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1. Direct and inverse problems of additive
and combinatorial number theory

Additive number theory is the study of sums
of sets and we can distinguish two main lines
of research.

In a direct problem of additive number theory
we start with a particular known set A and at-
tempt to determine the structure and proper-
ties of the h-folds sumset hA. These are the
classical direct problems in additive number
theory: Waring's problem, Goldbach conjec-
ture...

As a counterbalance to this direct approach,
an inverse problem in additive number theory
IS a problem in which we study properties of
a set A, if some characteristic of the h-fold
sumset hA is given.




Sumsets can be defined in any Abelian group
G, for example in

o 7/
the group of integers,

o 7/mZ
the group of congruence classes modulo m,

o /"
the group of integer lattice points,

o RC
the d-dimensional Euclidean space.



Freiman proposed an unifying *“algorithm’ for
solving inverse additive problems:

e Step 1. Consider some (usually numerical)
characteristic of the set under study.

e Step 2. Find an extremal value of this
characteristic within the framework of the
problem that we are studying.

e Step 3. Study the structure of the set
when its characteristic is equal to its ex-
tremal value.

e Step 4. Study the structure of the set
when its characteristic is near to its ex-
tremal value.

e Step 5. ....Continue, taking larger and larger
neighborhoods for the characteristic.



LLet us choose as characteristic the cardinality
of the sumset:

2K = K + K,
or equivalently the “measure of doubling’ :
_ |IK+ K|
O — .
| K|

We will examine in detail the exact structure
of a finite set
K C G,
in the case of a torsion free Abelian group
G=7" or G=R%

assuming that the doubling constant is small.

REMARK: If o is an arbitrary doubling con-
stant, then Freiman’s fundamental result (1973)
asserts that such a set is a large subset of
a multidimensional arithmetic progression; see
also Freiman (1987), Bilu (1993), Ruzsa (1994),
Nathanson (1996), or Tao and Vu (2006).
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2. Small doubling property on the plane
ZZ

et us describe some results concerning the
structure of planar sets with small sumset.

We begin with the following basic inequality:

Theorem 1 (Freiman 1973). If K C Z? lies
on exactly s > 2 parallel lines, then

KAKI> (4= DK =25 +123k -3 (1)

Moreover, using Freiman’s 3k — 4 theorem we
easily conclude that a planar set of lattice points
K C Z2 with

K+ K| <3|K| -3

lies on a straight line and is contained in an
arithmetic progression of no more than

v=|K+K|-|K|+1

terms. Step 2 is completely solved.



Therefore, a natural problem is to concentrate
on the study of Steps 3 and 4.

We ask for the structure of a finite planar set
of lattice points with small doubling |K 4 K|.
AS one can expect, this question is easier to
answer when the cardinality |K 4 K| is close to
its minimal possible value 3|K|—3, and becomes
much more complicated if we choose bigger
values for | 4+ K|. To be more specific, we
may ask the following

Problem.

Find the exact structure of planar sets of lat-
tice points under the small doubling hypothe-
SIS:
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Let us examine the first case s = 2.

Though, the Freiman’'s (2" — ¢) theorem gives
a first indication on the structure of K, still
this is not so precise as the following

Theorem 2 (Freiman 1973, S. 1998). Let
I C Z?2 be a finite of dimension dim K = 2.

(i) IK| > 11 and K+ K| < 1—30|IC| — 5 then K lies
on two parallel lines.

(ii) If IC lies on two parallel lines and

K+ K| <4|K| -6

then K is included in two parallel arithmetic
progressions with the same common having to-
gether no more than v = |2K| —2k+3 terms.

T his means that the total number of holes sat-
isfies

h < |2K| — (3k — 3).



EXAMPLE 1

AY K c Z’a
€0 =(9,0)
2e, € =(o)
e, ! e, =@r1)
€s €y n:\€4 > X
|f<| = 3M+3,
|2K| = 5(:mm) - 2 K|-5 .
EXAMPLE 2
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T he following theorem incorporates Freiman’s
previous result as a particular case:

Theorem 3 (S. 1998). Let K be a finite set
of Z2 and s > 1 be a natural number. If |K| is
sufficiently large, i.e. k > O(s3), and

2
K+K< (4= —=)KI-@s+D . @

then there exist s parallel lines which cover the
set IC.

This is a best possible result, because it cannot
be improved by increasing the upper bound for
I+ K|, or by reducing the number of lines that
cover K :
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EXAMPLE 3
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e =(12)
Sgl Ezr_ (O."}
& me, ! 7
Z
K= [Bmd=fs]) 0 2°
IK ]: (WIH) G+)
R
_|
2se,
Se,
E me1 2me1 '?:'(
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The theorem is effective and recently Serra and
Grynkiewicz obtained an explicit value for the
constant ko(s) = 2s2 + s+ 1. They also suc-
ceeded to extend the result for sums of differ-
ent sets A+ B :

Theorem 4 (Grynkiewicz and Serra 2007).
Let A, B C R? be finite subsets and s > 1 be a
natural numbetr.

(i) If‘|A| — |B|‘ <s+1,|A+|B|>4s°+2s+1
and

1
A+ B < (2 - 54-—1)(|A| +[B]) —(2s + 1)

then there exist 2s (not necessarily distinct)
parallel lines which cover the sets A and B.

(ii) If |A| > |B| + s, |B| > 2s® + 5 and

2
A+ Bl < |«4|+(3—8_|_—1)|l5’!—(8+1)

then there exist 2s (not necessarily distinct)
parallel lines which cover the sets A and B.
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T he next natural question is to consider a finite
set IC of lattice points on a plane having the
small doubling property

2

and ask for a reasonable estimate for the num-
ber of lattice points of a "minimal” parallelo-
gram that covers the set K.

More precisely, if £ is a lattice generated by
IC, we are interested in precise upper bounds
for the number of points of £ that lie in the
convex hull of IC. Our main result asserts that
IC is located inside a parallelogram that lies on
a few lines which are well filled:
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Theorem 5 (S. 2007). Let s > 19 be an in-
teger and let K be a finite subset of 7?2 that
lies on exactly s parallel lines. If

2
2K| < (4 — S_|_—1)|’C| — (2s+ 1),

then there is a lattice £L C 72 and a parallelo-
gram ‘P such that

KC(PNL)+w
and

P NLl<24(]K+ K| - 21K + 1),
for some v € Z2.
Conjecture. We believe that for a best possi-

ble result, the constant factor 24 of Theorem
5 should be replaced by 5(1 + -17), i.e.

PNL< (IK+ K| - 2|K| 4+ 25— 1).

(s—1)

So far inequality this estimate has been proved
only for s = 2 (see Theorem 2) and s = 3 (S.
1999).
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3. Planar sets with no three collinear points
on a line

Let A C Z2 be a finite set, not containing any
three collinear points. Freiman asked in 1966
for a lower bound for | A 4 A|. As a first step
in the investigation of this problem we showed

that %flf” is unbounded, as lim |A| = oo:

Theorem 6 (S. 2002). Let A C Z? be a finite
set of n lattice points. If A does not contain
any three collinear points, then there is a pos-
itive absolute constant 6 > O such that

A+ Al > n(logn)®. (3)

The constant § can be easily computed: for
instance, any positive § smaller than 0.125 will
do.
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There is an intimate connection between two
seemingly unrelated problems:

(i) non-averaging sets of integers of ordet ¢
and

(ii) planar sets with no three points on a line.

Definition. A finite set of integers B C Z is
called a non-averaging set of order t, if for ev-
ery 1 <m,n <t the equation

mX1 +nXy = (m+n)Xs,

have no nontrivial solutions with X; € B.

Let
st(n)

be the maximal cardinality of a non-averaging
set of order t included in the interval [1,n].
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It is clear that a non-averaging set of order
1 is simply an integer set containing no arith-
metic progressions. Bourgain's bound (1999)
for Roth's theorem gives:

si(n) < s1(n) = r3(n) < ——(log log n)?3.
(logn)2

Remark. We also obtained a more exact in-
equality, valid for sets A C Z2 containing no
k—terms arithmetic progressions: for every in-
teger t > 1 we have

1 NN\
At Al 2 SAI(—5) " (4)
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We formulate the following:

Problem S. Suppose thatt > 1 is a fixed,
positive, but rather large integer. Is it true that

st(n) < W, or at least s;(n) < W, for

a positive absolute constant ¢ > 7

Note that Freiman’s question asks for a non
trivial lower estimate of | A+ A| for a set A C
7,2 containing no three collinear points and in
Problem S we want to estimate the density
of a sequence of natural numbers B, assuming
that ¢t linear equations does not hold for B.
Inequality (4) shows that any upper bound for
s¢(n), better than the trivial one r3(n) will lead
to a corresponding sharpening of (3) and (4).
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As regards lower bounds, we have:

Theorem 7 (S. 2002).

(i) For every t > 1, there is a positive constant
c; such that for every n one has

st(n) > nexp(—cv/Iogn).

(ii) There is no eg > 0 such that the inequality

A4 Al > AT

holds for every finite set A C 7Z? containing no
three collinear points.

The proof uses Freiman’'s fundamental con-
cept of isomorphism, Behrend’'s method (1946)
and a result of Ruzsa about sets of integers
containing no non-trivial three term arithmetic
progressions.

A recent improvement of the lower bound (3),
was obtained by T. Sanders (2006):

A+ Al > |A|(log |A])3
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4. The simplest inverse problem for sums
of sets in several dimensions

It is a well known fact that |A4B| > |A|+|B|—1
for every two finite sets A and B of Z¢, equality
being attained when A and B are arithmetic
progressions with the same difference.

It is possible to obtain a much better estimate.
The first result connecting geometry and ad-
ditive properties is

Theorem 8 (Freiman 1973). For every finite
set A C 7@ of affine dimension dim A = d, one
has

A+ Al > (d+ 1A — %d(d Y1), (5)

This lower bound is tight, i.e. Step 2 is solved.
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et us investigate now Step 3. What is the ex-
act structure of multi-dimensional sets having
the smallest cardinality of the sumset?

The following result is an analogue of the well
known Vosper's theorem (1956), Z/pZ being
here replaced by the d-dimensional space R4,

Theorem 9 (S. 1998). Let A C R" be a finite
set such that dimA > d and

1
A+ Al = (d+ DA - Sd(d + 1),

If|A| # d+4, then A is a d-dimensional set and
A consists of d parallel arithmetic progressions
with the same common difference.

Moreover, if |A| = d 4 4, then

A = {UOa V1, -ees vd} U {2’01,’01 + v, 2”2}7

where v; are the vertices of a d-dimensional
simplex.
21



EXAMPLE 4
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EXAMPLE 5
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Further developments:

Ruzsa (1994): If |A| > |B| and dim(A+B) = d,
then

d(d+ 1
A4 8| > 4]+ a5 - LFD.

Gardner and Gronchi (2001): If |A| > |B| and
dim(B) = d, then

A+ B| >
d(d — 1)

> [A]+(d=D)| B+ {(jA] = d)?=2(| B - d) ==~

Green and Tao (2006)
Suppose that A C R™ is a finite set which con-

tains a parallelepiped P = {0,1}¢ C 74 C R™.

Then
A+ A > 2%2)4.
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5. Exact Structure Results for Multidi-
mensional Inverse Additive Problems

A natural question is to generalize Theorem 3
to the multidimensional case d = dim(K) > 3 :

Assume that the doubling coefficient of the
sum set 2/C is not much exceeding the minimal
one, i.e.

2K
d+1<o0c=——<pg
K

What can be said about the exact structure of
K 7 The expected result is: if

1

then the set K is contained in d "short” arith-
metical progressions.
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The problem was first solved for the first open
case d = 3:

Theorem 10 (S. 2005). Let K be a finite
subset of 73 of affine dimension dim K = 3.

(i) If |K| > 123 and

13 25
K+Kl <—|K|—-—
K+ K| < K| -2

then IC lies on three parallel lines.

(ii) If K lies on three parallel lines and

K + K| < 5|K| — 10,

then IC is contained in three arithmetic pro-
gressions with the same common difference,
having together no more than

v=|K+K|-3|K|+6
terms.
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The structure of K can be also be described
for sets of dimension d > 3

Theorem 11 (S. 2008). Let K C Z< be a finite
set of dimension d > 2.

(i) If k> 3-4% and
4
K+ K| < (d+§)|/C| — €4

where c; = £(3d? + 5d + 8), then K lies on d
parallel lines.

(ii) If K lies on d parallel lines and

K+ Kl < (d+2)IK] — (d+1)(d +2),

then IC is contained in d parallel arithmetic pro-
gressions with the same common difference,
having together no more than

1
v=|K4+ K| -d|K|+ Ed(d—l_ 1) terms.
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These results are best possible and cannot be
sharpened by reducing the quantity v or by in-
creasing the upper bounds for |K + K] :
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EXAMPLE 6
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We found that a similar inequality can be for-
mulated for d—dimensional sets that have a
doubling coefficient less than

2
s—d-+3
(where s > d is a positive integer). In this case
we prove that I lies on no more than s parallel
lines.

pd=d+2—

These results can be used to make Freiman’s
Main Theorem more precise.

In a joint work with Freiman (2008) we study
the exact structure of d-dimensional sets sat-
isfying the small doubling property

2K| < (d+ 2 — ¢)|K].
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