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Freiman homomorphisms (review)

Let Z ,W be additive groups, with subsets A ⊂ Z and B ⊂ W .

Definition

A Freiman homomorphism of order k is a map φ : A → B that is
“nearly a group homomorphism”, i.e.,
if a1 + a2 + · · ·+ ak = a′1 + a′2 + · · ·+ a′k , then

φ(a1) + φ(a2) + · · ·+ φ(ak) = φ(a′1) + φ(a′2) + · · ·+ φ(a′k).

φ is a Freiman isomorphism of order k if φ−1 is also a Freiman
homomorphism of order k.

Freiman Isomorphism Lemma

Let A be a finite subset of a torsion-free additive group Z .
Then for every k and every sufficiently large p depending on k and
A, there exists a Freiman isomorphism of order k to Z/pZ.

Question: Are there cases where one would want to preserve
additive and multiplicative properties simultaneously?
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Let A be a finite subset of a torsion-free additive group Z .
Then for every k and every sufficiently large p depending on k and
A, there exists a Freiman isomorphism of order k to Z/pZ.

For example, to prove Freiman’s Theorem for torsion free
groups, one maps to Z/pZ using a Freiman isomorphism.

Question: Are there cases where one would want to preserve
additive and multiplicative properties simultaneously?
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The Sum-Product Problem

Consider a finite subset A ⊂ Z.

Define: A + A := {a1 + a2 : ai ∈ A}, and
AA := {a1a2 : ai ∈ A}.

Goal: show |A + A|+ |AA| is large with respect to |A|.

Can we map the problem to Z/pZ for some prime p?

A Freiman isomorphism is not suitable, because of
multiplication.

However, we can just choose a large enough prime p.

E.g., take p > max{2 |x | : x ∈ (A + A) ∪ (AA) ∪ A}.
Then, |A| = |A mod p| ,

|A + A| = |A + A mod p| , and |AA| = |AA mod p|

Question

What if A ⊂ C, the complex numbers?
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A new mapping theorem

Main Theorem

Given: S a finite subset of a characteristic zero integral domain D,
L a finite set of non-zero elements of Z[S ] ⊂ D.

Then, there exists an infinite sequence of primes with positive
density such that for each prime p there exists a ring
homomorphism φ : Z[S ] → Z/pZ with 0 /∈ φ(L).

Examples of characteristic zero integral domains: C, R, and Z.

φ is a ring homomorphism, so for all a, b ∈ Z[S ],
φ(ab) = φ(a)φ(b) and φ(a + b) = φ(a) + φ(b).

Also φ(0) = 0 and φ(1) = 1.

Example: Set L := {(s1 + s2)− (s3 + s4) : si ∈ S} \ {0} to get
a Freiman isomophism of order 2 from S , so

|S + S | = |φ(S) + φ(S)| .
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A polynomial Freiman Isomorphism Lemma

Corollary

Let A be a finite subset of a characteristic zero integral domain D.
Given a system of m polynomial equations with integer coefficients

fj(x1, x2, . . . , xn) = 0, where 1 ≤ j ≤ m,

there exists a sequence of primes with positive density such that
for each prime p there exists a ring homomorphism
φ : Z[A] → Z/pZ that is a bijective map from A to B where
(a1, . . . , an) ∈ An is a solution to the system in D if and only if
(φ(a1), . . . , φ(an)) is a solution to the system in Z/pZ.

implies the Freiman Isomorphism Lemma by setting
f1(x1, . . . , x2k) = x1 + · · ·+ xk − (xk+1 + · · ·+ xk+k).

Follows from the mapping theorem by setting
L := ((A− A) ∪ {fj(a1, . . . , an) : ai ∈ A, 1 ≤ j ≤ m}) \ {0}
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Application: Sum-Product estimates

Theorem (Katz and Shen, slightly improving Garaev, 2007)

Let p be a prime and let A be a subset of Z/pZ such that
|A| ≤ p1/2. Then there exist absolute constants c > 0 and α > 0
such that

c
|A|14/13

(log |A|)α
≤ max{|A + A| , |AA|}.

A a finite subset of a characteristic zero integral domain.
Plan: apply mapping theorem. Let

L := {a1 − a2 : a1, a2 ∈ A} (so |A| = |φ(A)|)
∪ {(a1a2)− (a3a4) : ai ∈ A} (so |AA| = |φ(A)φ(A)|)
∪ {(a1 + a2)− (a3 + a4) : ai ∈ A} (so φ preserves |A + A|).

Take p > |A|2, and find desired map φ, which depends on p.
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Application: Sum-Product estimates (continued)

Apply the mapping theorem to place the problem in Z/pZ,
and then apply the Katz-Shen or Garaev sum-product
estimate in Z/pZ.

Corollary

For every finite subset A of a characteristic zero integral domain,
there exist absolute constants c > 0 and α > 0 such that

c
|A|14/13

(log |A|)α
≤ max{|A + A| , |AA|}.

Note: Best known sum-product estimate in C has exponent 14/11
(Solymosi, 2005) and is proven with clever use of the topology of
the complex plane. Improvements in Z/pZ would yield (via
mapping) improvements in any characteristic zero integral domain.
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The singularity probability of discrete random matrices

Let Mn be a random n by n matrix where each entry is +1 or −1
independently with probability 1/2.

Goal: Bound the probability that Mn is singular (det(Mn) = 0).

1967, Komlós

(improved 1977)

Pr(Mn is singular) ≤ o(1).
1995, Kahn, Komlós, Szemeredi

Pr(Mn is singular) ≤ .999n.
, Tao, Vu

Pr(Mn is singular).
2008, Bourgain, Vu, W.

Pr(Mn is singular) ≤
(

1√
2

+ o(1)
)n

.

(Note 1/
√

2 ≈ 0.7071.)

Question: Can we extend to the case where Mn has entries in C?
Issue: The Tao-Vu approach relies on the identity

1{x=0} =

∫ 1

0
exp(2πixt) dt, which is false for x ∈ C.
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∫ 1

0
exp(2πixt) dt, which is false for x ∈ C.
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Application: bounding the singularity probability

Theorem (Bourgain, Vu, W., 2008)

Let D be a characteristic zero integral domain, and Mn is an n by
n random matrix with independent discrete entries taking values in
D.

Assume that for any entry α, we have maxx Pr(α = x) ≤ p.
Then

Pr(Mn is singular) ≤
(√

p + o(1)
)n

.

Proof ideas:

The determinant is a polynomial, so use the polynomial
version of the mapping theorem to pass to Z/QZ, for Q a
huge prime (depending on n).

Generalize Tao-Vu approach to allow the entries to have
different distributions and take values other than ±1.

A new idea gives the square root.
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Proof of the mapping theorem

Main Theorem

Given: S a finite subset of a characteristic zero integral domain D,
L a finite set of non-zero elements of Z[S ] ⊂ D.

Then, there exists an infinite sequence of primes with positive
density such that for each prime p, there exists a ring
homomorphism φ : Z[S ] → Z/pZ with 0 /∈ φ(L).

General Approach: successively map Z[S ] into various rings until
we finally reach Z/pZ. Then let φ be the composition of all the
maps.

Three main ingredients:

1 The primitive element theorem (a result from algebra).

2 Hilbert’s Nullstellensatz (from algebraic geometry).

3 Frobenius Density Theorem (or Chebotarev Density Theorem;
a tool from number theory).
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