On the Number of Popular Differences

Vsevolod Lev
U Haifa - GA Tech

Toronto, April 8, 2008
(joint work with Sergei Konyagin)

Translation Invariance of Integer Sets

A finite set of elements in a group with torsion can be invariant under non-zero translates; a set of elements in a torsion-free group cannot.

The Problem

To what degree a finite set of integers can be translation-invariant?

showing by how much A "moves out itself" when gets translated by d; considered, say, by Olson in 1968 and by Erdős and Heilbronn in 1964.

Translation Invariance of Integer Sets

A finite set of elements in a group with torsion can be invariant under non-zero translates; a set of elements in a torsion-free group cannot.

The Problem

To what degree a finite set of integers can be translation-invariant?

Also, what are the most translation-invariant sets? ("Sure, arithmetic progressions"?)

The degree of invariance of a set $A \subseteq \mathbb{Z}$ is measured by the function

\square

Translation Invariance of Integer Sets

A finite set of elements in a group with torsion can be invariant under non-zero translates; a set of elements in a torsion-free group cannot.

The Problem

To what degree a finite set of integers can be translation-invariant?

Also, what are the most translation-invariant sets?
("Sure, arithmetic progressions"?)
The degree of invariance of a set $A \subseteq \mathbb{Z}$ is measured by the function

$$
\Delta_{A}(d):=|(A+d) \backslash A| ; \quad d \in \mathbb{Z}
$$

showing by how much A "moves out itself" when gets translated by d; considered, say, by Olson in 1968 and by Erdős and Heilbronn in 1964.

The Properties of the Olson-Erdős-Heilbronn function

$$
\Delta_{A}(d):=|(A+d) \backslash A| ; \quad d \in \mathbb{Z}
$$

Basic properties of the function Δ_{A} :

- $\Delta_{A}(0)=0$;
- $\Delta_{A}(-d)=\Delta_{A}(d)$;
- $\Delta_{A}\left(d_{1}+d_{2}\right) \leq \Delta_{A}\left(d_{1}\right)+\Delta_{A}\left(d_{2}\right)$, whence $\Delta_{A}(h d) \leq h \Delta_{A}(d)$.

Furthermore,

- $\Delta_{A}(d)=|A|-\nu_{A}(d)$, where $\nu_{A}(d)$ is the number of
representations of d as a difference of two elements of A;
- $\triangle_{A}(d)$ is the minimal number of arithmetic progressions with difference d into which A can be partitioned.

The Properties of the Olson-Erdős-Heilbronn function

$$
\Delta_{A}(d):=|(A+d) \backslash A| ; \quad d \in \mathbb{Z}
$$

Basic properties of the function Δ_{A} :

- $\Delta_{A}(0)=0$;
- $\Delta_{A}(-d)=\Delta_{A}(d)$;
- $\Delta_{A}\left(d_{1}+d_{2}\right) \leq \Delta_{A}\left(d_{1}\right)+\Delta_{A}\left(d_{2}\right)$, whence $\Delta_{A}(h d) \leq h \Delta_{A}(d)$.

Furthermore,

- $\Delta_{A}(d)=|A|-\nu_{A}(d)$, where $\nu_{A}(d)$ is the number of representations of d as a difference of two elements of A;
- $\Delta_{A}(d)$ is the minimal number of arithmetic progressions with difference d into which A can be partitioned.

How Many Small Values can Δ_{A} Attain?

We seek to show that Δ_{A} does not assume too many small values: the "enemy" gives us a set D, we try to select $d \in D$ with $\Delta_{A}(d)$ large. As $\Delta_{A}(-d)=\Delta_{A}(d)$, we assume $d>0$ whenever convenient. Easy:

How many $d \in \mathbb{N}$ can there be with $\triangle_{A}(d) \leq 4$? With $\Delta_{A}(d) \leq 5$?

How Many Small Values can Δ_{A} Attain?

We seek to show that Δ_{A} does not assume too many small values: the "enemy" gives us a set D, we try to select $d \in D$ with $\Delta_{A}(d)$ large. As $\Delta_{A}(-d)=\Delta_{A}(d)$, we assume $d>0$ whenever convenient. Easy:

- there is at most one $d \in \mathbb{N}$ with $\Delta_{A}(d) \leq 1$; moreover, for such d to exist, A must be an arithmetic progression;

(Thus, given $D \subseteq \mathbb{N}$ with $|D| \geq 2$, we can find $d \in D$ with $\Delta_{A}(d) \geq 2$; if $|D| \geq 3$, we can find $d \in D$ with $\Delta_{A}(d) \geq 3$ - provided $|A| \geq 3$.) Messy

How many $d \in \mathbb{N}$ can there be with $\Delta_{A}(d) \leq 4$? With $\triangle_{A}(d) \leq 5$?

How Many Small Values can Δ_{A} Attain?

We seek to show that Δ_{A} does not assume too many small values: the "enemy" gives us a set D, we try to select $d \in D$ with $\Delta_{A}(d)$ large.
As $\Delta_{A}(-d)=\Delta_{A}(d)$, we assume $d>0$ whenever convenient. Easy:

- there is at most one $d \in \mathbb{N}$ with $\Delta_{A}(d) \leq 1$; moreover, for such d to exist, A must be an arithmetic progression;
- there are at most two $d \in \mathbb{N}$ with $\Delta_{A}(d) \leq 2$; moreover, for two such d to exist, A must be an arithmetic progression or a progression with the second smallest / largest element deleted.
(Thus, given $D \subseteq \mathbb{N}$ with $|D| \geq 2$, we can find $d \in D$ with $\Delta_{A}(d) \geq 2$; if $|D| \geq 3$, we can find $d \in D$ with $\Delta_{A}(d) \geq 3$ - provided $|A| \geq 3$.)

How Many Small Values can Δ_{A} Attain?

We seek to show that Δ_{A} does not assume too many small values: the "enemy" gives us a set D, we try to select $d \in D$ with $\Delta_{A}(d)$ large.
As $\Delta_{A}(-d)=\Delta_{A}(d)$, we assume $d>0$ whenever convenient. Easy:

- there is at most one $d \in \mathbb{N}$ with $\Delta_{A}(d) \leq 1$; moreover, for such d to exist, A must be an arithmetic progression;
- there are at most two $d \in \mathbb{N}$ with $\Delta_{A}(d) \leq 2$; moreover, for two such d to exist, A must be an arithmetic progression or a progression with the second smallest / largest element deleted.
(Thus, given $D \subseteq \mathbb{N}$ with $|D| \geq 2$, we can find $d \in D$ with $\Delta_{A}(d) \geq 2$; if $|D| \geq 3$, we can find $d \in D$ with $\Delta_{A}(d) \geq 3$ - provided $|A| \geq 3$.)

Messy:
How many $d \in \mathbb{N}$ can there be with $\Delta_{A}(d) \leq 4$? With $\Delta_{A}(d) \leq 5$?

The Behavior in Average

If A is a block of consecutive integers, then for every $1 \leq m<|A|$ there is exactly one $d \in \mathbb{N}$ with $\Delta_{A}(d)=m$; thus, there are exactly m positive integers d with $\Delta_{A}(d) \leq m$.

This turns out to be the "worst case in average"

That is, for $|A|$ and $|D|$ prescribed, the sum $\sum_{d \in D} \Delta_{A}(d)$ gets minimized when $A=[1,|A|]$ and $D=[1,|D|]$.

The Behavior in Average

If A is a block of consecutive integers, then for every $1 \leq m<|A|$ there is exactly one $d \in \mathbb{N}$ with $\Delta_{A}(d)=m$; thus, there are exactly m positive integers d with $\Delta_{A}(d) \leq m$.
This turns out to be the "worst case in average":
Theorem (Gabriel 1932, extending Hardy-Littlewood 1928)
For any finite sets $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ we have

$$
\frac{1}{|D|} \sum_{d=1}^{|D|} \Delta_{[1, \mid A]}(d) \leq \frac{1}{|D|} \sum_{d \in D} \Delta_{A}(d) .
$$

That is, for $|A|$ and $|D|$ prescribed, the sum $\sum_{d \in D} \Delta_{A}(d)$ gets minimized when $A=[1,|A|]$ and $D=[1,|D|]$.

From Average to Pointwise

In other words: for every $m \geq 1$, the average of the m smallest values of Δ_{A} is minimized when A is a block of consecutive integers; more generally, when A an arithmetic progression.

By Gabriel,

provided that $|D| \leq|A|$. (If $d>|A|$, then $\Delta_{A}(d)=|A| \neq d$.)

From Average to Pointwise

In other words: for every $m \geq 1$, the average of the m smallest values of Δ_{A} is minimized when A is a block of consecutive integers; more generally, when A an arithmetic progression.
Are arithmetic progressions optimal pointwise?

Let

$$
\mu_{A}(D):=\max _{d \in D} \Delta_{A}(d) ; \quad A, D \subseteq \mathbb{Z}
$$

By Gabriel,

$$
\mu_{A}(D) \geq \frac{1}{|D|} \sum_{d=1}^{|D|} \Delta_{[1,|A|]}(d)=\frac{1}{|D|} \sum_{d=1}^{|D|} d=\frac{1}{2}(|D|+1)
$$

provided that $|D| \leq|A|$. (If $d>|A|$, then $\Delta_{A}(d)=|A| \neq d$.)

Beating Arithmetic Progressions

$$
\Delta_{A}(d)=|(A+d) \backslash A|, \quad \mu_{A}(D)=\max _{d \in D} \Delta_{A}(d) ; A, D \subseteq \mathbb{Z}
$$

If A is an AP, then $\mu_{A}(D) \geq|D|$ for any $D \subseteq \mathbb{N}$ with $|D| \leq|A|$. Is it true that $\mu_{A}(D) \geq|D|$ for any $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ (with $|D| \leq|A|$)?

For an integer $m>2$, let

Beating Arithmetic Progressions

$$
\Delta_{A}(d)=|(A+d) \backslash A|, \quad \mu_{A}(D)=\max _{d \in D} \Delta_{A}(d) ; A, D \subseteq \mathbb{Z}
$$

If A is an AP, then $\mu_{A}(D) \geq|D|$ for any $D \subseteq \mathbb{N}$ with $|D| \leq|A|$. Is it true that $\mu_{A}(D) \geq|D|$ for any $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ (with $|D| \leq|A|$)?

No!

For an integer $m>2$, let

$$
A:=\bigcup_{0 \leq k<\log _{2} m}\left[k m,(k+1) m-2^{k}\right) .
$$

Then $\Delta_{A}(d) \leq m-1$ for every $d \in[1, m]$; that is, for $D=[1, m]$ we have $\mu_{A}(D)<|D|$ - whereas $|D|=m \sim|A| / \log |A|$!

The Interpretation

For long time we believed that the answer is "ALMOST "YES":

There is an absolute constant $c>0$ such that $\mu_{A}(D) \geq|D|$ holds for all finite sets $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ with $|D|<c|A|$.

The right interpretation of the example above: $|D| \leq C|A|$ is insufficient for $\mu_{A}(D) \geq|D|$ to hold, a stronger assumption is needed!

The Interpretation

```
m=100:
\begin{tabular}{llllllll}
\hline 0 & 100 & 200 & 300 & 400 & 500 & 600 & 700
\end{tabular}
```

For long time we believed that the answer is "ALMOST "YES":

A Wrong Theorem

There is an absolute constant $c>0$ such that $\mu_{A}(D) \geq|D|$ holds for all finite sets $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ with $|D|<c|A|$.

The right interpretation of the example above: $|D| \leq c|A|$ is insufficient for $\mu_{A}(D) \geq|D|$ to hold, a stronger assumption is needed!

The Interpretation

$$
m=100
$$

0	100	200	300	400	500	600	700

For long time we believed that the answer is "ALMOSt "YES":

A Wrong Theorem

There is an absolute constant $c>0$ such that $\mu_{A}(D) \geq|D|$ holds for all finite sets $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ with $|D|<c|A|$.

The right interpretation of the example above: $|D| \leq c|A|$ is insufficient for $\mu_{A}(D) \geq|D|$ to hold, a stronger assumption is needed!

The Main Result

Turns out that $|D|<c|A| / \log |A|$ is sufficient:
The True Theorem (Konyagin, Lev)
There is an absolute constant $c>0$ such that $\mu_{A}(D) \geq|D|$ holds for all finite sets $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ with $|D|<c|A| / \log |A|$.

- Both $\mu_{A}(D) \geq|D|$ and $|D|<c|A| / \log |A|$ are best possible, as shown by the AP example and the "logarithmic example".

A simple proof can be given if the assumption is strengthened:
\square

The Main Result

Turns out that $|D|<c|A| / \log |A|$ is sufficient:
The True Theorem (Konyagin, Lev)
There is an absolute constant $c>0$ such that $\mu_{A}(D) \geq|D|$ holds for all finite sets $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ with $|D|<c|A| / \log |A|$.

- Both $\mu_{A}(D) \geq|D|$ and $|D|<c|A| / \log |A|$ are best possible, as shown by the AP example and the "logarithmic example".

A simple proof can be given if the assumption is strengthened:
The $\sqrt{|A|}$-Theorem
We have $\mu_{A}(D) \geq|D|$ for all finite sets $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ with $|D| \leq \sqrt{|A|}$.

The $\sqrt{|A|}$-Theorem
We have $\mu_{A}(D) \geq|D|$ for all finite sets $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ with $|D| \leq \sqrt{|A|}$.

Proof of the $\sqrt{|A|}$-Theorem.

$$
d_{m} \in \mathbb{N}, m \leq \sqrt{|A|} \quad \stackrel{?}{\Rightarrow} \quad \Delta_{A}\left(d_{i}\right) \geq m \text { for some } i \in[1, m]
$$

For a contradiction, suppose that $\Delta_{A}\left(d_{i}\right) \leq m-1$ for $i=1, \ldots, m$; thus, A is a union of at most $m-1$ AP with difference d_{i}, for each i. At least one of these AP has m or more terms (as $(m-1)^{2}<|A|$); say, $a+k d_{i} \in A$ for $k=1, \ldots, m$. But A is also a union of at most $m-1$ AP with difference $d_{j}!$ Hence, $a+k_{1} d_{i} \equiv a+k_{2} d_{i}\left(\bmod d_{j}\right)$ for some $k_{1}, k_{2} \in[1, m], k_{1} \neq k_{2}$.
This yields $d_{j} \mid\left(k_{2}-k_{1}\right) d_{i}$, implying $d_{j} / \operatorname{gcd}\left(d_{i}, d_{j}\right) \mid k_{2}-k_{1}$ and, consequently, $d_{j} / \operatorname{gcd}\left(d_{i}, d_{j}\right) \leq m-1$, contradicting "Graham's g.c.d. conjecture"!

The $\sqrt{|A|}$-Theorem

We have $\mu_{A}(D) \geq|D|$ for all finite sets $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ with $|D| \leq \sqrt{|A|}$.

Proof of the $\sqrt{|A|}$-Theorem.

$$
d_{1}, \ldots, d_{m} \in \mathbb{N}, m \leq \sqrt{|A|} \stackrel{?}{\Rightarrow} \quad \Delta_{A}\left(d_{i}\right) \geq m \text { for some } i \in[1, m]
$$

For a contradiction, suppose that $\Delta_{A}\left(d_{i}\right) \leq m-1$ for $i=1, \ldots, m$; thus, A is a union of at most $m-1$ AP with difference d_{i}, for each i. At least one of these AP has m or more terms (as $(m-1)^{2}<|A|$); say, $a+k d_{i} \in A$ for $k=1, \ldots, m$. But A is also a union of at most $m-1$ AP with difference d_{j} ! Hence, $a+k_{1} d_{i} \equiv a+k_{2} d_{i}\left(\bmod d_{j}\right)$ for some $k_{1}, k_{2} \in[1, m], k_{1} \neq k_{2}$.

The $\sqrt{|A|}$-Theorem

We have $\mu_{A}(D) \geq|D|$ for all finite sets $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ with $|D| \leq \sqrt{|A|}$.

Proof of the $\sqrt{|A|-T h e o r e m . ~}$

$$
d_{1}, \ldots, d_{m} \in \mathbb{N}, m \leq \sqrt{|\boldsymbol{A}|} \stackrel{?}{\Rightarrow} \quad \Delta_{A}\left(d_{i}\right) \geq m \text { for some } i \in[1, m]
$$

For a contradiction, suppose that $\Delta_{A}\left(d_{i}\right) \leq m-1$ for $i=1, \ldots, m$; thus, A is a union of at most $m-1$ AP with difference d_{i}, for each i. At least one of these AP has m or more terms (as $(m-1)^{2}<|A|$); say, $a+k d_{i} \in A$ for $k=1, \ldots, m$. But A is also a union of at most $m-1$ AP with difference d_{j} ! Hence, $a+k_{1} d_{i} \equiv a+k_{2} d_{i}\left(\bmod d_{j}\right)$ for some $k_{1}, k_{2} \in[1, m], k_{1} \neq k_{2}$.
This yields $d_{j} \mid\left(k_{2}-k_{1}\right) d_{i}$, implying $d_{j} / \operatorname{gcd}\left(d_{i}, d_{j}\right) \mid k_{2}-k_{1}$ and, consequently, $d_{j} / \operatorname{gcd}\left(d_{i}, d_{j}\right) \leq m-1$, contradicting "Graham's g.c.d. conjecture"!

The Main Lemma

An important particular case of the Main Theorem, from which the general result is derived, is the case $D=[1, m]$.

The Main Lemma

There is an absolute constant $C>0$ such that $\mu_{A}([1, m]) \geq m$ holds for every finite set $A \subseteq \mathbb{Z}$ with $|A|>C m \log m$.

Plain-terms restatement, avoiding non-standard notation: if $|A|>C m \log m$, then there exists $d \in[1, m]$ with $|(A+d) \backslash A| \geq m$.

The "Deduction Toolbox":

- $\mu_{A}(h D) \leq h \mu_{A}(D) \quad\left(\right.$ recall $\left.\Delta_{A}\left(d_{1}+d_{2}\right) \leq \Delta_{A}\left(d_{1}\right)+\Delta_{A}\left(d_{2}\right)!\right) ;$
- $\mu_{A}(D) \geq(|D|+1) / 2$ for $|D| \leq|A|$;
- monotonicity: if $D \subseteq C$, then $\mu_{A}(D) \leq \mu_{A}(C)$;
- estimates of $|h A|$ and results on the structure of $h A$.

The Main Lemma

An important particular case of the Main Theorem, from which the general result is derived, is the case $D=[1, m]$.

The Main Lemma

There is an absolute constant $C>0$ such that $\mu_{A}([1, m]) \geq m$ holds for every finite set $A \subseteq \mathbb{Z}$ with $|A|>C m \log m$.

Plain-terms restatement, avoiding non-standard notation: if $|A|>C m \log m$, then there exists $d \in[1, m]$ with $|(A+d) \backslash A| \geq m$.

The "Deduction Toolbox":

- $\mu_{A}(h D) \leq h \mu_{A}(D) \quad\left(\right.$ recall $\left.\Delta_{A}\left(d_{1}+d_{2}\right) \leq \Delta_{A}\left(d_{1}\right)+\Delta_{A}\left(d_{2}\right)!\right) ;$
- $\mu_{A}(D) \geq(|D|+1) / 2$ for $|D| \leq|A|$;
- monotonicity: if $D \subseteq C$, then $\mu_{A}(D) \leq \mu_{A}(C)$;
- estimates of $|h A|$ and results on the structure of $h A$.

Deduction of the Main Theorem from the Main Lemma

 Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_{A}(D)<|D|$. The idea: if D is unstructured, then the sumsets $h D$ grow fast; hence $\mu_{A}(h D)$ are large, and so is $\mu_{A}(D) \geq h^{-1} \mu_{A}(h D)$:$$
\frac{1}{2}|h D|<\mu_{A}(h D) \leq h \mu_{A}(D)<h|D|,
$$

whence

It does not follows that D is "close" to $[1, m]$, and even not that D is dense; however, it follows that $h D$ is dense and consequently, $h D-h D \supseteq[1,|h D|-1]$ (provided $\operatorname{gcd}(D)=1$, as we assume). Now we use monotonicity and the Main Lemma:

while, on the other hand,

Deduction of the Main Theorem from the Main Lemma

 Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_{A}(D)<|D|$. The idea: if D is unstructured, then the sumsets $h D$ grow fast; hence $\mu_{A}(h D)$ are large, and so is $\mu_{A}(D) \geq h^{-1} \mu_{A}(h D)$:$$
\frac{1}{2}|h D|<\mu_{A}(h D) \leq h \mu_{A}(D)<h|D|,
$$

whence

It does not follows that D is "close" to $[1, m]$, and even not that D is dense; however, it follows that $h D$ is dense and consequently, $h D-h D \supseteq[1,|h D|-1]$ (provided $\operatorname{gcd}(D)=1$, as we assume). Now we use monotonicity and the Main Lemma:

while, on the other hand,

Deduction of the Main Theorem from the Main Lemma

 Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_{A}(D)<|D|$. The idea: if D is unstructured, then the sumsets $h D$ grow fast; hence $\mu_{A}(h D)$ are large, and so is $\mu_{A}(D) \geq h^{-1} \mu_{A}(h D)$:$$
\frac{1}{2}|h D|<\mu_{A}(h D) \leq h \mu_{A}(D)<h|D|,
$$

whence

It does not follows that D is "close" to $[1, m]$, and even not that D is dense; however, it follows that $h D$ is dense and consequently, $h D-h D \supseteq[1,|h D|-1]$ (provided $\operatorname{gcd}(D)=1$, as we assume). Now we use monotonicity and the Main Lemma:

while, on the other hand,

Deduction of the Main Theorem from the Main Lemma

 Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_{A}(D)<|D|$. The idea: if D is unstructured, then the sumsets $h D$ grow fast; hence $\mu_{A}(h D)$ are large, and so is $\mu_{A}(D) \geq h^{-1} \mu_{A}(h D)$:$$
\frac{1}{2}|h D|<\mu_{A}(h D) \leq h \mu_{A}(D)<h|D|,
$$

whence

It does not follows that D is "close" to $[1, m]$, and even not that D is dense; however, it follows that $h D$ is dense and consequently, $h D-h D \supseteq[1,|h D|-1]$ (provided $\operatorname{gcd}(D)=1$, as we assume). Now we use monotonicity and the Main Lemma:

while, on the other hand,

Deduction of the Main Theorem from the Main Lemma

 Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_{A}(D)<|D|$. The idea: if D is unstructured, then the sumsets $h D$ grow fast; hence $\mu_{A}(h D)$ are large, and so is $\mu_{A}(D) \geq h^{-1} \mu_{A}(h D)$:$$
\frac{1}{2}|h D|<\mu_{A}(h D) \leq h \mu_{A}(D)<h|D|,
$$

whence

$$
|h D|<2 h|D| .
$$

It does not follows that D is "close" to $[1, m]$, and even not that D is dense; however, it follows that $h D$ is dense and consequently, $h D-h D \supseteq[1,|h D|-1]$ (provided $\operatorname{gcd}(D)=1$, as we assume).
while, on the other hand,

Deduction of the Main Theorem from the Main Lemma

 Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_{A}(D)<|D|$. The idea: if D is unstructured, then the sumsets $h D$ grow fast; hence $\mu_{A}(h D)$ are large, and so is $\mu_{A}(D) \geq h^{-1} \mu_{A}(h D)$:$$
\frac{1}{2}|h D|<\mu_{A}(h D) \leq h \mu_{A}(D)<h|D|,
$$

whence

$$
|h D|<2 h|D| .
$$

It does not follows that D is "close" to $[1, m]$, and even not that D is dense; however, it follows that $h D$ is dense and consequently, $h D-h D \supseteq[1,|h D|-1]$ (provided $\operatorname{gcd}(D)=1$, as we assume). Now we use monotonicity and the Main Lemma:

$$
\mu_{A}(h D-h D) \geq \mu_{A}([1,|h D|-1]) \geq|h D|-1
$$

while, on the other hand,

$$
\mu_{A}(h D-h D) \leq 2 h \mu_{A}(D)<2 h|D| .
$$

Deduction of the Main Theorem from the Main Lemma

 Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_{A}(D)<|D|$. The idea: if D is unstructured, then the sumsets $h D$ grow fast; hence $\mu_{A}(h D)$ are large, and so is $\mu_{A}(D) \geq h^{-1} \mu_{A}(h D)$:$$
\frac{1}{2}|h D|<\mu_{A}(h D) \leq h \mu_{A}(D)<h|D|,
$$

whence

$$
|h D|<2 h|D| .
$$

It does not follows that D is "close" to $[1, m]$, and even not that D is dense; however, it follows that $h D$ is dense and consequently, $h D-h D \supseteq[1,|h D|-1]$ (provided $\operatorname{gcd}(D)=1$, as we assume). Now we use monotonicity and the Main Lemma:

$$
\mu_{A}(h D-h D) \geq \mu_{A}([1,|h D|-1]) \geq|h D|-1
$$

while, on the other hand,

$$
\mu_{A}(h D-h D) \leq 2 h \mu_{A}(D)<2 h|D|
$$

The Real Deduction, I

To make this approach work, we consider the set

$$
D^{ \pm}:=(-D) \cup\{0\} \cup D
$$

instead of D : it grows faster, while $\mu_{A}\left(D^{ \pm}\right)=\mu_{A}(D)$.

implying

By monotonicity and the Main Lemma,

The Real Deduction, I

To make this approach work, we consider the set

$$
D^{ \pm}:=(-D) \cup\{0\} \cup D
$$

instead of D : it grows faster, while $\mu_{A}\left(D^{ \pm}\right)=\mu_{A}(D)$.
If $\mu_{A}(D)<|D|$, then (as above) we get

$$
\left|h D^{ \pm}\right|<2 h\left|D^{ \pm}\right|
$$

implying

$$
2 h D^{ \pm}=h D^{ \pm}-h D^{ \pm} \supseteq\left[1,\left|h D^{ \pm}\right|-1\right] .
$$

By monotonicity and the Main Lemma,

$$
\mu_{A}\left(2 h D^{ \pm}\right) \geq \mu_{A}\left(\left[1,\left|h D^{ \pm}\right|-1\right]\right) \geq\left|h D^{ \pm}\right|-1
$$

The Real Deduction, II

Comparing

$$
\mu_{A}\left(2 h D^{ \pm}\right) \geq\left|h D^{ \pm}\right|-1
$$

(from the last slide) to

$$
\mu_{A}\left(2 h D^{ \pm}\right) \leq 2 h \mu_{A}\left(D^{ \pm}\right)=2 h \mu_{A}(D)<2 h|D|
$$

we get

$$
\left|h D^{ \pm}\right|-1<2 h|D|=h\left(\left|D^{ \pm}\right|-1\right),
$$

which is impossible.

In fact, this approach works already for $h=3$.

The Real Deduction, II

Comparing

$$
\mu_{A}\left(2 h D^{ \pm}\right) \geq\left|h D^{ \pm}\right|-1
$$

(from the last slide) to

$$
\mu_{A}\left(2 h D^{ \pm}\right) \leq 2 h \mu_{A}\left(D^{ \pm}\right)=2 h \mu_{A}(D)<2 h|D|
$$

we get

$$
\begin{gathered}
\left|h D^{ \pm}\right|-1<2 h|D|=h\left(\left|D^{ \pm}\right|-1\right) \\
\left|h D^{ \pm}\right| \leq h\left|D^{ \pm}\right|-h
\end{gathered}
$$

which is impossible.
In fact, this approach works already for $h=3$.

The Real Deduction, II

Comparing

$$
\mu_{A}\left(2 h D^{ \pm}\right) \geq\left|h D^{ \pm}\right|-1
$$

(from the last slide) to

$$
\mu_{A}\left(2 h D^{ \pm}\right) \leq 2 h \mu_{A}\left(D^{ \pm}\right)=2 h \mu_{A}(D)<2 h|D|
$$

we get

$$
\begin{gathered}
\left|h D^{ \pm}\right|-1<2 h|D|=h\left(\left|D^{ \pm}\right|-1\right) \\
\left|h D^{ \pm}\right| \leq h\left|D^{ \pm}\right|-h,
\end{gathered}
$$

which is impossible.
In fact, this approach works already for $h=3$.

m-Coverable Sets

Remainder of the talk: sketch of the proof of the Main Lemma.

The Main Lemma
There is an absolute constant
$C>0$ such that $\mu_{A}([1, m]) \geq m$
holds for every finite set $A \subseteq \mathbb{Z}$
with $|A|>C m \log m$.

A (finite) set $A \subseteq \mathbb{Z}$ is m-coverable if

- $\mu_{A}([1, m])<m$; that is, if
- $\Delta_{A}(d) \leq m-1$ for every $d \in[1, m]$; in other words, if
- for every $d \in[1, m]$, the set A is a union of at most $m-1$ arithmetic progressions with difference d.

m-Coverable Sets

Remainder of the talk: sketch of the proof of the Main Lemma.

The Main Lemma
There is an absolute constant $C>0$ such that $\mu_{A}([1, m]) \geq m$ holds for every finite set $A \subseteq \mathbb{Z}$ with $|A|>C m \log m$.

A (finite) set $A \subseteq \mathbb{Z}$ is m-coverable if

- $\mu_{A}([1, m])<m$; that is, if
- $\triangle_{A}(d) \leq m-1$ for every $d \in[1, m]$; in other words, if
- for every $d \in[1, m]$, the set A is a union of at most $m-1$ arithmetic progressions with difference d.

m-Coverable Sets

Remainder of the talk: sketch of the proof of the Main Lemma.

The Main Lemma
There is an absolute constant $C>0$ such that $\mu_{A}([1, m]) \geq m$ holds for every finite set $A \subseteq \mathbb{Z}$ with $|A|>C m \log m$.

A (finite) set $A \subseteq \mathbb{Z}$ is m-coverable if

- $\mu_{A}([1, m])<m$; that is, if
- $\Delta_{A}(d) \leq m-1$ for every $d \in[1, m]$; in other words, if
- for every $d \in[1, m]$, the set A is a union of at most $m-1$ arithmetic progressions with difference d.

m-Coverable Sets

Remainder of the talk: sketch of the proof of the Main Lemma.

The Main Lemma

There is an absolute constant $C>0$ such that $\mu_{A}([1, m]) \geq m$ holds for every finite set $A \subseteq \mathbb{Z}$ with $|A|>C m \log m$.

A (finite) set $A \subseteq \mathbb{Z}$ is m-coverable if

- $\mu_{A}([1, m])<m$; that is, if
- $\Delta_{A}(d) \leq m-1$ for every $d \in[1, m]$; in other words, if
- for every $d \in[1, m]$, the set A is a union of at most $m-1$ arithmetic progressions with difference d.

m-Coverable Sets

Remainder of the talk: sketch of the proof of the Main Lemma.

The Main Lemma

There is an absolute constant $C>0$ such that $\mu_{A}([1, m]) \geq m$ holds for every finite set $A \subseteq \mathbb{Z}$ with $|A|>C m \log m$.

The Main Lemma, Restated There is an absolute constant $C>0$ such that if the set $A \subseteq \mathbb{Z}$ is m-coverable, then $|A|<C m \log m$.

A (finite) set $A \subseteq \mathbb{Z}$ is m-coverable if

- $\mu_{A}([1, m])<m$; that is, if
- $\Delta_{A}(d) \leq m-1$ for every $d \in[1, m]$; in other words, if
- for every $d \in[1, m]$, the set A is a union of at most $m-1$ arithmetic progressions with difference d.

Gaps and Problems

A set $A \subseteq \mathbb{Z}$ is m-coverable if for every $d \in[1, m]$ it is a union of at most $m-1$ progressions with difference d.

The Main Lemma: if $A \subseteq \mathbb{Z}$ is m-coverable, then $|A|<C m \log m$.

Notice, that for any $I \in \mathbb{N}$ (and even very large), the interval $A=[1, I]$ is "almost" m-coverable: for each $d \in[1, m-1]$, it is a union of at most $m-1$ progressions with difference d. The only trouble is with $d=m$!

Two central notions in the proof of the Main Lemma are gaps and
\square
\square

To every $d \in[1, m]$ there correspond at most $m-1$ problems.

Gaps and Problems

A set $A \subseteq \mathbb{Z}$ is m-coverable if for every $d \in[1, m]$ it is a union of at most $m-1$ progressions with difference d.

The Main Lemma: if $A \subseteq \mathbb{Z}$ is m-coverable, then $|A|<C m \log m$.
Notice, that for any $I \in \mathbb{N}$ (and even very large), the interval $A=[1, I]$ is "almost" m-coverable: for each $d \in[1, m-1]$, it is a union of at most $m-1$ progressions with difference d. The only trouble is with $d=m$!

Two central notions in the proof of the Main Lemma are gaps and problems.

- A gap in a set S is an element of S which is not in A. We write $\mathfrak{g}_{A}(S):=|S \backslash A|$; this is the number of gaps in S.
- A problem is a pair $(a, a+d)$ with $a \in A, a+d \notin A$, and $d \in[1, m]$. To every $d \in[1, m]$ there correspond at most $m-1$ problems.

The Three Pillars

Lemma 1

Suppose that A is m-coverable. If $\varepsilon>0$ and $L \geq m$ have the property that for every $u \in \mathbb{Z}$ there exists $w \in \mathbb{Z}$ with $|w-u| \leq L$ such that $\mathfrak{g}_{A}([w+1, w+m]) \geq \varepsilon m$, then $|A|<30 \varepsilon^{-1} L$.

Lemma 2

There is an absolute constant $K \geq 2$ with the following property: if A is m-coverable, then for every $u \in \mathbb{Z}$ with $K \leq \mathfrak{g}_{A}([u+1, u+m]) \leq m / K$ there exists $w \in \mathbb{Z}$ such that $|w-u| \leq K m$ and

$$
\mathfrak{g}_{A}([w+1, w+m])>2 \mathfrak{g}_{A}([u+1, u+m]) .
$$

Lemma 3

If A is m-coverable, then for every $u \in \mathbb{Z}$ and $1 \leq K \leq m / 2$ there exists $w \in \mathbb{Z}$ with $|w-u|<K m$ such that $\mathfrak{g}_{A}([w+1, w+m]) \geq K$.

How it works

Combining Lemmas $1-3$, we prove the Main Lemma as follows.
Suppose that A is m-coverable, and let $u \in \mathbb{Z}$.

- Applying Lemma 3, find $w_{0} \in \mathbb{Z}$ with $\left|w_{0}-u\right|<K m$ and $\mathfrak{g}_{A}\left(\left[w_{0}+1, w_{0}+m\right]\right) \geq K($ where K is a sufficiently large constant)
- Applying Lemma 2 iteratively about $\log _{K} m$ times, find $w \in \mathbb{Z}$ with $\left|w-w_{0}\right|<K m \ln m$ and $\mathfrak{g}_{A}([w+1, w+m])>m / K$.
- Thus, for every $u \in \mathbb{Z}$ there is $w \in \mathbb{Z}$ with $|w-u|<2 K m \ln m$ and $\mathfrak{g}_{A}([w+1, w+m])>m / K$. That is, the assumptions of Lemma 1 are satisfied with $L=2 \mathrm{Km} \ln m$ and $\varepsilon=1 / \mathrm{K}$. Hence, if A is m-coverable, then $|A|<60 K^{2} m \ln m$, proving the Main Lemma.

How it works

Combining Lemmas $1-3$, we prove the Main Lemma as follows.
Suppose that A is m-coverable, and let $u \in \mathbb{Z}$.

- Applying Lemma 3 , find $w_{0} \in \mathbb{Z}$ with $\left|w_{0}-u\right|<K m$ and $\mathfrak{g}_{A}\left(\left[w_{0}+1, w_{0}+m\right]\right) \geq K$ (where K is a sufficiently large constant).
- Applying Lemma 2 iteratively about $\log _{k} m$ times, find $w \in \mathbb{Z}$ with $\left|w-w_{0}\right|<K m \ln m$ and $\mathfrak{g}_{A}([w+1, w+m])>m / K$.
- Thus, for every $u \in \mathbb{Z}$ there is $w \in \mathbb{Z}$ with $|w-u|<2 K m \ln m$ and $\mathfrak{g}_{A}([w+1, w+m])>m / K$. That is, the assumptions of Lemma 1 are satisfied with $L=2 K m \ln m$ and $\varepsilon=1 / K$. Hence, if A is m-coverable, then $|A|<60 K^{2} m \ln m$, proving the Main Lemma.

How it works

Combining Lemmas $1-3$, we prove the Main Lemma as follows.
Suppose that A is m-coverable, and let $u \in \mathbb{Z}$.

- Applying Lemma 3 , find $w_{0} \in \mathbb{Z}$ with $\left|w_{0}-u\right|<K m$ and $\mathfrak{g}_{A}\left(\left[w_{0}+1, w_{0}+m\right]\right) \geq K$ (where K is a sufficiently large constant).
- Applying Lemma 2 iteratively about $\log _{K} m$ times, find $w \in \mathbb{Z}$ with $\left|w-w_{0}\right|<K m \ln m$ and $\mathfrak{g}_{A}([w+1, w+m])>m / K$.
- Thus, for every $u \in \mathbb{Z}$ there is $w \in \mathbb{Z}$ with $|w-u|<2 K m \operatorname{In} m$ and $\mathfrak{g}_{A}([w+1, w+m])>m / K$. That is, the assumptions of Lemma 1 are satisfied with $L=2 K m \ln m$ and $\varepsilon=1 / K$. Hence, if A is m-coverab'e, then $|A|<60 K^{2} m$ In m, proving the Main Lemma.

How it works

Combining Lemmas $1-3$, we prove the Main Lemma as follows.
Suppose that A is m-coverable, and let $u \in \mathbb{Z}$.

- Applying Lemma 3 , find $w_{0} \in \mathbb{Z}$ with $\left|w_{0}-u\right|<K m$ and $\mathfrak{g}_{A}\left(\left[w_{0}+1, w_{0}+m\right]\right) \geq K$ (where K is a sufficiently large constant).
- Applying Lemma 2 iteratively about $\log _{K} m$ times, find $w \in \mathbb{Z}$ with $\left|w-w_{0}\right|<K m \ln m$ and $\mathfrak{g}_{A}([w+1, w+m])>m / K$.
- Thus, for every $u \in \mathbb{Z}$ there is $w \in \mathbb{Z}$ with $|w-u|<2 K m \ln m$ and $\mathfrak{g}_{A}([w+1, w+m])>m / K$. That is, the assumptions of Lemma 1 are satisfied with $L=2 K m \ln m$ and $\varepsilon=1 / K$. Hence, if A is m-coverable, then $|A|<60 K^{2} m \operatorname{In} m$, proving the Main Lemma.

Why it works?

Suppose that A is m-coverable.

Since A is a union of at most $m-1$ progressions with difference m, some residue class (mod m) is not represented in A. Hence every interval of length m contains a gap.

This gap is a terminating point of m progressions with differences $1,2, \ldots, m$. This potentially creates m problems as an element of A, followed by an element not in A at distance $d \in[1, m]$, results in terminating a progression in A with difference d; however the total supply of such progressions is limited (at most $m-1$).

To avoid having too many problems, a tynical gap must have many other gaps in its neighborhood. (If $g \notin A$, but $g-d \in A$ for $d \in[1, m]$, we have a problem.) Thus, gaps "breed"!

When "critical mass" of gaps is reached, there is no room for elements of A around: mixing elements of A with gaps creates a lot of problems.

Why it works?

Suppose that A is m-coverable.
Since A is a union of at most $m-1$ progressions with difference m, some residue class $(\bmod m)$ is not represented in A. Hence every interval of length m contains a gap.

> This gap is a terminating point of m progressions with differences $1,2, \ldots, m$. This potentially creates m problems as an element of A, followed by an element not in A at distance $d \in[1, m]$, results in terminating a progression in A with difference d; however the total supply of such progressions is limited (at most $m-1$) To avoid having too many problems, a tynical gan must have many other gaps in its neighborhood. (If $g \notin A$, but $g-d \in A$ for $d \in[1, m]$, we have a problem.) Thus, gaps "breed"!

> When "critical mass" of gans is reached, there is no room for elements of A around: mixing elements of A with gaps creates a lot of problems.

Why it works?

Suppose that A is m-coverable.
Since A is a union of at most $m-1$ progressions with difference m, some residue class ($\bmod m$) is not represented in A. Hence every interval of length m contains a gap.

This gap is a terminating point of m progressions with differences $1,2, \ldots, m$. This potentially creates m problems as an element of A, followed by an element not in A at distance $d \in[1, m]$, results in terminating a progression in A with difference d; however the total supply of such progressions is limited (at most $m-1$).

To avoid having too many problems, a typical gap must have many other gaps in its neighborhood. (If $g \notin A$, but $g-d \in A$ for $d \in[1, m]$, we have a problem.) Thus, gaps "breed"!

When "critical mass" of gaps is reached, there is no room for elements of A around: mixing elements of A with gaps creates a lot of problems.

Why it works?

Suppose that A is m-coverable.
Since A is a union of at most $m-1$ progressions with difference m, some residue class ($\bmod m$) is not represented in A. Hence every interval of length m contains a gap.

This gap is a terminating point of m progressions with differences $1,2, \ldots, m$. This potentially creates m problems as an element of A, followed by an element not in A at distance $d \in[1, m]$, results in terminating a progression in A with difference d; however the total supply of such progressions is limited (at most $m-1$).

To avoid having too many problems, a typical gap must have many other gaps in its neighborhood. (If $g \notin A$, but $g-d \in A$ for $d \in[1, m]$, we have a problem.) Thus, gaps "breed"!

When "critical mass" of gaps is reached, there is no room for elements
of A around: mixing elements of A with gaps creates a lot of problems.

Why it works?

Suppose that A is m-coverable.
Since A is a union of at most $m-1$ progressions with difference m, some residue class ($\bmod m$) is not represented in A. Hence every interval of length m contains a gap.

This gap is a terminating point of m progressions with differences $1,2, \ldots, m$. This potentially creates m problems as an element of A, followed by an element not in A at distance $d \in[1, m]$, results in terminating a progression in A with difference d; however the total supply of such progressions is limited (at most $m-1$).

To avoid having too many problems, a typical gap must have many other gaps in its neighborhood. (If $g \notin A$, but $g-d \in A$ for $d \in[1, m]$, we have a problem.) Thus, gaps "breed"!

When "critical mass" of gaps is reached, there is no room for elements of A around: mixing elements of A with gaps creates a lot of problems.

Open Problems

Problem 1: $\mathbb{Z} / p \mathbb{Z}$

How about abelian groups, other than \mathbb{Z} ? Is it true that for any $A, D \subseteq \mathbb{Z} / p \mathbb{Z}$ with $|D|<c|A| / \ln |A|$ there exists $d \in D$ with $|(A+d) \backslash A| \geq(|D|-1) / 2 ?$

Problem 2: Popular Sums

How about popular sums? Is it true that for any finite sets $A, D \subseteq \mathbb{Z}$ with $|D|<c|A| / \ln |A|$ there exists $d \in D$ with $|(d-A) \backslash A| \geq(|D|-1) / 2$?

Problem 3: Relaxing the Assumptions

Is it true that for any finite $A \subseteq \mathbb{Z}$ and $D \subseteq \mathbb{N}$ with $|D|<c|A|$ there exists $d \in D$ with $|(A+d) \backslash A| \geq|D|-O(1)$? That is, does $|D|<c|A|$ imply $\mu_{A}(D) \geq|D|-O(1)$?

Open Problems

Problem 1: $\mathbb{Z} / p \mathbb{Z}$

How about abelian groups, other than \mathbb{Z} ? Is it true that for any $A, D \subseteq \mathbb{Z} / p \mathbb{Z}$ with $|D|<c|A| / \ln |A|$ there exists $d \in D$ with $|(A+d) \backslash A| \geq(|D|-1) / 2 ?$

Problem 2: Popular Sums

How about popular sums? Is it true that for any finite sets $A, D \subseteq \mathbb{Z}$ with $|D|<c|A| / \ln |A|$ there exists $d \in D$ with $|(d-A) \backslash A| \geq(|D|-1) / 2$?

Problem 3: Relaxing the Assumptions

Is it true that for any finite $A \subseteq \mathbb{Z}$ and $D \subseteq \mathbb{N}$ with $|D|<c|A|$ there exists $d \in D$ with $|(A+d) \backslash A| \geq|D|-O(1)$? That is, does $|D|<c|A|$ imply $\mu_{A}(D) \geq|D|-O(1)$?

