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Some early issues in harmonic anaysis

representations of functions, decompositions into wave
packets/discrete bases/atomic or simpler pieces.

Convergence, i.e., the quantitative estimates which control certain
limits.

solutions of PDEs, with data in a variety of function spaces,

complex function theory, algebras of operators, the Cauchy integral
operator on graph domains

geometric measure theory (covering lemmas, null sets and Hausdorff
dimension, Kakeya sets)

probability:martingale theory, Brownian motion (harmonic functions)

number theory: additive and analytic

representation of groups/group actions/Lie groups and symmetric
spaces
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Some current issues in harmonic anaysis

representations of functions, decompositions into wave
packets/discrete bases/atomic or simpler pieces.

Convergence, i.e., the quantitative estimates which control certain
limits.

solutions of PDEs, with data in a variety of function spaces,

complex function theory, algebras of operators, the Cauchy integral
operator on graph domains

geometric measure theory (covering lemmas, null sets and Hausdorff
dimension, Kakeya sets)

probability: martingale theory, Brownian motion (harmonic functions)

number theory: additive and analytic

representation of groups/group actions/Lie groups and symmetric
spaces
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Singular Integrals: the classical theory

Singular integrals and summing Fourier series

SN f (x) =
∑N
−N f̂ (n)e2πinx , and f̂ (n) =

∫ 1
0 f (x)e−2πinxdx .

If P+(f ) is the projection onto the positive frequencies, and
Mk(f ) = fe2πikx then

SN f (x) = MNP+(M−N f )−M−NP+(MN f ).

The function space L2 plays an important role since
‖f ‖2

2 =
∫
|f |2dx =

∑
|f̂ (n)|2. Thus, P+ : L2 → L2.

Enter the Hilbert transform: H = i(P+ − P−).

The continuous setting: If f̂ (ξ) =
∫

f (x)e2πikξdx , and

P̂(f )(ξ) = f̂ (ξ)χξ>0.

Hf (x) = p.v.
∫ f (t)

x−t dt
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Singular Integrals: the classical theory

Other operators

Hardy-Littlewood maximal function: Mf (x) = supQ

∫
Q |f |

dy
|Q| , over

cubes Q containing x .

Riesz transforms Rj : convolution in Rn with ixj/|x |n+1. Rj is also a

Fourier multiplier: R̂j(f )(ξ) = iξj/|ξ|f̂ (ξ).

General SIO’s in Rn: T (f )(x) =
∫

f (y)k(x , y)dy , where
|k(x , y)| ≤ |x − y |−n, plus some regularity condition, such as,
|∇k(x , y)| ≤ |x − y |−n−1. A Calderón-Zygmund (CZ) operator, such
the Hilbert transform, is also bounded on L2.
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Singular Integrals: the classical theory

Other operators, continued.

The Carleson operator: (the Hilbert transform + modulation)

C(f (x)) =

∫
e iN(x)y

y
f (x − y)dy ,

with N(x) bounded and measurable.

M : Lp → Lp, 1 < p <∞, H,Rj : Lp → Lp: Calderón-Zygmund
theory: CZ ”decomposition”, etc.

C : Lp → Lp, 1 < p <∞, Carleson (1966), Hunt (1967),.C. Fefferman
(1973), Lacey-Thiele (2001)
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Singular Integrals: the classical theory

More connections with complex function theory

Let u be a harmonic function in the upper half space (∂
2u
∂x2 + ∂2u

∂y2 = 0).
Then u is the Poisson integral of its boundary values, and so is determined
by its data f (x) = u(x , 0). If v is its conjugate function, so that
F = u + iv is analytic in y > 0, v is also harmonic and determined by its
boundary values v(x , 0) = g(x). The functions u and v are related by the
C-R equations, but how are f and g related?

Answer: g = H(f).

Limits of Poisson integrals: u(x , t) = f ∗ Pt(x), then u converges
nontangentially to its boundary values, f (x). (Here, the maximal
function controls the Poisson integral in these nontangential regions.)
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Singular Integrals: the classical theory

Harmonic analysis on Symmetric spaces

Let G be a connected non-compact semi-simple Lie group, with finite
center, and let K denote a maximal compact subgroup. G/K is the
symmetric space associated to G . There exists a left/right invariant Haar
measure, and a maximal boundary such that (suitably) bounded functions
on the boundary B(G ) have a Poisson extension to a harmonic function
and conversely, certain harmonic functions have such a representation.
(Furstenberg, Annals of Math. 1963).
One may then ask the classical questions posed in harmonic function
theory: Fatou theorems, analogs of nontangential convergence of Poisson
integrals to the boundary. These questions hinge on qualitative estimates
of appropriate maximal operators.
We return to some specific instances of these issues later.
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Singular Integrals: the classical theory

Hardy spaces and BMO

Associated to C-Z operators like the Riesz transforms are the natural
“endpoint“ spaces: H1 and BMO, where (H1)∗ = BMO, and

f ∈ BMO iff ∃C , for all cubes Q,

∫
Q
|f − fQ |

dx

|Q|
< C

Here, fQ =
∫
Q f (y) dy

|Q| .

Example: f (x) = log 1/|x |.
John-Nirenberg theorem: f ∈ BMO iff ∃α,C such that
supQ

∫
Q eα|f−fQ |dy < C .

C-Z operators map H1 → L1 and BMO → BMO, and we may define
H1 as the subset of L1 s.t. all Rj f ∈ L1.

Interaction with transformations acting on Rn: translation invariance,
commuting with (one parameter family of) dilations:
~x → (δx1, ..., δxn)
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Singular Integrals: the classical theory

Commutators: Coifman-Rochberg-Weiss, C-L-M-S

Let T be C-Z operator associated to a standard kernel, and suppose
b ∈ BMO with norm ||b||∗. Then, if b also denotes the operator of
multiplication by b,

Theorem (C-R-W,1976)

The commutator [T , b]f = bTf − T (bf ) is a bounded map of Lp(Rn) to
itself, 1 < p <∞. Conversely, if all the commutators [Rj , b] are bounded,
1 ≤ j ≤ n, then b ∈ BMO.

By duality, a multilinear operator: T (f , g) = fRjg + gRj f maps
L2 × L2 into H1. More: weak factorization of H1. Upper bound in
R1: fHg + gHf = P+fP+g − P−fP−g is easily seen to belong to H1.

Importance of BMO: it captures the cancellation conditions required
of a SIO in order to be C-Z. David-Journé T (1) theorem: T is
bounded on L2 iff T (1) ∈ BMO, and weak-boundedness.
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Singular Integrals: the classical theory

Dyadic decompositions: Haar series, a simple martingale

The dyadic grid, D, in [0, 1]: intervals [k2−n, (k + 1)2−n], n ≥ 0,
k = 0, 1, ..., 2n − 1.

Definition of dyadic or martingale BMO: Let hJ(x) denote the Haar
function associated to J ∈ D,

hJ(x) = |J|−1/2, x ∈ Jl , hJ(x) = −|J|−1/2, x ∈ Jr .

The Haar functions form a basis for L2 :f ∈ L2 : ‖f ‖2
2 =

∑
J∈D(f , hJ)2

f ∈ BMO iff there exists a C such that for all J ∈ D,∑
I⊂J

(f , hJ)2 ≤ C |J|.

Same property for arbitrary open sets instead of dyadic intervals J.
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Singular Integrals: the multiparameter theory

Singular integrals arising in pointwise convergence

Partial sums:

SN,M f (x , y) =
∑
|n|<N

∑
|m|<M

f̂ (n,m)e2πi(nx+my)

Double Hilbert transform H1H2, k(x1, x2) = 1/(x1x2)

By iteration, map Lp → Lp, 1 < p <∞.

Generalize this tensor product structure (R.Fefferman-Stein, Journé),
to a class of operators invariant under ~x → (δ1x1, δ2x2, ..., δnxn)

Pointwise convergence fails (C. Fefferman), so the Carleson operator
(with independent phases e iN(x1,x2)y1 and eM(x1,x2)y2) is unbounded,
but there are positive results for other families of phases, leading to
bounded Carleson operators, and hence applications to convergence of
multiple Fourier series (E. Prestini). The story is far from complete.
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Singular Integrals: the multiparameter theory

Connections with complex function theory

On the polydisc, Tn, consider the real parts of functions analytic in
each variable separately. These are harmonic functions, in each
variable separately.

Multiple Poisson extensions, convolutions with products of poisson
kernels.

Product spaces: Hardy spaces, BMO, etc.

Early interest in harmonic function theory on the polydisc was
connected to its role as a symmetric space, and the resulting new
notions of nontangential convergence. This required the analysis of
appropriate associated maximal operators (product maximal
functions), which we will return to later.
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Singular Integrals: the multiparameter theory

What is product BMO? (in the sense: H1H2 : L∞ → BMO)

The natural conjecture (replace cubes by rectangles, sides
independent, in the def’n of one parameter BMO) fails. (L. Carleson)

BMOprod theory was developed by S.-Y. A. Chang-R.Fefferman:
duality, Carleson measures, C-Z decomposition, weighted inequalities

Definition of dyadic or martingale BMOprod : Let hJ(x) denote the
Haar function associated to J ∈ D,

hJ(x) = |J|−1/2, x ∈ Jl , hJ(x) = −|J|−1/2, x ∈ Jr

and for R = I× J ∈ D ×D, set hR(x , y) = hI(x)hJ(y).
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Singular Integrals: the multiparameter theory

Endpoint spaces

A function f belongs to dyadic BMO if there exists a constant such for
that all open sets Ω, ∑

R⊂Ω

(f , hR)2 . |Ω|.

Note that in R1, ∑
I⊂J

(f , hI)
2 =

∫
J
|f − fJ|2

dx

|J|

Continuous BMO: hR ←→ ωR

Product SIOs: BMO → BMO, T (1) theorem, duality with product
H1,...

Open sets bad for maximality arguments, stopping times...

Relationship between rectangles and open sets (a reduction to
rectangle estimates): Journé’s Lemma (1986), and its variants (Pipher
1987, Ferguson-Lacey 2002, Cabrillo-Lacey-Molter-Pipher 2006,etc).
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Singular Integrals: the multiparameter theory

Journé’s Lemma

If Ω ⊂ R2, let M2(Ω) denote the collection of dyadic rectangles R
maximal in the x2-direction.

For R = I× J ∈M2(Ω), say that emb(R) = 2k , if
k = inf{j : |2j I× J ∩ Ω| > 1

2 |2
j I× J|}

This is one of several possible notions of “embeddedness” of the
rectangle R in the open set Ω.

For k ∈ N, let Fk ⊂M2(Ω) denote the collection of all R ∈M2(Ω)
with emb(R) = 2k .

Lemma

For all Ω ⊂ R2,

1
∑

R∈Fk
|R| . k |Ω|,

2
⋃
{2kI× J : I× J ∈ Fk} ⊂ Ω̃ where |Ω̃| ≤ C |Ω|
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Singular Integrals: the multiparameter theory

The proof of Journé’s Lemma

Why? Useful in context of estimates relative to R ⊂ Ω which have small
but exponential decay as a function of distance to Ω. Example:
boundedness of product singular integrals on Hardy spaces.

Proof.

For I ∈ D, set
EI =

⋃
{J : I× J ⊂ Ω}.

We have
|Ω| =

∑
I

|I||EI \ E2I|

and ∑
R∈Fk

|R| ≤ 2
∑

I

|I||EI \ E2k I| ≤ 2k
∑

I

|I||EI \ E2I|.

using the “stopping time” def’n of k :
k = the smallest integer such that |2kI× J ∩ Ω| > 1

2 |2
kI× J|}.
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Singular Integrals: the multiparameter theory

SIO’s in Rn × Rm:

Tf (x1, x2) =
∫

Rn

∫
Rm k(x1, y1, x2, y2)f (y1, y2)dy1dy2

For each x1, y1 ∈ Rn, let K (1)(x1, y1) denote the operator on Rm

associated to the kernel k(1)(x1, y1)(x2, y2) = k(x1, y1, x2, y2), and
similarly define K (2).

Then T is a C-Z operator on Rn × Rm if

T : L2 → L2∫
|x1−y1|>γ|x1−x′

1|
‖K (1)(x1, y1)− K (1)(x1, x

′
1)‖CZ dy1 ≤ Cγ−δ, for all γ

and some δ.
Likewise for K (2).

In Journé’s Revista 85 paper: extended earlier work on convolution
structure operators to general setting, using new geometric
constructions to induct on dimension, and proved a T (1) theorem.
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Singular Integrals: the multiparameter theory

Commutators: one basic example of a bilinear operator

What is the analog in the multiparameter situation of the characterization
of BMOprod in terms of boundedness of commutators like [H, b]?

Formulated in Ferguson-Sadosky (2000), and proven in in Ferguson-Lacey
(2002):

‖[[H1, b],H2]‖2→2 ∼ ‖b‖BMO

The upper bound for the operator is the same as

fH1H2g + H1fH2g + H2fH1g + gH1H2f ∈ H1

and a proof follows by expressing the iterated Hilbert transform in terms of
projections, and using the characterization of H1 by singular integrals.

The F-S work established a lower bound in terms of rectangle BMO which
turned out to be important in the definitive F-L proof.

Later (2006) Lacey-Terwilliger found an (ingenious) inductive scheme
defining new BMO spaces, to extend the result to arbitrary iterates of
Hilbert transforms.
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Singular Integrals: the multiparameter theory

Commutators in Rn1 × Rn2 × Rn3 × ...

Theorem (Lacey-Petermichl-Pipher-Wick 2007)

Let R
(k)
jk

denote a Riesz transform acting on Rnk . The iterated
commutators

[...[R
(1)
j1
, b],R

(2)
j2

], ...]R
(d)
jd

]

are bounded on L2(Rn1)× ...L2(Rnd ) with norm . ‖b‖BMO . Conversely, if
all possible iterated Riesz transform commutators are bounded, then
b ∈ BMOprod .

The upper bound extends to iterates of other SIOs.

The proof uses (a version of) the multilinear paraproduct estimates.

Div-curl: If, for x , y ∈ Rn, ~E (x , y) ∈ Lp and ~B(x , y) ∈ Lp′
satisfy

divx
~E = 0 = divy

~E and curlx ~B = 0 = curly ~B then ~E · ~B ∈ H1
prod
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Singular Integrals: the multiparameter theory

Commutators continued

Missing:

Convergence in weak H1. Jones-Journé Theorem: If ‖fn‖H1 . 1, and
fn → f a.e., then f ∈ H1 and

∫
fnϕ→

∫
f ϕ, for all ϕ ∈ VMO. “Not

abstract”. Proof depends on the construction (Coifman-Rochberg) of
a family of BMO functions of the form log(Mh) where 0 < h ∈ L1

and M is the (Hardy-Littlewood) maximal function.

Generalized commutators which involve product singular integrals, as
opposed to iterates of singular integrals?
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Singular Integrals: the multiparameter theory

Operators in Rn associated to k-parameter dilation groups

Singular integrals, maximal functions associated with k-parameter families
(SIO’s on surfaces,)

Role of maximal operators in the singular integral theory, and their
boundedness properties.

Hardy Littlewood maximal operator ↔ cubes, one parameter
dilations, endpoint estimate: weak L1: Besicovitch covering lemma.

|{Mf > λ}| .
∫

f

λ
.

Strong maximal operator in Rn ↔ rectangles with n independent
sides, n-parameter dilations, endpoint estimate: L(Log L)n−1.
Jessen-Marcinkiewicz-Zygmund, Cordoba-R.Fefferman covering
lemma.

|{Mf > λ}| .
∫

f

λ
(log

f

λ
+ 1)n−1.
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Singular Integrals: the multiparameter theory

Covering lemmas and k-parameter maximal functions

Sharp covering lemmas follow from:

Theorem

(R.Fefferman-Pipher) Let Ri be a collection of measurable sets in Rn.
Take β ∈ (0, 1] (for example, β = 1/(n − 1)). Select a subcollection R̃i

according to the rule∫
Rm

exp(
∑
i<m

χ
R̃i

(x))βdx ≤ c |Rm|.

Then, one has the improvement∫
(
∑

i

χ
R̃i

(x))1−β exp(
∑

i

χ
R̃i

(x))βdx ≤ C
∑
m

|R̃m|.

When the Ri are rectangles in Rn, further assumptions on the ordering will
also give | ∪ Ri | ≤ C | ∪ R̃m|.
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Singular Integrals: the multiparameter theory

k-parameter dilation groups in Rn

Example (Stein):

R3 ←→
(

x1 x3

x3 x2

)
and Γ = {Y ∈ R3 : Y is pos. def. },
TΓ = {X + iY : Y ∈ Γ} is the Siegel upper half space.

For f ∈ L1(R3), set u(X + iY ) = PY ∗ f where PY (X ) = C(det Y )3/2

| det(X+iY )|3 .

The maximal operator which controls a certain restricted convergence of u
to its boundary values is associated to the 2 parameter dilation family:
(x1, x2, x3)→ (δ1x1, δ2x2, δ1δ2x3).

Two independent variables: like M in R2 (Cordoba).

Zygmund’s conjecture.
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Singular Integrals: the multiparameter theory

Some related and current developments:

Flag singular integrals: Singular integrals in the work of
Muller-Ricci-Stein and Nagel-Ricci-Stein arise in their study of
Heisenberg groups and multiplier operators. The multiparameter
structure of the flag singular integrals on Rn × Rm in N-R-S is a
special case of product singular integrals. For example,
k(x , y) = (x(x + iy))−1 is a flag kernel on R2. Recent work (preprint)
of Han-Lu on the Hardy space theory, reprising and extending the
approach of R.Fefferman-Stein for convolution singular integrals in
the product theory.
Discrepancy theory-Brownian sheet-Small Ball conjecture. Recent
work of Lacey, Bilyk-Lacey, and Bilyk-Lacey-Vagharshakyan. United
by the tools and methodology of multiparameter Fourier analysis are
questions related to number theory (the irregularity of distributions of
points in the unit cube), probability (estimates for maximal functions
associated with Gaussian processes) and analysis (L∞ lower bounds
for sums of multiple Haar series). This a big subject: for further
information see the references at www.math.gatech.edu/ lacey.
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Singular Integrals: the multiparameter theory

Bilinear operators

These operators will be the generalization of tensor products of bilinear
operators, in the same sense that the SIO’s generalized products.
However, here the Lp theory is interesting, as tensor products of bounded
bilinear operators need not be bounded. (Example: Krikeles, citing Y.
Meyer (1986), Muscalu-Pipher-Tao-Thiele (2004))

The biparameter bilinear operators are

T (f , g)(x , y) =

∫
~η,~ξ

f̂ (η1, η2)ĝ(ξ1, ξ2)e2πi(x ·η+y ·ξ)m(~η, ~ξ)dηdξ

A Coifman-Meyer paraproduct will have a symbol m which (like the
product of two such symbols in R2) satisfies:

|Dα1
ξ1

Dα2
ξ2

Dβ1
η1

Dβ2
η2

m| . 1

|(ξ1, η1)|α1+β1

1

|(ξ2, η2)|α2+β2
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Singular Integrals: the multiparameter theory

Bilinear paraproducts

Theorem (M-P-T-Th)

If T is a bilinear operator with a symbol satisfying the product
Coifman-Meyer condition, then T : Lp × Lq → Lr for
1/p + 1/q = 1/r , r > 0p, q > 1.

Note: Special case L2 × L∞ → L2 (Journé)

Corollary

If Dα
1 Dβ

2 denotes the operator with symbol |ξ1|α|ξ2|β|, then a multilinear
version of the Christ-Weinstein, Kato-Ponce inequality holds:

‖Dα
1 Dβ

2 (fg)‖r . ‖Dα
1 Dβ

2 (f )‖p‖g‖q + ‖Dα
1 (f )‖p‖Dβ

2 (g)‖q
+ ‖Dα

1 (g)‖q‖Dβ
2 (f )‖p + ‖f ‖p‖Dα

1 Dβ
2 (g)‖q
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Singular Integrals: the multiparameter theory

An unbounded tensor product

Recall bilinear Hilbert transform:

B(f , g)(x) =

∫
R1

f (x − t)g(x + t)
dt

t

=

∫ ∫
f̂ (η)ĝ(ξ)e2πi(η+ξ)xsgn(ξ − η)dηdξ

It has the biparameter counterpart Bprod :∫
R4

f̂ (η1, ξ1)ĝ(η2, ξ2)e2πi(x ,y)·(η1,ξ1)+(η2,ξ2))sgn(η1 − η2)sgn(ξ1 − ξ2)d~ηd~ξ

But Bprod does not satisfy any Lp estimates. Take
f (x , y) = g(x , y) = e ixy1[−N,N](x)1[−N,N](y). C. Fefferman’s
counterexample to rectangular convergence of multiple Fourier series!
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