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1. Direct and inverse problems of additive

and combinatorial number theory

Additive number theory is the study of sums

of sets and we can distinguish two main lines

of research.

In a direct problem of additive number theory

we start with a particular known set A and at-

tempt to determine the structure and proper-

ties of the h-folds sumset hA. These are the

classical direct problems in additive number

theory: Waring’s problem, Goldbach conjec-

ture...

As a counterbalance to this direct approach,

an inverse problem in additive number theory

is a problem in which we study properties of

a set A, if some characteristic of the h-fold

sumset hA is given.
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Sumsets can be defined in any Abelian group

G, for example in

• Z
the group of integers,

• Z/mZ
the group of congruence classes modulo m,

• Zn

the group of integer lattice points,

• Rd

the d-dimensional Euclidean space.
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Freiman proposed an unifying “algorithm” for

solving inverse additive problems:

• Step 1. Consider some (usually numerical)

characteristic of the set under study.

• Step 2. Find an extremal value of this

characteristic within the framework of the

problem that we are studying.

• Step 3. Study the structure of the set

when its characteristic is equal to its ex-

tremal value.

• Step 4. Study the structure of the set

when its characteristic is near to its ex-

tremal value.

• Step 5. ....Continue, taking larger and larger

neighborhoods for the characteristic.
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Let us choose as characteristic the cardinality
of the sumset:

2K = K + K,

or equivalently the “measure of doubling”:

σ =
|K + K|
|K| .

We will examine in detail the exact structure
of a finite set

K ⊆ G,

in the case of a torsion free Abelian group

G = Zn or G = Rd,

assuming that the doubling constant is small.

REMARK: If σ is an arbitrary doubling con-
stant, then Freiman’s fundamental result (1973)
asserts that such a set is a large subset of
a multidimensional arithmetic progression; see
also Freiman (1987), Bilu (1993), Ruzsa (1994),
Nathanson (1996), or Tao and Vu (2006).
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2. Small doubling property on the plane
Z2

Let us describe some results concerning the
structure of planar sets with small sumset.

We begin with the following basic inequality:

Theorem 1 (Freiman 1973). If K ⊆ Z2 lies
on exactly s ≥ 2 parallel lines, then

|K+K| ≥ (4− 2

s
)|K| − 2s + 1 ≥ 3k − 3. (1)

Moreover, using Freiman’s 3k − 4 theorem we
easily conclude that a planar set of lattice points
K ⊆ Z2 with

|K+K| < 3|K| − 3

lies on a straight line and is contained in an
arithmetic progression of no more than

v = |K+K| − |K|+ 1

terms. Step 2 is completely solved.
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Therefore, a natural problem is to concentrate

on the study of Steps 3 and 4.

We ask for the structure of a finite planar set

of lattice points with small doubling |K + K|.
As one can expect, this question is easier to

answer when the cardinality |K+K| is close to

its minimal possible value 3|K|−3, and becomes

much more complicated if we choose bigger

values for |K + K|. To be more specific, we

may ask the following

Problem.

Find the exact structure of planar sets of lat-

tice points under the small doubling hypothe-

sis:

|K+K| < (4− 2

s + 1
)|K| − (2s + 1).
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Let us examine the first case s = 2.

Though, the Freiman’s (2n − ε) theorem gives
a first indication on the structure of K, still
this is not so precise as the following

Theorem 2 (Freiman 1973, S. 1998). Let
K ⊆ Z2 be a finite of dimension dimK = 2.

(i) |K| ≥ 11 and |K+K| < 10
3 |K| − 5 then K lies

on two parallel lines.

(ii) If K lies on two parallel lines and

|K+K| < 4|K| − 6

then K is included in two parallel arithmetic
progressions with the same common having to-
gether no more than v = |2K|−2k+3 terms.

This means that the total number of holes sat-
isfies

h ≤ |2K| − (3k − 3).
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The following theorem incorporates Freiman’s

previous result as a particular case:

Theorem 3 (S. 1998). Let K be a finite set

of Z2 and s ≥ 1 be a natural number. If |K| is

sufficiently large, i.e. k ≥ O(s3), and

|K+K| <
(
4− 2

s + 1

)
|K| − (2s + 1) , (2)

then there exist s parallel lines which cover the

set K.

This is a best possible result, because it cannot

be improved by increasing the upper bound for

|K+K|, or by reducing the number of lines that

cover K :
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The theorem is effective and recently Serra and
Grynkiewicz obtained an explicit value for the
constant k0(s) = 2s2 + s + 1. They also suc-
ceeded to extend the result for sums of differ-
ent sets A + B :

Theorem 4 (Grynkiewicz and Serra 2007).
Let A,B ⊆ R2 be finite subsets and s ≥ 1 be a
natural number.

(i) If
∣∣∣∣|A| − |B|

∣∣∣∣ ≤ s + 1, |A|+ |B| ≥ 4s2 + 2s + 1

and

|A+ B| < (2− 1

s + 1
)(|A|+ |B|)− (2s + 1)

then there exist 2s (not necessarily distinct)
parallel lines which cover the sets A and B.

(ii) If |A| > |B|+ s, |B| ≥ 2s2 + s
2 and

|A+ B| < |A|+ (3− 2

s + 1
)|B| − (s + 1)

then there exist 2s (not necessarily distinct)
parallel lines which cover the sets A and B.
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The next natural question is to consider a finite

set K of lattice points on a plane having the

small doubling property

|2K| < (4− 2

s + 1
)|K| − (2s + 1)

and ask for a reasonable estimate for the num-

ber of lattice points of a ”minimal” parallelo-

gram that covers the set K.

More precisely, if L is a lattice generated by

K, we are interested in precise upper bounds

for the number of points of L that lie in the

convex hull of K. Our main result asserts that

K is located inside a parallelogram that lies on

a few lines which are well filled:
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Theorem 5 (S. 2007). Let s ≥ 19 be an in-
teger and let K be a finite subset of Z2 that
lies on exactly s parallel lines. If

|2K| < (4− 2

s + 1
)|K| − (2s + 1),

then there is a lattice L ⊆ Z2 and a parallelo-
gram P such that

K ⊆ (P ∩ L) + v

and

|P ∩ L| ≤ 24
(
|K+K| − 2|K|+ 1

)
,

for some v ∈ Z2.

Conjecture. We believe that for a best possi-
ble result, the constant factor 24 of Theorem
5 should be replaced by 1

2(1 + 1
s−1), i.e.

|P ∩ L| ≤ s

2(s− 1)

(
|K+K| − 2|K|+ 2s− 1

)
.

So far inequality this estimate has been proved
only for s = 2 (see Theorem 2) and s = 3 (S.
1999).
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3. Planar sets with no three collinear points

on a line

Let A ⊆ Z2 be a finite set, not containing any

three collinear points. Freiman asked in 1966

for a lower bound for |A+ A|. As a first step

in the investigation of this problem we showed

that |A±A|
|A| is unbounded, as lim |A| = ∞:

Theorem 6 (S. 2002). Let A ⊆ Z2 be a finite

set of n lattice points. If A does not contain

any three collinear points, then there is a pos-

itive absolute constant δ > 0 such that

|A ± A| À n(logn)δ. (3)

The constant δ can be easily computed: for

instance, any positive δ smaller than 0.125 will

do.
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There is an intimate connection between two

seemingly unrelated problems:

(i) non-averaging sets of integers of ordet t

and

(ii) planar sets with no three points on a line.

Definition. A finite set of integers B ⊆ Z is

called a non-averaging set of order t, if for ev-

ery 1 ≤ m, n ≤ t the equation

mX1 + nX2 = (m + n)X3,

have no nontrivial solutions with Xi ∈ B.

Let

st(n)

be the maximal cardinality of a non-averaging

set of order t included in the interval [1, n].
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It is clear that a non-averaging set of order

1 is simply an integer set containing no arith-

metic progressions. Bourgain’s bound (1999)

for Roth’s theorem gives:

st(n) ≤ s1(n) = r3(n) ¿ n

(logn)
1
2

(log logn)
1
2.

Remark. We also obtained a more exact in-

equality, valid for sets A ⊆ Z2 containing no

k−terms arithmetic progressions: for every in-

teger t ≥ 1 we have

|A ± A| ≥ 1

2
|A|

( n

st(n)

) 1
4t. (4)
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We formulate the following:

Problem S. Suppose that t ≥ 1 is a fixed,

positive, but rather large integer. Is it true that

st(n) ¿ n
(logn)4t, or at least st(n) ¿ n

(logn)c, for

a positive absolute constant c ≥ 1
2?

Note that Freiman’s question asks for a non

trivial lower estimate of |A+A| for a set A ⊆
Z2 containing no three collinear points and in

Problem S we want to estimate the density

of a sequence of natural numbers B, assuming

that t linear equations does not hold for B.

Inequality (4) shows that any upper bound for

st(n), better than the trivial one r3(n) will lead

to a corresponding sharpening of (3) and (4).
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As regards lower bounds, we have:

Theorem 7 (S. 2002).

(i) For every t ≥ 1, there is a positive constant
ct such that for every n one has

st(n) ≥ n exp(−ct
√

logn).

(ii) There is no ε0 > 0 such that the inequality

|A+A| À |A|1+ε0

holds for every finite set A ⊆ Z2 containing no
three collinear points.

The proof uses Freiman’s fundamental con-
cept of isomorphism, Behrend’s method (1946)
and a result of Ruzsa about sets of integers
containing no non-trivial three term arithmetic
progressions.

A recent improvement of the lower bound (3),
was obtained by T. Sanders (2006):

|A+A| Àε |A|(log |A|)1
3−ε.
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4. The simplest inverse problem for sums

of sets in several dimensions

It is a well known fact that |A+B| ≥ |A|+|B|−1

for every two finite sets A and B of Zd, equality

being attained when A and B are arithmetic

progressions with the same difference.

It is possible to obtain a much better estimate.

The first result connecting geometry and ad-

ditive properties is

Theorem 8 (Freiman 1973). For every finite

set A ⊆ Zd of affine dimension dimA = d, one

has

|A+A| ≥ (d + 1)|A| − 1

2
d(d + 1). (5)

This lower bound is tight, i.e. Step 2 is solved.
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Let us investigate now Step 3. What is the ex-

act structure of multi-dimensional sets having

the smallest cardinality of the sumset?

The following result is an analogue of the well

known Vosper’s theorem (1956), Z/pZ being

here replaced by the d-dimensional space Rd.

Theorem 9 (S. 1998). Let A ⊆ Rn be a finite

set such that dimA ≥ d and

|A+A| = (d + 1)|A| − 1

2
d(d + 1).

If |A| 6= d+4, then A is a d-dimensional set and

A consists of d parallel arithmetic progressions

with the same common difference.

Moreover, if |A| = d + 4, then

A = {v0, v1, ..., vd} ∪ {2v1, v1 + v2,2v2},
where vi are the vertices of a d-dimensional

simplex.
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 EXAMPLE 4 



 
EXAMPLE 5 



Further developments:

Ruzsa (1994): If |A| ≥ |B| and dim(A+B) = d,

then

|A + B| ≥ |A|+ d|B| − d(d + 1)

2
.

Gardner and Gronchi (2001): If |A| ≥ |B| and

dim(B) = d, then

|A + B| ≥

≥ |A|+(d−1)|B|+ d
√

(|A| − d)d−1(|B| − d)−d(d− 1)

2

Green and Tao (2006)

Suppose that A ⊆ Rm is a finite set which con-

tains a parallelepiped P = {0,1}d ⊆ Zd ⊆ Rm.

Then

|A + A| ≥ 2d/2|A|.
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5. Exact Structure Results for Multidi-

mensional Inverse Additive Problems

A natural question is to generalize Theorem 3

to the multidimensional case d = dim(K) ≥ 3 :

Assume that the doubling coefficient of the

sum set 2K is not much exceeding the minimal

one, i.e.

d + 1 ≤ σ =
|2K|
|K| < ρd.

What can be said about the exact structure of

K ? The expected result is: if

ρd = d + 1 +
1

3
,

then the set K is contained in d ”short” arith-

metical progressions.

24



The problem was first solved for the first open

case d = 3:

Theorem 10 (S. 2005). Let K be a finite

subset of Z3 of affine dimension dimK = 3.

(i) If |K| > 123 and

|K+K| < 13

3
|K| − 25

3
then K lies on three parallel lines.

(ii) If K lies on three parallel lines and

|K+K| < 5|K| − 10,

then K is contained in three arithmetic pro-

gressions with the same common difference,

having together no more than

v = |K+K| − 3|K|+ 6

terms.
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The structure of K can be also be described

for sets of dimension d ≥ 3 :

Theorem 11 (S. 2008).Let K ⊆ Zd be a finite

set of dimension d ≥ 2.

(i) If k > 3 · 4d and

|K+K| < (d +
4

3
)|K| − cd,

where cd = 1
6(3d2 + 5d + 8), then K lies on d

parallel lines.

(ii) If K lies on d parallel lines and

|K+K| < (d + 2)|K| − 1

2
(d + 1)(d + 2),

then K is contained in d parallel arithmetic pro-

gressions with the same common difference,

having together no more than

v = |K+K| − d|K|+ 1

2
d(d + 1) terms.
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These results are best possible and cannot be

sharpened by reducing the quantity v or by in-

creasing the upper bounds for |K+K| :
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EXAMPLE  6 



We found that a similar inequality can be for-

mulated for d−dimensional sets that have a

doubling coefficient less than

ρd = d + 2− 2

s− d + 3

(where s ≥ d is a positive integer). In this case

we prove that K lies on no more than s parallel

lines.

These results can be used to make Freiman’s

Main Theorem more precise.

In a joint work with Freiman (2008) we study

the exact structure of d-dimensional sets sat-

isfying the small doubling property

|2K| < (d + 2− ε)|K|.
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