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Notions in CS
Informal - some suspension of disbelief is asked for

• NP is the class of mathematical statements with easily
verifiable (short) proofs.
• CL’71: Reduction to verifying that a given 3-CNF boolean
formula is satisfiable.
• A...S’92, D’05 PCP: Reduction to distinguishing between a
satisfiable 3-CNF boolean formula, and a significantly
unsatisfiable formula - an optimal assignment leaves a positive
fraction of terms unsatisfied.
• R’ 95 Parallel Repetition: Invalid statement is translated into
a very unsatisfiable formula - an optimal assignment leaves a
(1− ε)-fraction of terms unsatisfied.



Notions in CS - continued

• BGS’95, H’97: A format for proving satisfiability which allows
verification by looking at tiny randomized samples from the
proof.
• A proof is partitioned into 0-1 strings of length 2n viewed as
functions fi : {0,1}n → {0,1}.
• In a valid proof all the functions fi are structured. In any proof
of an invalid statement, many of the functions are not
structured.



Important building block

F is a finite field. Given f : Fn → F, determine if
• f is a low-degree n-variate polynomial. (structured)
• f is ε-far from all low-degree polynomials:

Prx{f (x) 6= g(x)} ≥ ε

for any degree-d polynomial g. (not structured)

• Allowed only local tests - may query the function only at a few
points.
• May use randomization.



Generalization - Property testing

Given a large combinatorial object G, determine if
• G has a global property P.
• f is ε-far from all objects with property P

• Only randomized local queries to G are allowed.
• Ex. Given a graph G on k vertices determine whether G is
bi-partite or requires removal of at least εk2 edges to become
bi-partite, by querying a small number of edges of G (AK ’02).



Specification - extremal polynomiality testing
Main question

Given f : Fn
2 → F2, determine if

• f is a low-degree n-variate polynomial.
• f is very far from all low-degree polynomials:

Prx{f (x) 6= g(x)} ≥ 1
2
− ε

for any degree-d polynomial g.

• Allowed only local tests - may query the function only at a few
points.



Linear polynomials

• Distinguishing between linear and far from linear functions.
• This case is known. Plays an important role in PCP
constructions.
• BLR’93, BCHKS’96 - A local test, querying f at 3 points and
returning 1 bit, which behaves
• Deterministically for linear functions
• Randomly for functions far from linear

• The test makes 3 queries and distinguishes linear and far
from linear functions w.p. 1/2.
• H’97: Can be “lifted” to a PCP construction with same
parameters.



Pseudorandomness

• Point of view: Linear functions are structured, functions far
from linear are pseudorandom - allowing to extract one random
bit.
• In fact, this definition of pseudorandomness for a function f is
equivalent to the usual one: f has small Fourier coefficients.
• Need to distinguish between pseudorandomness and
structure.



Motivation: stronger linearity tests

• Want to optimize the ratio

ρ =
q

log2 1/p

where q is the number of queries and p is the probability the
test succeeds.
• For the previous test ρ = 3/ log(2) = 3.
• Want to have a test with ρ = 1 + oq(1).



Motivation: stronger linearity tests

• Want to have a test with ρ = 1 + oq(1).
• ST’00 - A local test, querying f at q points and returning
q −

√
2q bits, which behaves

• Deterministically for linear functions
• Randomly for pseudorandom (far from linear) functions

• The test makes q queries and distinguishes linear and
pseudorandom functions w.p. 2−q+

√
2q.

•
ρ =

q
q −

√
2q

= 1 + o(1)



Motivation: stronger linearity tests

• ST’00 - A local test, querying f at q points and returning
q −

√
2q bits, which behaves

• Deterministically for linear functions
• Randomly for pseudorandom (far from linear) functions

• The test makes q queries and distinguishes linear and
pseudorandom functions w.p. 2−q+

√
2q.

• Lifting to a PCP construction with similar parameters.
• Can we squeeze out even more randomness? How powerful
is this notion of pseudorandomness?



Local tests for pseudorandomness
Structure vs. pseudorandomness

Let f : {0,1}n → {0,1} be a boolean function.
• BLR’93, BCHKS’96: Choose x , y ∈ {0,1}n at random.
Compute

f (x) + f (y) + f (x + y)

Makes 3 queries, returns 1 useful bit.
• ST’00: Graph tests. Let G = (V ,E) be a graph on k vertices.
Choose x1...xk ∈ {0,1}n at random. For all (i , j) ∈ E compute

f (xi) + f (xj) + f (xi + xj)

Makes |E |+ |V | queries, returns |E | useful bits.
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Even better tests for pseudorandomness
Structure vs. pseudorandomness

• Let f : {0,1}n → {0,1} be a boolean function.
• ST’00: Hypergraph tests. Let G = (V ,E) be a hypergraph on
k vertices. Choose x1...xk ∈ {0,1}n at random. For all
e = (xi)i∈e ∈ E compute

∑
i∈e

f (xi) + f

(∑
i∈e

xi

)

Makes |E |+ |V | queries, returns |E | bits.



Even better tests for pseudorandomness
Structure vs. pseudorandomness

• Let f : {0,1}n → {0,1} be a boolean function.
• ST’00: Hypergraph tests. Let G = (V ,E) be a hypergraph on
k vertices. Choose x1...xk ∈ {0,1}n at random. For all
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i∈e

f (xi) + f

(∑
i∈e

xi

)

Makes |E |+ |V | queries, returns |E | bits.
• If G is the complete hypergraph: makes q queries, returns
q − log q bits.



Even better ?? tests for pseudorandomness
Doesn’t work...

• Let f : {0,1}n → {0,1} be a boolean function.
• ST’00: Hypergraph tests. Let G = (V ,E) be a hypergraph on
k vertices. Choose x1...xk ∈ {0,1}n at random. For all
e = (xi)i∈e ∈ E compute

∑
i∈e

f (xi) + f

(∑
i∈e

xi

)

Makes |E |+ |V | queries, returns |E | useless bits.
• If G is the complete hypergraph: makes q queries, returns
q − log q bad bits.



An inconvenient example

Let n be even, and let

f (x) = x(1) · x(2) + x(3) · x(4) + . . .+ x(n − 1) · x(n)

• f is bent (maximally far from all linear functions).
• ST’00: Any hypergraph linearity test with q queries that
accepts linear functions accepts f with probability at least
2−q+

√
2q.
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• +BHR’03, L’07: Any linearity test with q queries that accepts
linear functions accepts f with probability at least 2−q+

√
2q.



An inconvenient example

Let n be even, and let

f (x) = x(1) · x(2) + x(3) · x(4) + . . .+ x(n − 1) · x(n)

• f is bent (maximally far from all linear functions).
• +BHR’03, L’07: Any linearity test with q queries that accepts
linear functions accepts f with probability at least 2−q+

√
2q.

• What’s going on? The function f must have a hidden
structure.



Property testing
Low degree polynomials

Let F be a finite field. Given f : Fn → F, determine if
• f is a polynomial of (low) degree at most d .
• f is ε-far from all degree-d polynomials.

• Usually the field is large.
BFL’91: If |F| > d + 1 - restrict f to a random line and check it’s
a degree-d univariate polynomial.

• Always accepts degree-d polynomials.
• If f is ε-far from degree-d polynomials, rejects after T (ε,d)

random restrictions.
• Self-correction aka a decoding algorithm for generalized

Reed Muller codes
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• AKKLR’03: What if the field is small, F = F2?



Property testing
Low degree polynomials

Let F be a finite field. Given f : Fn → F, determine if
• f is a polynomial of (low) degree at most d .
• f is ε-far from all degree-d polynomials.

• AKKLR’03: What if the field is small, F = F2?
Restrict f to a random (d + 1)-dimensional affine subspace and
check it’s a degree-d polynomial.

• Always accepts degree-d polynomials.
• If f is ε-far from degree-d polynomials, rejects after T (ε,d)

random restrictions.
• Self-correction aka a decoding algorithm for Reed Muller

codes



Low-degree testing over F2
Following AKKLR’03

• To test if f is a degree-d polynomial, compute a random
(d + 1)-st directional derivative of f .
• If f is degree-d this derivative is always zero.
• If it’s zero with high probability, then f is close to a degree-d
polynomial.



Back to the obstructing function

• The value of the k -th directional derivative of AKKLR is one
of the bits computed by a hypergraph test with hyperedges of
size k .
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• f is pseudorandom for linearity tests but structured for
higher-degree tests



Back to the obstructing function

• The value of the k -th directional derivative of AKKLR is one
of the bits computed by a hypergraph test with hyperedges of
size k .
• Hypergraph tests compute higher derivatives of a function in
many of the bits they return.
• The function

f (x) = x(1) · x(2) + x(3) · x(4) + . . .+ x(n − 1) · x(n)

is a quadratic polynomial
• f is pseudorandom for linearity tests but structured for
higher-degree tests
• Want stronger notion of pseudorandomness



Pseudorandomness I: Balanced derivatives
A technical notion

• A function is d-pseudorandom if the probability that its
random (d + 1)-st derivative is zero is very close to 1/2.
• An analytic pseudorandomness measure for a boolean
function f :
d-pseudorandomness of f :

(2P(f )− 1)1/2d

where P(f ) is the probability that f restricted to a random
(d + 1)-dimensional affine subspace of the cube is a degree-d
polynomial.



Pseudorandomness I: Balanced derivatives
A technical notion

• A function is d-pseudorandom if the probability that its
random (d + 1)-st derivative is zero is very close to 1/2.
• An analytic pseudorandomness measure for a boolean
function f :
d-pseudorandomness of f :

(2P(f )− 1)1/2d

where P(f ) is the probability that f restricted to a random
(d + 1)-dimensional affine subspace of the cube is a degree-d
polynomial.
• The 1/2d -root is to deal with various notions of derivatives.



Pseudorandomness I: Gowers Uniformity
A technical notion

• Defined in G’01 - for functions on Zn.
• An analytic pseudorandomness measure for a boolean
function f :
Gowers uniformity of degree d of f :(

Ex ,y1,...,yd (−1)
∑

S⊆[d ] f(x+
∑

i∈S yi)
)1/2d

• A function is pseudorandom if its Gowers uniformity is small.



A stronger linearity test given low Gowers uniformity

• S’05, ST’06 - A local test, querying q bits and returning
q − q1/d bits, which behaves
• Deterministically for linear functions
• Randomly for pseudorandom (low degree-d Gowers

uniformity) functions.

• The test makes q queries and distinguishes linear and
pseudorandom functions w.p. 2−q+q1/d

.
• ST’06 Conditional lifting to a PCP construction with similar
parameters.



Pseudorandomness II - Polynomial
pseudorandomness
Structure

Definition: A function is degree-d pseudorandom if it is far from
degree-d polynomials.
• The "right" notion we seem to be looking for.
• Additional dividends: explicit degree-d pseudorandom
functions for large d lead to interesting lower bounds and
pseudorandom generator constructions.



Pseudorandomness II - Polynomial
pseudorandomness
Structure

Definition: A function is degree-d pseudorandom if it is far from
degree-d polynomials.
• The "right" notion we seem to be looking for.
• Additional dividends: explicit degree-d pseudorandom
functions for large d lead to interesting lower bounds and
pseudorandom generator constructions.
• Can we compare the two notions of pseudorandomness?
• G’01, GT’05: Low Gowers Uniformity of degree d implies
polynomial degree-d pseudorandomness.
• The other direction?



Lack of pseudorandomness should imply structure
Inverse claims

• What if a function f has a non-negligible Gowers Uniformity?

‖f‖Ud > ε

• d = 2: In this case f is 1/2− ε close to a linear function
BLR’93, BCHKS’96.
• ε is BIG, ε = 1− δ. In this case f is δ′-close to a
degree-(d − 1) polynomial AKKLR’03.
• d = 3: In this case f is 1/2− ε′ close to a degree-2
polynomial GT’05, S’05.
• Any d : f has a variable whose influence is at least ε′/2d

ST’06.



An inverse conjecture for Gowers uniformity

Conjecture T’07 (GT’05), S’05: The two notions of
pseudorandomness are equivalent: ‖f‖Ud+1 > ε implies f is
1/2− ε′ close to a degree-d polynomial.



An inverse conjecture for Gowers uniformity

Conjecture T’07 (GT’05), S’05: The two notions of
pseudorandomness are equivalent: ‖f‖Ud+1 > ε implies f is
1/2− ε′ close to a degree-d polynomial.
• Discussion
• If this conjecture were true, this would give a concise

description of Gowers uniformity.
• It is “equivalent” to low-degree testing at large distances.



An inverse conjecture for Gowers uniformity

Conjecture T’07 (GT’05), S’05: The two notions of
pseudorandomness are equivalent: ‖f‖Ud+1 > ε implies f is
1/2− ε′ close to a degree-d polynomial.
• BV’07: A weaker conjecture, useful for constructing
pseudorandom generators: May also assume f is a polynomial
of degree d + 1.



The conjecture is false

• GT’07, LMS’07: The conjecture is false, even for d = 4 and
for f a polynomial of degree 4.
• GT’07: Partial positive results for larger fields.



The conjecture is false

• GT’07, LMS’07: The conjecture is false, even for d = 4 and
for f a polynomial of degree 4.
• GT’07: Partial positive results for larger fields.
• Counterexample: f = S4 is a symmetric polynomial of degree
4.

f (x) =
∑
|S|=4

∏
i∈S

x(i)

• ‖f‖U4 > 0.9
• f is

(1
2 − exp{−cn}

)
-far from cubic polynomials.



The conjecture is false

• GT’07, LMS’07: The conjecture is false, even for d = 4 and
for f a polynomial of degree 4.
• GT’07: Partial positive results for larger fields.
• Question. Assume a big family of degree-4 derivatives of f
are non-negligibly imbalanced. Does this imply f is somewhat
close to a cubic polynomial?
• BL’08: There is a version of a degree-4 derivative which is
negligible for S4.



Some details

S4 has large 4-uniformity.
• The directional derivative of S4 in directions y1, y2, y3, y4 is:∑
|S|=4

DetS (y1 · · · y4) =
∑
|S|=4

Det2
S (y1 · · · y4) = Det

(〈
yi , yj

〉)
• The behavior of a random 4× 4 matrix

(〈
yi , yj

〉)
is not hard to

analyze.



Some details

S4 is far from cubics.
• A correlation between functions is upperbounded by average
correlation between their derivatives.

〈f ,g〉8 ≤ Ey ,z 〈fy ,z ,gy ,z〉2

• Let f = S4, g a cubic. Second derivative of f is quadratic,
depending on y , z. Second derivative of g is linear.
• By Dixon’s theorem know the Fourier spectrum of quadratic
polynomials. Need multilinear algebra to wrap this together.


