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1. Solving cubic equations

Consider
F (x) =

∑
1≤i≤j≤k≤s

cijkxixjxk ∈ Z[x],

a homogeneous cubic form with (fixed) integer coefficients cijk , and having
s variables.

The 1950’s ... a race to solve the:

Problem

Is it true that with some s0 <∞, the equation

F (x) = 0

is always soluble with x ∈ Zs \ {0}, provided only that s ≥ s0?

Why do we care?
All part of the great quest to solve equations (over the integers).
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Observation (Linear equations (easy!))

The equation
a1x1 + · · ·+ asxs = 0 (fixed ai ∈ Z)

is soluble with x ∈ Zs \ {0} whenever s ≥ 2.

Theorem (Quadratic equations (Meyer, 1880’s; Hasse, 1924))

Provided that
s∑

i=1

s∑
j=1

aijxixj = 0 (fixed aij ∈ Z)

possesses a solution x ∈ Rs \ {0} and s ≥ 5, then this equation is soluble
with x ∈ Zs \ {0}.

Cubics have non-trivial solutions over R, but what about other local
solubility conditions?
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Theorem (Demyanov, 1950; Lewis, 1952)

Let F (x) ∈ Z[x1, . . . , xs ] be a cubic form. Then whenever s > 9, the
equation F (x) = 0 has a non-trivial solution x ∈ Qs

p \ {0}.

(Equivalent to F (x) ≡ 0 (mod ph) having a primitive solution for all
h ∈ N.)

The problem concerning solubility of cubic equations:

Problem

Is it true that with some s0 <∞, the equation

F (x) = 0

is always soluble with x ∈ Zs \ {0}, provided only that s ≥ s0?

was solved in 1957 more or less simultaneously by Birch, Davenport and
Lewis.
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Mathematika, vol. 4, December 1957:

“Editorial note — It is a curious coincidence that a problem which has
been known for many years should have been solved independently in a
matter of months by three mathematicians, namely (in order of priority)
D. J. Lewis, H. Davenport and B. J. Birch. Birch’s paper, which follows
this one, is of greater generality in that it treats forms of any odd degree.
Davenport’s work, submitted to Phil. Trans. Royal Soc. (A) is limited to
cubic forms with rational coefficients; it establishes that any such form in
32 or more variables represents zero properly.”

Historical Note: The Editor of Mathematika at this time was Harold
Davenport
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2. Davenport and the circle method

Write
f (α) =

∑
x∈[−B,B]s

e(αF (x)) (α ∈ R),

where e(z) := e2πiz and B > 0 is large (in terms of the coefficients of F ).

Then ∫ 1

0
f (α) dα = card{x ∈ [−B,B]s ∩ Zs : F (x) = 0}.

Idea

Show that when s ≥ 32 one has∫ 1

0
f (α) dα� Bs−3

by obtaining an asymptotic formula.
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Theorem (Davenport, 1963)

Whenever s ≥ 16 and F (x) ∈ Z[x1, . . . , xs ] is a homogeneous cubic, then
the equation

F (x) = 0

has a solution x ∈ Zs \ {0}.

In particular, one has s0 ≤ 16.

Recently this has been improved by Heath-Brown (to appear) so that
s0 ≤ 14.

When F (x) = 0 defines a non-singular hypersurface, then the analogue of
s0 satisfies s0 = 10 (Heath-Brown, 1983)

Non-singular cubics in 9 or more variables satisfy the Hasse Principle
(Hooley, 1988).
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3. Birch and diagonalisation methods

Observation

Diagonal polynomials
a1xd

1 + · · ·+ asxd
s

are relatively easy to handle (by means of straightforward applications of
the circle method).

So try to “diagonalise” general forms.

Strategy

Find u1, . . . ,ut ∈ Zs so that

F (z1u1 + · · ·+ ztut) = F (u1)z3
1 + · · ·+ F (ut)z3

t

(in general t will be much smaller than s!).
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Definition

When K is a field, denote by φd(K ) the least integer s1 such that,
whenever s > s1 and b1, . . . , bs ∈ K, then the equation

b1xd
1 + · · ·+ bsxd

s = 0

has a solution x ∈ K s \ {0}.

Example

In all fields K , one has φ1(K ) = 1 (linear algebra — the equation
a1x1 + a2x2 = 0 is always soluble).

Example

One has φ2(Q) = +∞ and φ2(R) = +∞ (consider the definite forms
x2
1 + · · ·+ x2

s .)
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When K is a field, denote by φd(K ) the least integer s1 such that,
whenever s > s1 and b1, . . . , bs ∈ K, then the equation
b1xd

1 + · · ·+ bsxd
s = 0 has a solution x ∈ K s \ {0}.

Theorem (Davenport and Lewis, 1963)

For each d ∈ N, one has φd(Qp) ≤ d2.

Definition

When K is a field, denote by vd(K ) the least s2 such that, whenever
s > s2 and F (x) ∈ K [x1, . . . , xs ] is homogeneous of degree d , then the
equation F (x) = 0 has a solution x ∈ K s \ {0}.

Theorem (Brauer, 1945)

Let K be a field, and suppose that φi (K ) <∞ for 2 ≤ i ≤ d. Then one
has vd(K ) <∞.
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Theorem (W., 1998)

One has

vd(K ) ≤ 2φd(K )2d−2
d−1∏
i=2

(φi (K ) + 1)2i−2
.

Corollary

For each natural number d one has vd(Qp) ≤ d2d
.
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Corollary (Peck, 1949)

Suppose that L is a purely imaginary field extension of Q (e.g. Q(
√
−1)).

Then vd(L) <∞.

Uses Siegel’s version of the circle method for number fields — this shows
that φd(L) <∞, but there is dependence on [L : Q].

Theorem (W., 1998)

One has vd(L) ≤ e2d+2(log d)2 .

Trevor D. Wooley (University of Bristol) Solving quintics Toronto 05/04/2008 13 / 34



Corollary (Peck, 1949)

Suppose that L is a purely imaginary field extension of Q (e.g. Q(
√
−1)).

Then vd(L) <∞.

Uses Siegel’s version of the circle method for number fields — this shows
that φd(L) <∞, but there is dependence on [L : Q].

Theorem (W., 1998)

One has vd(L) ≤ e2d+2(log d)2 .

Trevor D. Wooley (University of Bristol) Solving quintics Toronto 05/04/2008 13 / 34



Corollary (Peck, 1949)

Suppose that L is a purely imaginary field extension of Q (e.g. Q(
√
−1)).

Then vd(L) <∞.

Uses Siegel’s version of the circle method for number fields — this shows
that φd(L) <∞, but there is dependence on [L : Q].

Theorem (W., 1998)

One has vd(L) ≤ e2d+2(log d)2 .
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Idea (diagonalisation)

Suppose that F (x) ∈ K [x1, . . . , xs ] is homogeneous of degree d.

Observe
that

F (tu + wv) = tdF (u) + wdF (v) +
d−1∑
i=1

t iwd−iGi (u, v),

where the polynomials Gi (u, v) ∈ K [u, v] are bihomogeneous of degree i in
terms of u, and degree d − i in terms of v.

Fix u ∈ K s \ {0}, and try to solve the system of equations

Gi (u, v) = 0 (1 ≤ i ≤ d − 1)

for v (one equation of degree d − 1,... , one equation of degree 1).

This system is of “smaller” degree than the original equation. If we can
solve this “smaller” system, then we can “diagonalise” F (x) to

F (tu + wv) = tdF (u) + wdF (v).
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Idea

So far ...
F (tu + wv) = tdF (u) + wdF (v)

Now use linear spaces, more variables, induction ...

F (t1u1 + · · ·+ tmum) = td
1 F (u1) + · · ·+ td

mF (um)

(for s ≥ s3(d ,m), say).

Take m = φd(K ) + 1, and then we can solve

td
1 F (u1) + · · ·+ td

mF (um) = 0

for t ∈ Km \ {0}, whence also

F (t1u1 + · · ·+ tmum) = 0.

Now the argument involves induction on the degree, and on the dimension
of linear spaces of solutions, with the basis for the induction starting from
systems of linear equations.
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Obstruction to making such an argument work over Q:

φ2k(Q) = +∞ (k ∈ N).

Theorem (Birch, 1957)

Let K be a field, and let d be an odd natural number. Suppose that
φi (K ) <∞ for each odd number i with 3 ≤ i ≤ d. Then vd(K ) <∞.
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Theorem (Birch, 1957)

Let K be a field, and let d be an odd natural number. Suppose that
φi (K ) <∞ for each odd number i with 3 ≤ i ≤ d. Then vd(K ) <∞.

Idea

One has

F (tu + wv) =tdF (u) + wdF (v)

+
d−1∑
i=1
i odd

t iwd−iGi (u, v)

+
d−1∑
j=1

j even

t jwd−jG ′j (u, v),

where each Gi (u, v) is bihomogeneous in (u, v) of bidegree (i , d − i),
and each G ′j (u, v) is bihomogeneous in (u, v) of bidegree (j , d − j).
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But i and d − j are both odd when d is odd, i is odd, and j is even. So we
can restrict to using odd degree equations only.

Birch: “Bounds (are) not even astronomical”.

Trevor D. Wooley (University of Bristol) Solving quintics Toronto 05/04/2008 18 / 34



Idea

One has

F (tu + wv) =tdF (u) + wdF (v)

+
d−1∑
i=1
i odd

t iwd−iGi (u, v) +
d−1∑
j=1

j even

t jwd−jG ′j (u, v),

where each Gi (u, v) is bihomogeneous in (u, v) of bidegree (i , d − i), and
each G ′j (u, v) is bihomogeneous in (u, v) of bidegree (j , d − j).

But i and d − j are both odd when d is odd, i is odd, and j is even.

So we
can restrict to using odd degree equations only.

Birch: “Bounds (are) not even astronomical”.

Trevor D. Wooley (University of Bristol) Solving quintics Toronto 05/04/2008 18 / 34



Idea

One has

F (tu + wv) =tdF (u) + wdF (v)

+
d−1∑
i=1
i odd

t iwd−iGi (u, v) +
d−1∑
j=1

j even

t jwd−jG ′j (u, v),

where each Gi (u, v) is bihomogeneous in (u, v) of bidegree (i , d − i), and
each G ′j (u, v) is bihomogeneous in (u, v) of bidegree (j , d − j).

But i and d − j are both odd when d is odd, i is odd, and j is even. So we
can restrict to using odd degree equations only.

Birch: “Bounds (are) not even astronomical”.

Trevor D. Wooley (University of Bristol) Solving quintics Toronto 05/04/2008 18 / 34



Idea

One has

F (tu + wv) =tdF (u) + wdF (v)

+
d−1∑
i=1
i odd

t iwd−iGi (u, v) +
d−1∑
j=1

j even

t jwd−jG ′j (u, v),

where each Gi (u, v) is bihomogeneous in (u, v) of bidegree (i , d − i), and
each G ′j (u, v) is bihomogeneous in (u, v) of bidegree (j , d − j).

But i and d − j are both odd when d is odd, i is odd, and j is even. So we
can restrict to using odd degree equations only.

Birch: “Bounds (are) not even astronomical”.

Trevor D. Wooley (University of Bristol) Solving quintics Toronto 05/04/2008 18 / 34



Definition

Define
ψ(0)(x) = exp(x),

and for n ≥ 1,
ψ(n)(x) = ψ

(n−1)
42 log x(x),

in which fr (x) means f (f (. . . f (x) . . . )), with the number of iterations
equal to [r ].

Theorem (W., 1998)

When d is odd with d ≥ 7, one has vd(Q) < ψ((d−5)/2)(d).

As a side note (W., 1997), if one has a system of r quintic forms in s
variables defined over Q, then their solution set contains a non-trivial
linear space of rational solutions of dimension m whenever

s > exp(1032((m + 1)r log(3r))5.872 log(3r(m + 1))).

In particular, one has v5(Q) < 101032
.
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4. Lewis and pulling points back from field extensions

Definition

When K is a field, and r and m are non-negative integers, let γK (r ; m)
denote the least integer s such that, whenever s > γK (r ; m) and
fi (x) ∈ K [x1, . . . , xs ] (1 ≤ i ≤ r) are cubic forms, then the system

fi (x) = 0 (1 ≤ i ≤ r)

has a solution set that contains a linear subspace of K s of projective
dimension m.

Note: One has v3(K ) = γK (1; 0).

Theorem (Lewis, 1957)

One has
γK (r ; m) <∞

for each field extension K of Q, and for each r and m.
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Strategy

Try to solve cubic in K (
√
−1) (a purely imaginary field extension of Q) in

place of K , and then pull points back to K .

One can apply Peck’s Theorem to solve the cubic over K (
√
−1). Now use

some simple geometry to pull points back to K by considering conjugates.

Idea

Solving equations in purely imaginary field extensions of Q is “easier”
than solving in fields that are not purely imaginary — every equation is
indefinite.
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Some notation.

Write
f (x) =

∑
1≤i≤j≤k≤s

cijkxixjxk .

Then put

T (x, y, z) =
∑

1≤i≤j≤k≤s

cijkxiyjzk ,

and then
f21(x, y) = T (x, x, y) + T (x, y, x) + T (y, x, x),

f12(x, y) = f21(y, x),

f111(x, y, z) =T (x, y, z) + T (x, z, y) + T (y, z, x)

+ T (y, x, z) + T (z, x, y) + T (z, y, x).
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Lemma

Let K be a field, let d ∈ K and suppose that
√

d 6∈ K . Suppose that a
cubic form f (x) ∈ K [x1, . . . , xs ] possesses linearly independent zeros
v1, . . . , vn ∈ K s with the property that for each t1, . . . , tn one has

f (t1v1 + · · ·+ tnvn) = 0.

If the system of equations

f (x) = f12(vi , x) = f21(vi , x) = f111(vi , vj , x) = 0,

with 1 ≤ i , j ≤ n, has a solution over K (
√

d) which is linearly independent
of v1, . . . , vn over K (

√
d), then f (x) possesses linearly independent zeros

w0,w1, . . . ,wn ∈ K s with the property that for each y0, . . . , yn, one has

f (y0w0 + · · ·+ ynwn) = 0.
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w0,w1, . . . ,wn ∈ K s with the property that for each y0, . . . , yn, one has
f (y0w0 + · · ·+ ynwn) = 0.

Idea

We have 1 cubic, n quadratics and 1
2n(n + 3) linear equations to solve.

Either K is purely imaginary already, and we may apply Peck, or else
K (
√

d) can be used instead as above.
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Theorem (Dietmann and W., 2003)

Let L be an algebraic extension of Q (possibly Q itself). Then

γL(1; m) ≤ 1
2(5m2 + 33m + 34).

Now use an idea applied in Lewis’ work from 1957 — find a large
dimensional rational linear space on one cubic, and solve the second cubic
inside this space.

Corollary

One has γQ(2; 0) ≤ 827.

Can now obtain γQ(2; 0) ≤ 654, possibly γQ(2; 0) ≤ 626.
Can compare this to earlier work of Schmidt that had γQ(2; 0) ≤ 5139
using the circle method.

(Also refines a result of W. (1997) to the effect that γQ(2; 0) ≤ 855.)

What about quintics? So far we have only v5(Q) < 101032
.
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5. Quintic forms

When F (x) ∈ Q[x1, . . . , xs ] is a form of degree d > 1, write h(F ) for the
least number h such that F may be written in the form

F = A1B1 + A2B2 + · · ·+ AhBh,

with Ai ,Bi forms in Q[x] of positive degree (1 ≤ i ≤ h).
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h(F ) := the least number h such that F may be written in the form

F = A1B1 + A2B2 + · · ·+ AhBh,

with Ai ,Bi forms in Q[x] of positive degree (1 ≤ i ≤ h).

Theorem (Schmidt, 1984)

Let d be an integer exceeding 1, and write χ(d) = d24dd!. Let
F (x) ∈ Z[x1, . . . , xs ] be homogeneous of degree d, and suppose that

h(F ) ≥ χ(d) max
p

vd(Qp).

Then one has

card({x ∈ [−B,B]s ∩ Zs : F (x) = 0}) ∼ CBs−d ,

where C denotes the “product of local densities” within the box [−B,B]s

(under the hypotheses at hand, this is positive and bounded away from
zero).
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Strategy

Given a quintic form F , either h(F ) is large enough to apply the above
theorem, or else h(F ) is “small”.

But then F may be rewritten in the shape

F = A1B1 + · · ·+ AhBh

wherein each polynomial Ai has degree either 3 or 1. Now solve the system

A1 = A2 = · · · = Ah = 0

over Q.

The above system might consist entirely of cubics, and then the number of
variables required to guarantee success is something like (10h)5.

Such an approach yields a bound roughly

v5(Q) ≤ 10194.
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Instead seek singular solutions on the quintic hypersurface defined by
F = 0.

A theorem of Birch (1962) shows that when the number of variables
exceeds the dimension of the singular locus by at least 128, and there is a
non-singular p-adic point for each prime p, then the expected asymptotic
formula holds for the number of integral solutions.

But when the quintic is highly singular, one has little useful control.

Strategy (Mk 2)

Given a quintic form F , either h(F ) is large enough to apply the above
theorem, or else h(F ) is “small”.

But then F may be rewritten in the shape

F = A1B1 + · · ·+ AhBh

wherein each polynomial Ai has degree either 3 or 1.
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Strategy (Mk 2)
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But then F may be rewritten in the shape

F = A1B1 + · · ·+ AhBh

wherein each polynomial Ai has degree either 3 or 1.

Now solve the system

A1 = B1 = A2 = B2 = · · · = Ah = Bh = 0

over Q(
√
−1).

We can assume without loss that the Ai are all cubic and the Bi all
quadratic, and then the number of variables required to guarantee the
existence of a solution is relatively low (because the underlying field is
purely imaginary) — requires roughly 18h4 variables (W., 1998).
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Have a solution x of the system

A1 = B1 = A2 = B2 = · · · = Ah = Bh = 0

over Q(
√
−1).

Such a solution is necessarily singular, since

∂F

∂xi
=

h∑
j=1

(
Aj
∂Bj

∂xi
+ Bj

∂Aj

∂xi

)
= 0 (1 ≤ i ≤ s),

for any such solution.

Now apply our geometrical argument to pull this back to a Q-point.
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A further refinement comes from a similar geometrical argument that
shows that whenever a quintic form has a p-adic point and enough
variables, then either it has a non-singular p-adic point, or else it is
degenerate.

This allows the Schmidt argument to be substantially sharpened.

Theorem (W., 2008)

One has v5(Q) ≤ 1.38× 1014.

This comes from the best known bound for the number of variables
required to solve 1664 simultaneous cubics and quadratics over Q(

√
−1).
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required to solve 1664 simultaneous cubics and quadratics over Q(

√
−1).
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Other ideas:

(1) Think about decompositions of the shape

F = A1B1C1 + · · ·+ AhBhCh

in the context of Schmidt’s method? Higher order singularities?

(2) Work with higher degree field extensions and pull the points back (cf.
Coray for cubics).
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