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Freiman homomorphisms (review)

Let Z, W be additive groups, with subsets A C Z and B C W.

Definition

A Freiman homomorphism of order k is a map ¢ : A — B that is
“nearly a group homomorphism”, i.e.,
ifai+a+---+a=a+a,+ - +a,, then

d(a1) + ¢(a2) + - - - + plak) = ¢(a}) + B(a5) + - - - + ¢(ap).

m ¢ is a Freiman isomorphism of order k if ¢~ is also a Freiman
homomorphism of order k.

Freiman Isomorphism Lemma

Let A be a finite subset of a torsion-free additive group Z.
Then for every k and every sufficiently large p depending on k and
A, there exists a Freiman isomorphism of order k to Z/pZ.

Question: Are there cases where one would want to preserve
additive and multiplicative properties simultaneously?
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The Sum-Product Problem

Consider a finite subset A C Z.

Define: A4+ A:={a; + a»: a; € A}, and
AA ={a1ax: a; € A}.

Goal: show |A + A| + |AA| is large with respect to |A].

Can we map the problem to Z/pZ for some prime p?

m A Freiman isomorphism is not suitable, because of
multiplication.

m However, we can just choose a large enough prime p.
m Eg, take p > max{2|x|: x € (A+ A) U (AA) U A}.
Then, |A| = |A mod p|,
|JA+ Al =|A+Amod p|, and |AA|l = |AA mod p

Question

What if A C C, the complex numbers?
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A new mapping theorem

Given: S a finite subset of a characteristic zero integral domain D,
L a finite set of non-zero elements of Z[S] C D.

Then, there exists an infinite sequence of primes with positive

density such that for each prime p there exists a ring

homomorphism ¢ : Z[S| — Z/pZ with 0 ¢ ¢(L).

m Examples of characteristic zero integral domains: C, R, and Z.
m ¢ is a ring homomorphism, so for all a, b € Z[S],

¢(ab) = ¢(a)¢(b) and ¢(a + b) = ¢(a) + ¢(b).
m Also ¢(0) =0 and ¢(1) = 1.

m Example: Set L :={(s1 +s2) — (s3+5s4) : si € S} \ {0} to get
a Freiman isomophism of order 2 from S, so

|5+ 5| =1[6(5) + &(S)]-
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A polynomial Freiman Isomorphism Lemma
Corollary

Let A be a finite subset of a characteristic zero integral domain D.
Given a system of m polynomial equations with integer coefficients
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there exists a sequence of primes with positive density such that
for each prime p there exists a ring homomorphism

¢ : Z[A] — Z/pZ that is a bijective map from A to B where
(a1,...,an) € A" is a solution to the system in D if and only if
(¢(a1),...,¢(an)) is a solution to the system in Z/pZ.

m implies the Freiman Isomorphism Lemma by setting
fl(Xl,...,sz) =X1+ -+ X — (Xk+1 +"'+Xk+k).
m Follows from the mapping theorem by setting
L:=((A-A)U{fi(ar,...,an) :ai € A, 1 <j < m})\ {0}
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Application: Sum-Product estimates

Theorem (Katz and Shen, slightly improving Garaev, 2007)

Let p be a prime and let A be a subset of 7./ pZ such that
|A| < p/2. Then there exist absolute constants ¢ > 0 and o > 0

such that

|A|14/13

m A a finite subset of a characteristic zero integral domain.
Plan: apply mapping theorem. Let

L:={a1 —ax:aj,ar € A} (so |Al = |9(A)])
U{(a1a2) — (a3a4) : ai € A} (so [AA] = [o(A)p(A)])
U{(a1 +a2) —(az+as) : a; € A} (so ¢ preserves |A+ A|).

m Take p > \A\z, and find desired map ¢, which depends on p.
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Application: Sum-Product estimates (continued)

m Apply the mapping theorem to place the problem in Z/pZ,
and then apply the Katz-Shen or Garaev sum-product
estimate in Z/pZ.

Corollary

For every finite subset A of a characteristic zero integral domain,

there exist absolute constants ¢ > 0 and o« > 0 such that
|A|14/13

c— < max{|A+ A|, |AA|}.

(g AT < Mx[A+ AL 1A4)

Note: Best known sum-product estimate in C has exponent 14/11
(Solymosi, 2005) and is proven with clever use of the topology of
the complex plane. Improvements in Z/pZ would yield (via

mapping) improvements in any characteristic zero integral domain.
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The singularity probability of discrete random matrices

Let M, be a random n by n matrix where each entry is +1 or —1
independently with probability 1/2.
Goal: Bound the probability that M, is singular (det(M,) = 0).
m 1967, Komlés (improved 1977)
Pr(M, is singular) < O(1/+/n) < o(1).
m 1995, Kahn, Komléds, Szemeredi
Pr(M, is singular) < .999".
m 2006, Tao, Vu
Pr(M, is singular) < (2 + o(1))".
m 2008, Bourgain, Vu, W.
Pr(M, is singular) < <% + o(l))n.
(Note 1/4/2 ~ 0.7071.)

Question: Can we extend to the case where M, has entries in C?
Issue: The Tao-Vu approach relies on the identity

1
10y = /0 exp(2mixt) dt, which is false for x € C.
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Application: bounding the singularity probability

Theorem (Bourgain, Vu, W., 2008)

Let D be a characteristic zero integral domain, and M,, is an n by
n random matrix with independent discrete entries taking values in

D. Assume that for any entry «, we have maxy Pr(a = x) < p.
Then

Pr(M, is singular) < (\/p+ o(1))".

Proof ideas:

m The determinant is a polynomial, so use the polynomial
version of the mapping theorem to pass to Z/QZ, for Q a
huge prime (depending on n).

m Generalize Tao-Vu approach to allow the entries to have
different distributions and take values other than +1.

m A new idea gives the square root.
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Proof of the mapping theorem

Main Theorem

Given: S a finite subset of a characteristic zero integral domain D,
L a finite set of non-zero elements of Z[S] C D.

Then, there exists an infinite sequence of primes with positive

density such that for each prime p, there exists a ring

homomorphism ¢ : Z[S| — Z/pZ with 0 ¢ ¢(L).

General Approach: successively map Z[S] into various rings until
we finally reach Z/pZ. Then let ¢ be the composition of all the
maps.
Three main ingredients:
The primitive element theorem (a result from algebra).
Hilbert's Nullstellensatz (from algebraic geometry).

Frobenius Density Theorem (or Chebotarev Density Theorem;
a tool from number theory).



