Low degree tests at large distances

Alex Samorodnitsky

Hebrew University
April 7, 2008

Notions in CS

Informal - some suspension of disbelief is asked for

- NP is the class of mathematical statements with easily verifiable (short) proofs.
- CL'71: Reduction to verifying that a given 3-CNF boolean formula is satisfiable.
- A...S'92, D'05 PCP: Reduction to distinguishing between a satisfiable 3-CNF boolean formula, and a significantly unsatisfiable formula - an optimal assignment leaves a positive fraction of terms unsatisfied.
- R' 95 Parallel Repetition: Invalid statement is translated into a very unsatisfiable formula - an optimal assignment leaves a $(1-\epsilon)$-fraction of terms unsatisfied.

Notions in CS - continued

- BGS'95, H'97: A format for proving satisfiability which allows verification by looking at tiny randomized samples from the proof.
- A proof is partitioned into 0-1 strings of length 2^{n} viewed as functions $f_{i}:\{0,1\}^{n} \rightarrow\{0,1\}$.
- In a valid proof all the functions f_{i} are structured. In any proof of an invalid statement, many of the functions are not structured.

Important building block

\mathbb{F} is a finite field. Given $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$, determine if

- f is a low-degree n-variate polynomial. (structured)
- f is ϵ-far from all low-degree polynomials:

$$
\operatorname{Pr}_{x}\{f(x) \neq g(x)\} \geq \epsilon
$$

for any degree-d polynomial g. (not structured)

- Allowed only local tests - may query the function only at a few points.
- May use randomization.

Generalization - Property testing

Given a large combinatorial object G, determine if

- G has a global property P.
- f is ϵ-far from all objects with property P
- Only randomized local queries to G are allowed.
- Ex. Given a graph G on k vertices determine whether G is bi-partite or requires removal of at least ϵk^{2} edges to become bi-partite, by querying a small number of edges of G (AK '02).

Specification - extremal polynomiality testing

Main question

Given $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$, determine if

- f is a low-degree n-variate polynomial.
- f is very far from all low-degree polynomials:

$$
\operatorname{Pr}_{x}\{f(x) \neq g(x)\} \geq \frac{1}{2}-\epsilon
$$

for any degree-d polynomial g.

- Allowed only local tests - may query the function only at a few points.

Linear polynomials

- Distinguishing between linear and far from linear functions.
- This case is known. Plays an important role in PCP constructions.
- BLR'93, BCHKS'96 - A local test, querying f at 3 points and returning 1 bit, which behaves
- Deterministically for linear functions
- Randomly for functions far from linear
- The test makes 3 queries and distinguishes linear and far from linear functions w.p. 1/2.
- H'97: Can be "lifted" to a PCP construction with same parameters.

Pseudorandomness

- Point of view: Linear functions are structured, functions far from linear are pseudorandom - allowing to extract one random bit.
- In fact, this definition of pseudorandomness for a function f is equivalent to the usual one: f has small Fourier coefficients.
- Need to distinguish between pseudorandomness and structure.

Motivation: stronger linearity tests

- Want to optimize the ratio

$$
\rho=\frac{q}{\log _{2} 1 / p}
$$

where q is the number of queries and p is the probability the test succeeds.

- For the previous test $\rho=3 / \log (2)=3$.
- Want to have a test with $\rho=1+o_{q}(1)$.

Motivation: stronger linearity tests

- Want to have a test with $\rho=1+o_{q}(1)$.
- ST'00 - A local test, querying f at q points and returning $q-\sqrt{2 q}$ bits, which behaves
- Deterministically for linear functions
- Randomly for pseudorandom (far from linear) functions
- The test makes q queries and distinguishes linear and pseudorandom functions w.p. $2^{-q+\sqrt{2 q}}$.

$$
\rho=\frac{q}{q-\sqrt{2 q}}=1+o(1)
$$

Motivation: stronger linearity tests

- ST'00-A local test, querying f at q points and returning
$q-\sqrt{2 q}$ bits, which behaves
- Deterministically for linear functions
- Randomly for pseudorandom (far from linear) functions
- The test makes q queries and distinguishes linear and pseudorandom functions w.p. $2^{-q+\sqrt{2 q}}$.
- Lifting to a PCP construction with similar parameters.
- Can we squeeze out even more randomness? How powerful is this notion of pseudorandomness?

Local tests for pseudorandomness

Structure vs. pseudorandomness

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a boolean function.

- BLR'93, BCHKS'96: Choose $x, y \in\{0,1\}^{n}$ at random.

Compute

$$
f(x)+f(y)+f(x+y)
$$

Makes 3 queries, returns 1 useful bit.

- ST'00: Graph tests. Let $G=(V, E)$ be a graph on k vertices. Choose $x_{1} \ldots x_{k} \in\{0,1\}^{n}$ at random. For all $(i, j) \in E$ compute

$$
f\left(x_{i}\right)+f\left(x_{j}\right)+f\left(x_{i}+x_{j}\right)
$$

Makes $|E|+|V|$ queries, returns $|E|$ useful bits.

Local tests for pseudorandomness

Structure vs. pseudorandomness

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a boolean function.

- BLR'93, BCHKS'96: Choose $x, y \in\{0,1\}^{n}$ at random.

Compute

$$
f(x)+f(y)+f(x+y)
$$

Makes 3 queries, returns 1 useful bit.

- ST'00: Graph tests. Let $G=(V, E)$ be a graph on k vertices.

Choose $x_{1} \ldots x_{k} \in\{0,1\}^{n}$ at random. For all $(i, j) \in E$ compute

$$
f\left(x_{i}\right)+f\left(x_{j}\right)+f\left(x_{i}+x_{j}\right)
$$

Makes $|E|+|V|$ queries, returns $|E|$ useful bits.

- If G is the complete graph: makes q queries, returns $q-\sqrt{2 q}$ bits.

Even better tests for pseudorandomness

Structure vs. pseudorandomness

- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a boolean function.
- ST'00: Hypergraph tests. Let $G=(V, E)$ be a hypergraph on k vertices. Choose $x_{1} \ldots x_{k} \in\{0,1\}^{n}$ at random. For all $e=\left(x_{i}\right)_{i \in e} \in E$ compute

$$
\sum_{i \in e} f\left(x_{i}\right)+f\left(\sum_{i \in e} x_{i}\right)
$$

Makes $|E|+|V|$ queries, returns $|E|$ bits.

Even better tests for pseudorandomness

Structure vs. pseudorandomness

- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a boolean function.
- ST'00: Hypergraph tests. Let $G=(V, E)$ be a hypergraph on k vertices. Choose $x_{1} \ldots x_{k} \in\{0,1\}^{n}$ at random. For all $e=\left(x_{i}\right)_{i \in e} \in E$ compute

$$
\sum_{i \in e} f\left(x_{i}\right)+f\left(\sum_{i \in e} x_{i}\right)
$$

Makes $|E|+|V|$ queries, returns $|E|$ bits.

- If G is the complete hypergraph: makes q queries, returns $q-\log q$ bits.

Even better ?? tests for pseudorandomness

Doesn't work...

- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a boolean function.
- ST'00: Hypergraph tests. Let $G=(V, E)$ be a hypergraph on k vertices. Choose $x_{1} \ldots x_{k} \in\{0,1\}^{n}$ at random. For all $e=\left(x_{i}\right)_{i \in e} \in E$ compute

$$
\sum_{i \in e} f\left(x_{i}\right)+f\left(\sum_{i \in e} x_{i}\right)
$$

Makes $|E|+|V|$ queries, returns $|E|$ useless bits.

- If G is the complete hypergraph: makes q queries, returns $q-\log q$ bad bits.

An inconvenient example

Let n be even, and let

$$
f(x)=x(1) \cdot x(2)+x(3) \cdot x(4)+\ldots+x(n-1) \cdot x(n)
$$

- f is bent (maximally far from all linear functions).
- ST'00: Any hypergraph linearity test with q queries that accepts linear functions accepts f with probability at least $2^{-q+\sqrt{2 q}}$.

An inconvenient example

Let n be even, and let

$$
f(x)=x(1) \cdot x(2)+x(3) \cdot x(4)+\ldots+x(n-1) \cdot x(n)
$$

- f is bent (maximally far from all linear functions).
- ST'00: Any hypergraph linearity test with q queries that accepts linear functions accepts f with probability at least $2^{-q+\sqrt{2 q}}$.
- ST'06: Any non-adaptive linearity test with q queries that accepts linear functions accepts f with probability at least $2^{-q+\sqrt{2 q}}$.

An inconvenient example

Let n be even, and let

$$
f(x)=x(1) \cdot x(2)+x(3) \cdot x(4)+\ldots+x(n-1) \cdot x(n)
$$

- f is bent (maximally far from all linear functions).
- ST'00: Any hypergraph linearity test with q queries that accepts linear functions accepts f with probability at least $2^{-q+\sqrt{2 q}}$.
- ST'06: Any non-adaptive linearity test with q queries that accepts linear functions accepts f with probability at least $2^{-q+\sqrt{2 q}}$.
- +BHR'03, L'07: Any linearity test with q queries that accepts linear functions accepts f with probability at least $2^{-q+\sqrt{2 q}}$.

An inconvenient example

Let n be even, and let

$$
f(x)=x(1) \cdot x(2)+x(3) \cdot x(4)+\ldots+x(n-1) \cdot x(n)
$$

- f is bent (maximally far from all linear functions).
- +BHR'03, L'07: Any linearity test with q queries that accepts linear functions accepts f with probability at least $2^{-q+\sqrt{2 q}}$.
- What's going on? The function f must have a hidden structure.

Property testing

Let \mathbb{F} be a finite field. Given $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$, determine if

- f is a polynomial of (low) degree at most d.
- f is ϵ-far from all degree- d polynomials.
- Usually the field is large.

BFL'91: If $|\mathbb{F}|>d+1$ - restrict f to a random line and check it's a degree- d univariate polynomial.

- Always accepts degree-d polynomials.
- If f is ϵ-far from degree- d polynomials, rejects after $T(\epsilon, d)$ random restrictions.
- Self-correction aka a decoding algorithm for generalized Reed Muller codes

Property testing

Let \mathbb{F} be a finite field. Given $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$, determine if

- f is a polynomial of (low) degree at most d.
- f is ϵ-far from all degree- d polynomials.
- Usually the field is large.

BFL'91: If $|\mathbb{F}|>d+1$ - restrict f to a random line and check it's a degree- d univariate polynomial.

- Always accepts degree-d polynomials.
- If f is ϵ-far from degree- d polynomials, rejects after $T(\epsilon, d)$ random restrictions.
- Self-correction aka a decoding algorithm for generalized Reed Muller codes
- AKKLR'03: What if the field is small, $\mathbb{F}=\mathbb{F}_{2}$?

Property testing

Let \mathbb{F} be a finite field. Given $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$, determine if

- f is a polynomial of (low) degree at most d.
- f is ϵ-far from all degree- d polynomials.
- AKKLR'03: What if the field is small, $\mathbb{F}=\mathbb{F}_{2}$?

Restrict f to a random $(d+1)$-dimensional affine subspace and check it's a degree-d polynomial.

- Always accepts degree-d polynomials.
- If f is ϵ-far from degree- d polynomials, rejects after $T(\epsilon, d)$ random restrictions.
- Self-correction aka a decoding algorithm for Reed Muller codes

Low-degree testing over \mathbb{F}_{2}

Following AKKLR'03

- To test if f is a degree- d polynomial, compute a random $(d+1)$-st directional derivative of f.
- If f is degree- d this derivative is always zero.
- If it's zero with high probability, then f is close to a degree-d polynomial.

Back to the obstructing function

- The value of the k-th directional derivative of AKKLR is one of the bits computed by a hypergraph test with hyperedges of size k.

Back to the obstructing function

- The value of the k-th directional derivative of AKKLR is one of the bits computed by a hypergraph test with hyperedges of size k.
- Hypergraph tests compute higher derivatives of a function in many of the bits they return.

Back to the obstructing function

- The value of the k-th directional derivative of AKKLR is one of the bits computed by a hypergraph test with hyperedges of size k.
- Hypergraph tests compute higher derivatives of a function in many of the bits they return.
- The function

$$
f(x)=x(1) \cdot x(2)+x(3) \cdot x(4)+\ldots+x(n-1) \cdot x(n)
$$

is a quadratic polynomial

- f is pseudorandom for linearity tests but structured for higher-degree tests

Back to the obstructing function

- The value of the k-th directional derivative of AKKLR is one of the bits computed by a hypergraph test with hyperedges of size k.
- Hypergraph tests compute higher derivatives of a function in many of the bits they return.
- The function

$$
f(x)=x(1) \cdot x(2)+x(3) \cdot x(4)+\ldots+x(n-1) \cdot x(n)
$$

is a quadratic polynomial

- f is pseudorandom for linearity tests but structured for higher-degree tests
- Want stronger notion of pseudorandomness

Pseudorandomness I: Balanced derivatives

A technical notion

- A function is d-pseudorandom if the probability that its random $(d+1)$-st derivative is zero is very close to $1 / 2$.
- An analytic pseudorandomness measure for a boolean function f :
d-pseudorandomness of f :

$$
(2 P(f)-1)^{1 / 2^{d}}
$$

where $P(f)$ is the probability that f restricted to a random $(d+1)$-dimensional affine subspace of the cube is a degree- d polynomial.

Pseudorandomness I: Balanced derivatives

A technical notion

- A function is d-pseudorandom if the probability that its random $(d+1)$-st derivative is zero is very close to $1 / 2$.
- An analytic pseudorandomness measure for a boolean function f :
d-pseudorandomness of f :

$$
(2 P(f)-1)^{1 / 2^{d}}
$$

where $P(f)$ is the probability that f restricted to a random $(d+1)$-dimensional affine subspace of the cube is a degree- d polynomial.

- The $1 / 2^{d}$-root is to deal with various notions of derivatives.

Pseudorandomness I: Gowers Uniformity

A technical notion

- Defined in G'01 - for functions on \mathbb{Z}_{n}.
- An analytic pseudorandomness measure for a boolean function f :
Gowers uniformity of degree d of f :

$$
\left(\mathbb{E}_{x, y_{1}, \ldots, y_{d}}(-1)^{\sum_{S \subseteq[d]} f\left(x+\sum_{i \in S} y_{i}\right)}\right)^{1 / 2^{d}}
$$

- A function is pseudorandom if its Gowers uniformity is small.

A stronger linearity test given low Gowers uniformity

- S'05, ST'06 - A local test, querying q bits and returning $q-q^{1 / d}$ bits, which behaves
- Deterministically for linear functions
- Randomly for pseudorandom (low degree-d Gowers uniformity) functions.
- The test makes q queries and distinguishes linear and pseudorandom functions w.p. $2^{-q+q^{1 / d}}$.
- ST'06 Conditional lifting to a PCP construction with similar parameters.

Pseudorandomness II - Polynomial pseudorandomness
 Structure

Definition: A function is degree-d pseudorandom if it is far from degree-d polynomials.

- The "right" notion we seem to be looking for.
- Additional dividends: explicit degree-d pseudorandom functions for large d lead to interesting lower bounds and pseudorandom generator constructions.

Pseudorandomness II - Polynomial pseudorandomness

Structure

Definition: A function is degree-d pseudorandom if it is far from degree-d polynomials.

- The "right" notion we seem to be looking for.
- Additional dividends: explicit degree-d pseudorandom functions for large d lead to interesting lower bounds and pseudorandom generator constructions.
- Can we compare the two notions of pseudorandomness?
- G'01, GT'05: Low Gowers Uniformity of degree d implies polynomial degree-d pseudorandomness.
- The other direction?

Lack of pseudorandomness should imply structure

 Inverse claims- What if a function f has a non-negligible Gowers Uniformity?

$$
\|f\|_{U_{d}}>\epsilon
$$

- $d=2$: In this case f is $1 / 2-\epsilon$ close to a linear function BLR'93, BCHKS'96.
- ϵ is BIG, $\epsilon=1-\delta$. In this case f is δ^{\prime}-close to a degree- $(d-1)$ polynomial AKKLR'03.
- $d=3$: In this case f is $1 / 2-\epsilon^{\prime}$ close to a degree-2 polynomial GT'05, S'05.
- Any d : f has a variable whose influence is at least $\epsilon^{\prime} / 2^{d}$ ST'06.

An inverse conjecture for Gowers uniformity

Conjecture T'07 (GT'05), S'05: The two notions of pseudorandomness are equivalent: $\|f\|_{U_{d+1}}>\epsilon$ implies f is $1 / 2-\epsilon^{\prime}$ close to a degree- d polynomial.

An inverse conjecture for Gowers uniformity

Conjecture T'07 (GT'05), S'05: The two notions of pseudorandomness are equivalent: $\|f\|_{U_{d+1}}>\epsilon$ implies f is
$1 / 2-\epsilon^{\prime}$ close to a degree- d polynomial.

- Discussion
- If this conjecture were true, this would give a concise description of Gowers uniformity.
- It is "equivalent" to low-degree testing at large distances.

An inverse conjecture for Gowers uniformity

Conjecture T'07 (GT'05), S'05: The two notions of pseudorandomness are equivalent: $\|f\|_{U_{d+1}}>\epsilon$ implies f is $1 / 2-\epsilon^{\prime}$ close to a degree- d polynomial.

- BV'07: A weaker conjecture, useful for constructing pseudorandom generators: May also assume f is a polynomial of degree $d+1$.

The conjecture is false

- GT'07, LMS'07: The conjecture is false, even for $d=4$ and for f a polynomial of degree 4.
- GT’07: Partial positive results for larger fields.

The conjecture is false

- GT'07, LMS'07: The conjecture is false, even for $d=4$ and for f a polynomial of degree 4.
- GT'07: Partial positive results for larger fields.
- Counterexample: $f=S_{4}$ is a symmetric polynomial of degree 4.

$$
f(x)=\sum_{|S|=4} \prod_{i \in S} x(i)
$$

- $\|f\|_{U_{4}}>0.9$
- f is $\left(\frac{1}{2}-\exp \{-c n\}\right)$-far from cubic polynomials.

The conjecture is false

- GT'07, LMS'07: The conjecture is false, even for $d=4$ and for f a polynomial of degree 4.
- GT'07: Partial positive results for larger fields.
- Question. Assume a big family of degree-4 derivatives of f are non-negligibly imbalanced. Does this imply f is somewhat close to a cubic polynomial?
- BL'08: There is a version of a degree-4 derivative which is negligible for S_{4}.

Some details

S_{4} has large 4-uniformity.

- The directional derivative of S_{4} in directions $y_{1}, y_{2}, y_{3}, y_{4}$ is:

$$
\sum_{|S|=4} \operatorname{Det}_{S}\left(y_{1} \cdots y_{4}\right)=\sum_{|S|=4} \operatorname{Det}_{S}^{2}\left(y_{1} \cdots y_{4}\right)=\operatorname{Det}\left(\left\langle y_{i}, y_{j}\right\rangle\right)
$$

- The behavior of a random 4×4 matrix $\left(\left\langle y_{i}, y_{j}\right\rangle\right)$ is not hard to analyze.

Some details

S_{4} is far from cubics.

- A correlation between functions is upperbounded by average correlation between their derivatives.

$$
\langle f, g\rangle^{8} \leq \mathbb{E}_{y, z}\left\langle f_{y, z}, g_{y, z}\right\rangle^{2}
$$

- Let $f=S_{4}, g$ a cubic. Second derivative of f is quadratic, depending on y, z. Second derivative of g is linear.
- By Dixon's theorem know the Fourier spectrum of quadratic polynomials. Need multilinear algebra to wrap this together.

