On the Number
of Popular Differences

Vsevolod Lev

U Haifa — GA Tech

Toronto, April 8, 2008

(joint work with Sergei Konyagin)



Introduction Measuring translation invariance

Translation Invariance of Integer Sets

A finite set of elements in a group with torsion can be invariant under
non-zero translates; a set of elements in a torsion-free group cannot.

The Problem

To what degree a finite set of integers can be translation-invariant? J
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Measuring translation invariance
Translation Invariance of Integer Sets

A finite set of elements in a group with torsion can be invariant under
non-zero translates; a set of elements in a torsion-free group cannot.

The Problem

To what degree a finite set of integers can be translation-invariant?

A

Also, what are the most translation-invariant sets?
(“Sure, arithmetic progressions”?)
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Measuring translation invariance
Translation Invariance of Integer Sets
A finite set of elements in a group with torsion can be invariant under

non-zero translates; a set of elements in a torsion-free group cannot.

The Problem
To what degree a finite set of integers can be translation-invariant? J

Also, what are the most translation-invariant sets?
(“Sure, arithmetic progressions”?)

The degree of invariance of a set A C Z is measured by the function
Ap(d) =|(A+d)\A; deZ

showing by how much A “moves out itself” when gets translated by d;
considered, say, by Olson in 1968 and by Erd6s and Heilbronn in 1964.
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The Olson-Erdés-Heilbronn Function
The Properties of the Olson-Erdds-Heilbronn function

Aa(d) = |(A+d)\A; dezZ

Basic properties of the function A4:

("] AA(O) =0;
o Aa(—d) = A(d);
o AA(d1 + d2) < AA(d1) + AA(dg), whence AA(hd) < hAA(d)
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The Properties of the Olson-Erdds-Heilbronn function

Ap(d) = |(A+d)\ A, deZ

Basic properties of the function A4:

® Ap(0) =0;
@ Aj(—d) = Ax(d);
o AA(d1 + d2) < AA(d1) + AA(dg), whence AA(hd) < hAA(d)

Furthermore,

@ Au(d) = |A| — va(d), where v4(d) is the number of
representations of d as a difference of two elements of A;

@ A4(d) is the minimal number of arithmetic progressions with
difference d into which A can be partitioned.
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How Many Small Values can A4 Attain?

We seek to show that A4 does not assume too many small values:
the “enemy” gives us a set D, we try to select d € D with Ax(d) large.

As Ap(—d) = Ax(d), we assume d > 0 whenever convenient. Easy:
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How Many Small Values can A4 Attain?

We seek to show that A4 does not assume too many small values:
the “enemy” gives us a set D, we try to select d € D with Ax(d) large.

As Ap(—d) = Ax(d), we assume d > 0 whenever convenient. Easy:

@ there is at most one d € N with Ax(d) < 1;
moreover, for such d to exist, A must be an arithmetic progression;

(Thus, given D C N with |D| > 2, we can find d € D with Ax(d) > 2; if
|D| > 3, we can find d € D with As(d) > 3 — provided |A| > 3.)
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How Many Small Values can A4 Attain?

We seek to show that A4 does not assume too many small values:
the “enemy” gives us a set D, we try to select d € D with Ax(d) large.

As Ap(—d) = Ax(d), we assume d > 0 whenever convenient. Easy:

@ there is at most one d € N with Ax(d) < 1;
moreover, for such d to exist, A must be an arithmetic progression;
@ there are at most two d € N with A(d) < 2; moreover,

for two such d to exist, A must be an arithmetic progression or a
progression with the second smallest / largest element deleted.

(Thus, given D C N with |D| > 2, we can find d € D with Ax(d) > 2; if
|D| > 3, we can find d € D with As(d) > 3 — provided |A| > 3.)
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How Many Small Values can A4 Attain?

We seek to show that A4 does not assume too many small values:
the “enemy” gives us a set D, we try to select d € D with Ax(d) large.

As Ap(—d) = Ax(d), we assume d > 0 whenever convenient. Easy:

@ there is at most one d € N with Ax(d) < 1;
moreover, for such d to exist, A must be an arithmetic progression;
@ there are at most two d € N with A(d) < 2; moreover,

for two such d to exist, A must be an arithmetic progression or a
progression with the second smallest / largest element deleted.

(Thus, given D C N with |D| > 2, we can find d € D with Ax(d) > 2; if
|D| > 3, we can find d € D with Ax(d) > 3 — provided |A| > 3.)

Messy:
How many d € N can there be with Aa(d) < 47 With Aa(d) <57
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The Olson-Erdés-Heilbronn Function
The Behavior in Average

If Ais a block of consecutive integers, then for every 1 < m < |A| there
is exactly one d € N with Ax(d) = m; thus, there are exactly m positive
integers d with A(d) < m.
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The Olson-Erdds-Heilbronn Function
The Behavior in Average

If Ais a block of consecutive integers, then for every 1 < m < |A| there
is exactly one d € N with A(d) = m; thus, there are exactly m positive
integers d with Aa(d) < m.

This turns out to be the “worst case in average”:
Theorem (Gabriel 1932, extending Hardy-Littlewood 1928)
For any finite sets A C Z, D C N we have

|D|

|D| ZAU iap(d) < |D| > Da(d).

deD

That is, for |A] and |D| prescribed, the sum > ;. p Aa(d) gets
minimized when A = [1,|A|] and D = [1,|D|].
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The Olson-Erdés-Heilbronn Function
From Average to Pointwise
In other words: for every m > 1, the average of the m smallest values

of A, is minimized when A is a block of consecutive integers; more
generally, when A an arithmetic progression.
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The Olson-Erdés-Heilbronn Function
From Average to Pointwise
In other words: for every m > 1, the average of the m smallest values
of A, is minimized when A is a block of consecutive integers; more
generally, when A an arithmetic progression.
Are arithmetic progressions optimal pointwise?
Let

D) = A - A DCZ.
pa(D) max Ald); A DC

By Gabiriel,

D D

,D|ZA[1|A|1 |D|Zd—*(!D\+1)
provided that |D| < |A]. (If d > |A|, then Ax(d) = |A| # d.)
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e
Beating Arithmetic Progressions

Ap(d) = [(A+d)\ Al pa(D) = maxgep Aa(d); A, DCZ

If Ais an AP, then p4(D) > |D| for any D C N with |D| < |A].
Is it true that pa(D) > |D| forany A C Z, D C N (with |D| < |A])?
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e
Beating Arithmetic Progressions

Aa(d) =[(A+d)\Al,  pa(D) = maxgep Aa(d); A, DCZ

If Ais an AP, then p4(D) > |D| for any D C N with |D| < |A].
Is it true that pa(D) > |D| forany A C Z, D C N (with |D| < |A[)?

No!
For an integer m > 2, let

A= | [km (k+1)m-2)

0<k<log, m

Then Ax(d) < m—1forevery d € [1, m]; thatis, for D = [1, m] we
have pa(D) < |D| — whereas |D| = m ~ |A|/log |A|!
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A translation-stable set
The Interpretation

m = 100:

0 100 200 300 400 500 600 700
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A translation-stable set
The Interpretation

m = 100:

0 100 200 300 400 500 600 700
For long time we believed that the answer is “ALMOST “YES”:

A Wrong Theorem

There is an absolute constant ¢ > 0 such that u4(D) > |D| holds for all
finite sets A C Z, D C N with |D| < c|A|.
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A translation-stable set
The Interpretation

m = 100:

0 100 200 300 400 500 600 700
For long time we believed that the answer is “ALMOST “YES”:

A Wrong Theorem

There is an absolute constant ¢ > 0 such that u4(D) > |D| holds for all
finite sets A C Z, D C N with |D| < c|A|.

The right interpretation of the example above: |D| < c|A| is insufficient
for ua(D) > |D| to hold, a stronger assumption is needed!
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The Results The |A]/ In |A| bound

The Main Result

Turns out that |D| < c|A|/log|A]| is sufficient:

The True Theorem (Konyagin, Lev)

There is an absolute constant ¢ > 0 such that u4(D) > |D| holds for all
finite sets A C Z, D C N with |D| < c|A|/log |A|.

@ Both u4(D) > |D| and |D| < c|A|/log |A| are best possible, as
shown by the AP example and the “logarithmic example”.
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The |A|/In |A| bound
The Main Result

Turns out that |D| < c|A|/log|A]| is sufficient:

The True Theorem (Konyagin, Lev)

There is an absolute constant ¢ > 0 such that u4(D) > |D| holds for all
finite sets A C Z, D C N with |D| < c|A|/log |A|.

@ Both u4(D) > |D| and |D| < c|A|/log |A| are best possible, as
shown by the AP example and the “logarithmic example”.

A simple proof can be given if the assumption is strengthened:

The /|A|-Theorem
We have p4(D) > |D| for all finite sets A C Z, D C N with |D| < /|A].
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Uiz
The /|A|-Theorem
We have pa(D) > |D| for all finite sets A C Z, D C N with |D| < /|A|.
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Uiz
The /|A|-Theorem
We have pa(D) > |D| for all finite sets A C Z, D C N with |D| < /|A|.

Proof of the /|A|-Theorem.
di,...,dn €N, m<\/]A % Ax(d;) > mfor some i € [1,m]

For a contradiction, suppose that Axa(d)) <m—1fori=1,....,m;
thus, A is a union of at most m — 1 AP with difference d;, for each i.

At least one of these AP has m or more terms (as (m — 1)? < |A|);
say, a+ kd; € Afork =1,..., m. But Ais also a union of at most

m — 1 AP with difference dj! Hence, a + kid; = a+ kod; (mod d)

for some ky, ko € [1, m], ki # ko.

V.
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Uiz
The /|A|-Theorem
We have pa(D) > |D| for all finite sets A C Z, D C N with |D| < /|A|.

Proof of the /|A|-Theorem.
di,...,dn €N, m<\/]A % Ax(d;) > mfor some i € [1,m]

For a contradiction, suppose that Aa(dj)) < m—1fori=1,...,m;
thus, A is a union of at most m — 1 AP with difference d;, for each i.

At least one of these AP has m or more terms (as (m — 1)? < |A|);

say, a+ kd; € Afork =1,..., m. But Ais also a union of at most

m — 1 AP with difference dj! Hence, a + kid; = a+ kod; (mod d)

for some ky, ko € [1, m], ki # ko.

This yields d; | (ko — k1)d};, implying d;/ gcd(d}, ) | k2 — k1 and,
consequently, d;/ gcd(d}, d;) < m — 1, contradicting “Graham’s

g.c.d. conjecture”! Ol

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 10/20



Reduction to the case D = [, m]
The Main Lemma

An important particular case of the Main Theorem, from which the
general result is derived, is the case D = [1, m].

The Main Lemma

There is an absolute constant C > 0 such that pa([1, m]) > m holds for
every finite set A C Z with |A] > Cmlog m.

Plain-terms restatement, avoiding non-standard notation:
if |[A| > Cmlog m, then there exists d € [1, m] with |(A+ d) \ Al > m.

The “Deduction Toolbox”:
(*] MA(hD) < h,uA(D) (recaII AA(d1 + d2) < AA(d1) + AA(dg)!);
® ya(D) > (D] +1)/2 for |D| < |A];
@ monotonicity: if D C C, then ua(D) < pua(C);
@ estimates of |hA| and results on the structure of hA.
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An important particular case of the Main Theorem, from which the
general result is derived, is the case D = [1, m].

The Main Lemma

There is an absolute constant C > 0 such that pa([1, m]) > m holds for
every finite set A C Z with |A] > Cmlog m.

Plain-terms restatement, avoiding non-standard notation:
if |[A| > Cmlog m, then there exists d € [1, m] with |(A+ d) \ Al > m.
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The Main Lemma Reduction to the case D = [1, m]

Deduction of the Main Theorem from the Main Lemma
Let D C N and suppose that A C Z is “large”, while pa(D) < |D].

The idea: if D is unstructured, then the sumsets hD grow fast;

hence u4(hD) are large, and so is (D) > h~'pua(hD):

3 |hD| < pa(hD) < hua(D) < h|DJ,
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The Main Lemma Reduction to the case D = [1, m]

Deduction of the Main Theorem from the Main Lemma
Let D C N and suppose that A C Z is “large”, while pa(D) < |D].

The idea: if D is unstructured, then the sumsets hD grow fast;

hence u4(hD) are large, and so is (D) > h~'pua(hD):

3hD| < pa(hD) < hua(D) < h|D,
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The Main Lemma Reduction to the case D = [1, m]

Deduction of the Main Theorem from the Main Lemma
Let D C N and suppose that A C Z is “large”, while 1.4(D) < |D].

The idea: if D is unstructured, then the sumsets hD grow fast;

hence u4(hD) are large, and so is (D) > h~'pua(hD):

1hD| < pa(hD) < hyua(D) < hID,
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The Main Lemma Reduction to the case D = [1, m]

Deduction of the Main Theorem from the Main Lemma
Let D C N and suppose that A C Z is “large”, while pa(D) < |D].

The idea: if D is unstructured, then the sumsets hD grow fast;

hence u4(hD) are large, and so is (D) > h~'pua(hD):

1|hD| < pa(hD) < hyua(D) < hID,

whence
|hD| < 2h|D|.

It does not follows that D is “close” to [1, m], and even not that D
is dense; however, it follows that hD is dense and consequently,
hD — hD 2 [1,|hD| — 1] (provided gcd(D) = 1, as we assume).
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The Main Lemma Reduction to the case D = [1, m]

Deduction of the Main Theorem from the Main Lemma
Let D C N and suppose that A C Z is “large”, while pa(D) < |D].

The idea: if D is unstructured, then the sumsets hD grow fast;

hence u4(hD) are large, and so is (D) > h~'pua(hD):

1|hD| < pa(hD) < hyua(D) < hID,

whence
|hD| < 2h|D|.

It does not follows that D is “close” to [1, m], and even not that D
is dense; however, it follows that hD is dense and consequently,

hD — hD 2 [1,|hD| — 1] (provided gcd(D) = 1, as we assume).

Now we use monotonicity and the Main Lemma:

y1a(hD — hD) > pi([1,|hD| — 1]) > |AD| — 1
while, on the other hand,
pua(hD — hD) < 2hua(D) < 2h|D|.
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The Main Lemma Reduction to the case D = [1, m]

Deduction of the Main Theorem from the Main Lemma
Let D C N and suppose that A C Z is “large”, while pa(D) < |D].

The idea: if D is unstructured, then the sumsets hD grow fast;

hence u4(hD) are large, and so is (D) > h~'pua(hD):

1|hD| < pa(hD) < hyua(D) < hID,

whence
|hD| < 2h|D|.

It does not follows that D is “close” to [1, m], and even not that D
is dense; however, it follows that hD is dense and consequently,

hD — hD 2 [1,|hD| — 1] (provided gcd(D) = 1, as we assume).

Now we use monotonicity and the Main Lemma:

$1a(hD — hD) > pa([1,|hD| = 1]) > |AD| — 1
while, on the other hand,
pua(hD — hD) < 2hua(D) < 2h|D|.
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Reduction to the case D = [1, m]
The Real Deduction, |

To make this approach work, we consider the set
D* .= (-D)u{0}uD

instead of D: it grows faster, while 114(D*) = pa(D).
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Reduction to the case D = [1, m]
The Real Deduction, |

To make this approach work, we consider the set
D* .= (-D)u{0}uD

instead of D: it grows faster, while 114(D*) = pa(D).
If na(D) < |DJ, then (as above) we get

|hD*| < 2h|D*|

implying
2hD* = hD* — hD* D [1, |hDF| — 1].

By monotonicity and the Main Lemma,

pa(2hD¥) > pa([1, |AD*| —1]) = |ADF| - 1.
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Reduction to the case D = [1, m]
The Real Deduction, Il

Comparing
pa(2hD*) > |hD*E| — 1

(from the last slide) to

pa(2hDF) < 2hua(D*¥) = 2hua(D) < 2h|D|
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Reduction to the case D = [1, m]
The Real Deduction, Il

Comparing
pa(2hD*) > |hD*| — 1

(from the last slide) to
pa(2hDF) < 2hua(D*) = 2hua(D) < 2h|D)|
we get

|hD*| — 1 < 2h|D| = h(|D*| - 1),
|hD*| < h|D*| — h,

which is impossible.
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Reduction to the case D = [1, m]
The Real Deduction, Il

Comparing
pa(2hD*) > |hD*E| — 1

(from the last slide) to
pa(2hDF) < 2hua(D*¥) = 2hua(D) < 2h|D|
we get

|hD*| — 1 < 2h|D| = h(|D*| - 1),
|hD*| < h|D*| — h,

which is impossible.

In fact, this approach works already for h = 3.
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of the Main Lemma.

m-Coverable Sets
Remainder of the talk: sketch of the proof
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Sketch of the proof
m-Coverable Sets

Remainder of the talk: sketch of the proof
of the Main Lemma.

The Main Lemma

There is an absolute constant
C > 0 such that pa([1,m]) > m
holds for every finite set A C Z
with |A| > Cmlog m.

A (finite) set A C Z is m-coverable if
@ pa([1,m]) < m;
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Sketch of the proof
m-Coverable Sets

Remainder of the talk: sketch of the proof
of the Main Lemma.

The Main Lemma

There is an absolute constant
C > 0 such that pa([1,m]) > m
holds for every finite set A C Z
with |A| > Cmlog m.

A (finite) set A C Z is m-coverable if
@ na([1,m]) < m;thatis, if
@ Au(d) <m—1foreveryde[1,m];
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Sketch of the proof
m-Coverable Sets

Remainder of the talk: sketch of the proof
of the Main Lemma.

The Main Lemma

There is an absolute constant
C > 0 such that pa([1,m]) > m
holds for every finite set A C 7Z
with |A| > Cmlog m.

A (finite) set A C Z is m-coverable if
@ na([1,m]) < m;thatis, if
@ Ax(d) < m—1forevery d e [1, m]; in other words, if
o for every d € [1,m], the set A is a union of at most m — 1
arithmetic progressions with difference d.
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Sketch of the proof
m-Coverable Sets

Remainder of the talk: sketch of the proof
of the Main Lemma.

The Main Lemma The Main Lemma, Restated
There is an absolute constant There is an absolute constant
C > O such that pa([1,m]) > m C > 0 such that if the set
holds for every finite set A C 7Z A C Z is m-coverable, then
with |A| > Cmlog m. |A] < Cmlog m.

A (finite) set A C Z is m-coverable if
@ 1a([1,m]) < m;thatis, if
@ Au(d) < m—1forevery d € [1, m]; in other words, if

o for every d € [1,m], the set A is a union of at most m — 1
arithmetic progressions with difference d.
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The Main Lemma Sketch of the proof

Gaps and Problems

A set A C Z is m-coverable if for every d € [1, m] it is
a union of at most m — 1 progressions with difference d.

The Main Lemma: if A C Z is m-coverable, then |A| < Cmlog m.

Notice, that for any / € N (and even very large), the interval A=[1,/] is
“almost” m-coverable: for each d € [1, m — 1], it is a union of at most
m — 1 progressions with difference d. The only trouble is with d = m!
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The Main Lemma Sketch of the proof

Gaps and Problems

A set A C Z is m-coverable if for every d € [1, m] itis
a union of at most m — 1 progressions with difference d.

The Main Lemma: if A C Z is m-coverable, then |A| < Cmlog m.

Notice, that for any / € N (and even very large), the interval A= [1,/] is
“almost” m-coverable: for each d € [1, m — 1], it is a union of at most
m — 1 progressions with difference d. The only trouble is with d = m!

Two central notions in the proof of the Main Lemma are gaps and
problems.

@ Agapinaset Sis an element of S which is not in A. We write
ga(S) :=|S\ AJ; this is the number of gaps in S.

@ A problemis apair (a,a+d)withaec A, a+d ¢ A,andd € [1,m].
To every d € [1, m] there correspond at most m — 1 problems.
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Sketch of the proof
The Three Pillars

Lemma 1

Suppose that A is m-coverable. If ¢ > 0 and L > m have the property
that for every u € Z there exists w € Z with |w — u| < L such that
ga([w + 1, w + m]) > em, then |A| < 30~ L.

Lemma 2

There is an absolute constant K > 2 with the following property: if A is
m-coverable, then for every u € Z with K < ga([u+1,u+ m]) < m/K
there exists w € Z such that |w — u| < Km and

gA([W+ 1a w + m]) > 2gA([u+ 1? u+ m])

Lemma 3

If Ais m-coverable, then for every u € Z and 1 < K < m/2 there exists
w € Z with |w — u| < Km such that ga([w + 1, w + m]) > K.

v
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Sketch of the proof
How it works

Combining Lemmas 1-3, we prove the Main Lemma as follows.

Suppose that A is m-coverable, and let u € Z.
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Sketch of the proof
How it works

Combining Lemmas 1-3, we prove the Main Lemma as follows.

Suppose that A is m-coverable, and let u € Z.

@ Applying Lemma 3, find wy € Z with |wp — u| < Km and
ga([wo + 1, wp + m]) > K (where K is a sufficiently large constant).
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How it works

Combining Lemmas 1-3, we prove the Main Lemma as follows.

Suppose that A is m-coverable, and let u € Z.

@ Applying Lemma 3, find wy € Z with |wp — u| < Km and
ga([wo + 1, wp + m]) > K (where K is a sufficiently large constant).

@ Applying Lemma 2 iteratively about log,c m times, find w € Z with
lw —wp| < Kminmand ga([w + 1, w +m]) > m/K.
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Sketch of the proof
How it works

Combining Lemmas 1-3, we prove the Main Lemma as follows.

Suppose that A is m-coverable, and let u € Z.

@ Applying Lemma 3, find wy € Z with |wp — u| < Km and
ga([wo + 1, wp + m]) > K (where K is a sufficiently large constant).

@ Applying Lemma 2 iteratively about log,c m times, find w € Z with
lw —wp| < Kminmand ga([w + 1, w +m]) > m/K.

@ Thus, for every u € Z there is w € Z with |w — u| < 2KmInm and
ga([w+1,w+ m]) > m/K. That is, the assumptions of Lemma 1
are satisfied with L = 2KmInmand ¢ = 1/K. Hence, if Ais
m-coverable, then |A| < 60K2mIn m, proving the Main Lemma.
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Why it works?
Suppose that A is m-coverable.
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Why it works?
Suppose that A is m-coverable.

Since Ais a union of at most m — 1 progressions with difference m,
some residue class (mod m) is not represented in A. Hence every
interval of length m contains a gap.
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Why it works?
Suppose that A is m-coverable.

Since Ais a union of at most m — 1 progressions with difference m,
some residue class (mod m) is not represented in A. Hence every
interval of length m contains a gap.

This gap is a terminating point of m progressions with differences
1,2,...,m. This potentially creates m problems as an element of A,
followed by an element not in A at distance d € [1, m|, results in
terminating a progression in A with difference d; however the total
supply of such progressions is limited (at most m — 1).
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Since Ais a union of at most m — 1 progressions with difference m,
some residue class (mod m) is not represented in A. Hence every
interval of length m contains a gap.

This gap is a terminating point of m progressions with differences
1,2,...,m. This potentially creates m problems as an element of A,
followed by an element not in A at distance d € [1, m|, results in
terminating a progression in A with difference d; however the total
supply of such progressions is limited (at most m — 1).

To avoid having too many problems, a typical gap must have many
other gaps in its neighborhood. (If g ¢ A, but g — d € Aford € [1, m],
we have a problem.) Thus, gaps “breed”!
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Why it works?
Suppose that A is m-coverable.

Since Ais a union of at most m — 1 progressions with difference m,
some residue class (mod m) is not represented in A. Hence every
interval of length m contains a gap.

This gap is a terminating point of m progressions with differences
1,2,...,m. This potentially creates m problems as an element of A,
followed by an element not in A at distance d € [1, m|, results in
terminating a progression in A with difference d; however the total
supply of such progressions is limited (at most m — 1).

To avoid having too many problems, a typical gap must have many
other gaps in its neighborhood. (If g ¢ A, but g — d € Aford € [1, m],
we have a problem.) Thus, gaps “breed”!

When “critical mass” of gaps is reached, there is no room for elements
of A around: mixing elements of A with gaps creates a /ot of problems.
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Open Problems

Problem 1: Z/pZ

How about abelian groups, other than Z? Is it true that for any
A,D C Z/pZ with |D| < c|A|/In|A| there exists d € D with
I(A+d)\ Al = (|D| —1)/27

Problem 2: Popular Sums

How about popular sums? Is it true that for any finite sets A, D C Z with
|D| < c|A|/In|A] there exists d € D with |(d — A)\ A| > (|D| —1)/2?

Problem 3: Relaxing the Assumptions

Is it true that for any finite A C Z and D C N with |D| < c|A| there exists
d € Dwith |(A+d)\ Al > |D| — O(1)? That is, does |D| < c|A| imply
na(D) = |D| - O(1)?
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Is it true that for any finite A C Z and D C N with |D| < c|A| there exists
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na(D) > D] — O(1)?

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 20/20



	Introduction
	Measuring translation invariance
	The Olson-Erdos-Heilbronn Function
	A translation-stable set

	The Results
	The |A|/ln|A| bound
	The |A| bound

	The Main Lemma
	Reduction to the case D=[1,m]
	Sketch of the proof

	More Questions

