solution) and
then (greedily) pops the stack so as to create a feasible solution.
(For interval scheduling problems any fixed order revocable priority
algorithm can be simulated by a stack algorithm.)

Our current approximation
lower bound for 2 machines is 14/13 and as m — oo, our

inapproximation bound approaches 1 (whereas the previous local

ratio approximation ratio (2 — X ) approaches 2 as m — 00).




How generally can one apply “information theoretic
arguments” (as in the priority, pBT, pBP and stack models) to
show limitations; specifically, to what extent can we
understand the power of DP as defined by abstract recursive

equations.

Extensions of the priority framework. As stated before, 2-pass
and multi-pass priority algorithms appear to be very hard (but
not impossible) to analyze. Non IIA orderings.

Randomized (priority, pBT, stack, etc.) algorithms.

Angelopoulos’s [4] extends a 4/3 facility location lower bound

to randomized priority algorithms. Also the pBT lower boud
for 3CNF implies some form of randomized lower bound.

Viewing the pBT model as a backtracking model, how much
information can be shared between paths in the pBT tree?




e Need to improve analysis so as to derive width /size vs
approximation results for pBT (and pBP) approximation
algorithms. In particular, what is the exact tradeoft between
width and approximation for the weighted interval selection
problem, for the edit distance problem, etc.. Some tradeoff
results for fixed order pBT but almost nothing for adaptive and
strongly adaptive order.

In general, proving results for (unweighted) graph problems
when the input items are vertices seems difficult. Note that
edge items are independent of each other while this is not the
case for vertex items. But 3CNF proof gives some hope.

Many specific problems where best priority approximation ratio
is not understood. For example, makespan on identical and

non-identical machine models. Does randomization and /or

non-greedy decisions help here as it does for online algorithms?
Max2SAT, Max Cut, etc. etc.




e The formalization of local search algorithms, etc.

e Formalizing algorithms for problems that are not search and
optimization problems. In particular, dynamic programming is
used in many contexts. How to differentiate dynamic

programming from divide and conquer.

e Appropriate versions of reductions and methods for comparing

and composing simple algorithms. Can we have a theory of

simple algorithms?




Will any of these frameworks lead (directly or indirectly) to new
algorithms or at least to a better analysis or simplification of

known algorithms?

Claim: the competitive analysis of online algorithms has led to new
algorithms and new insights; e.g. Bartal’s hierarchically separated

tree spaces.

Fast matrix multiplication, linear time string matching, linear time
median are a few examples of algorithms that had origins in
complexity theory. And, of course, complexity theory dramatically

changed the field of cryptography. I am hopeful that a more

systematic study of (simple) algorithmic paradigms will have some

(perhaps unexpected) positive benefits.
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