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Introduction Measuring translation invariance

Translation Invariance of Integer Sets
A finite set of elements in a group with torsion can be invariant under
non-zero translates; a set of elements in a torsion-free group cannot.

The Problem
To what degree a finite set of integers can be translation-invariant?

Also, what are the most translation-invariant sets?
(“Sure, arithmetic progressions”?)

The degree of invariance of a set A ⊆ Z is measured by the function

∆A(d) := |(A + d) \ A|; d ∈ Z

showing by how much A “moves out itself” when gets translated by d ;
considered, say, by Olson in 1968 and by Erdős and Heilbronn in 1964.
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Introduction The Olson-Erdős-Heilbronn Function

The Properties of the Olson-Erdős-Heilbronn function
∆A(d) := |(A + d) \ A|; d ∈ Z

Basic properties of the function ∆A:

∆A(0) = 0;
∆A(−d) = ∆A(d);
∆A(d1 + d2) ≤ ∆A(d1) + ∆A(d2), whence ∆A(hd) ≤ h∆A(d).

Furthermore,

∆A(d) = |A| − νA(d), where νA(d) is the number of
representations of d as a difference of two elements of A;
∆A(d) is the minimal number of arithmetic progressions with
difference d into which A can be partitioned.
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Introduction The Olson-Erdős-Heilbronn Function

How Many Small Values can ∆A Attain?
We seek to show that ∆A does not assume too many small values:
the “enemy” gives us a set D, we try to select d ∈ D with ∆A(d) large.

As ∆A(−d) = ∆A(d), we assume d > 0 whenever convenient. Easy:

there is at most one d ∈ N with ∆A(d) ≤ 1;
moreover, for such d to exist, A must be an arithmetic progression;
there are at most two d ∈ N with ∆A(d) ≤ 2; moreover,
for two such d to exist, A must be an arithmetic progression or a
progression with the second smallest / largest element deleted.

(Thus, given D ⊆ N with |D| ≥ 2, we can find d ∈ D with ∆A(d) ≥ 2; if
|D| ≥ 3, we can find d ∈ D with ∆A(d) ≥ 3 — provided |A| ≥ 3.)

Messy:
How many d ∈ N can there be with ∆A(d) ≤ 4? With ∆A(d) ≤ 5?

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 4 / 20



Introduction The Olson-Erdős-Heilbronn Function
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Introduction The Olson-Erdős-Heilbronn Function

The Behavior in Average

If A is a block of consecutive integers, then for every 1 ≤ m < |A| there
is exactly one d ∈ N with ∆A(d) = m; thus, there are exactly m positive
integers d with ∆A(d) ≤ m.

This turns out to be the “worst case in average”:

Theorem (Gabriel 1932, extending Hardy-Littlewood 1928)
For any finite sets A ⊆ Z, D ⊆ N we have

1
|D|

|D|∑
d=1

∆[1,|A|](d) ≤ 1
|D|

∑
d∈D

∆A(d).

That is, for |A| and |D| prescribed, the sum
∑

d∈D ∆A(d) gets
minimized when A = [1, |A|] and D = [1, |D|].
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Introduction The Olson-Erdős-Heilbronn Function

From Average to Pointwise

In other words: for every m ≥ 1, the average of the m smallest values
of ∆A is minimized when A is a block of consecutive integers; more
generally, when A an arithmetic progression.

Are arithmetic progressions optimal pointwise?

Let
µA(D) := max

d∈D
∆A(d); A,D ⊆ Z.

By Gabriel,

µA(D) ≥ 1
|D|

|D|∑
d=1

∆[1,|A|](d) =
1
|D|

|D|∑
d=1

d =
1
2

(|D|+ 1),

provided that |D| ≤ |A|. (If d > |A|, then ∆A(d) = |A| 6= d .)

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 6 / 20



Introduction The Olson-Erdős-Heilbronn Function
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Introduction A translation-stable set

Beating Arithmetic Progressions

∆A(d) = |(A + d) \ A|, µA(D) = maxd∈D ∆A(d); A,D ⊆ Z

If A is an AP, then µA(D) ≥ |D| for any D ⊆ N with |D| ≤ |A|.

Is it true that µA(D) ≥ |D| for any A ⊆ Z, D ⊆ N (with |D| ≤ |A|)?

For an integer m > 2, let

A :=
⋃

0≤k<log2 m

[km, (k + 1)m − 2k ).

Then ∆A(d) ≤ m − 1 for every d ∈ [1,m]; that is, for D = [1,m] we
have µA(D) < |D|— whereas |D| = m ∼ |A|/ log |A|!

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 7 / 20



Introduction A translation-stable set

Beating Arithmetic Progressions

∆A(d) = |(A + d) \ A|, µA(D) = maxd∈D ∆A(d); A,D ⊆ Z

If A is an AP, then µA(D) ≥ |D| for any D ⊆ N with |D| ≤ |A|.

Is it true that µA(D) ≥ |D| for any A ⊆ Z, D ⊆ N (with |D| ≤ |A|)?

No!
For an integer m > 2, let

A :=
⋃

0≤k<log2 m

[km, (k + 1)m − 2k ).

Then ∆A(d) ≤ m − 1 for every d ∈ [1,m]; that is, for D = [1,m] we
have µA(D) < |D|— whereas |D| = m ∼ |A|/ log |A|!

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 7 / 20



Introduction A translation-stable set

The Interpretation

m = 100:

0 100 200 300 400 500 600 700

For long time we believed that the answer is “ALMOST “YES”:

There is an absolute constant c > 0 such that µA(D) ≥ |D| holds for all
finite sets A ⊆ Z, D ⊆ N with |D| < c|A|.

The right interpretation of the example above: |D| ≤ c|A| is insufficient
for µA(D) ≥ |D| to hold, a stronger assumption is needed!
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The Results The |A|/ ln |A| bound

The Main Result

Turns out that |D| < c|A|/ log |A| is sufficient:

The True Theorem (Konyagin, Lev)
There is an absolute constant c > 0 such that µA(D) ≥ |D| holds for all
finite sets A ⊆ Z, D ⊆ N with |D| < c|A|/ log |A|.

Both µA(D) ≥ |D| and |D| < c|A|/ log |A| are best possible, as
shown by the AP example and the “logarithmic example”.

A simple proof can be given if the assumption is strengthened:

The
√
|A|-Theorem

We have µA(D) ≥ |D| for all finite sets A ⊆ Z, D ⊆ N with |D| ≤
√
|A|.
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The Results The
√

|A| bound

The
√
|A|-Theorem

We have µA(D) ≥ |D| for all finite sets A ⊆ Z, D ⊆ N with |D| ≤
√
|A|.

Proof of the
√
|A|-Theorem.

d1, . . . ,dm ∈ N, m ≤
√
|A| ?⇒ ∆A(di) ≥ m for some i ∈ [1,m]

For a contradiction, suppose that ∆A(di) ≤ m − 1 for i = 1, . . . ,m;
thus, A is a union of at most m − 1 AP with difference di , for each i .

At least one of these AP has m or more terms (as (m − 1)2 < |A|);
say, a + kdi ∈ A for k = 1, . . . ,m. But A is also a union of at most
m − 1 AP with difference dj ! Hence, a + k1di ≡ a + k2di (mod dj)
for some k1, k2 ∈ [1,m], k1 6= k2.

This yields dj | (k2 − k1)di , implying dj/gcd(di ,dj) | k2 − k1 and,
consequently, dj/gcd(di ,dj) ≤ m − 1, contradicting “Graham’s
g.c.d. conjecture”!
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The Main Lemma Reduction to the case D = [1, m]

The Main Lemma
An important particular case of the Main Theorem, from which the
general result is derived, is the case D = [1,m].

The Main Lemma
There is an absolute constant C > 0 such that µA([1,m]) ≥ m holds for
every finite set A ⊆ Z with |A| > Cm log m.

Plain-terms restatement, avoiding non-standard notation:
if |A| > Cm log m, then there exists d ∈ [1,m] with |(A + d) \ A| ≥ m.

The “Deduction Toolbox”:

µA(hD) ≤ hµA(D) (recall ∆A(d1 + d2) ≤ ∆A(d1) + ∆A(d2)!);
µA(D) ≥ (|D|+ 1)/2 for |D| ≤ |A|;
monotonicity: if D ⊆ C, then µA(D) ≤ µA(C);
estimates of |hA| and results on the structure of hA.
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The Main Lemma Reduction to the case D = [1, m]

Deduction of the Main Theorem from the Main Lemma
Let D ⊆ N and suppose that A ⊆ Z is “large”, while µA(D) < |D|.
The idea: if D is unstructured, then the sumsets hD grow fast;
hence µA(hD) are large, and so is µA(D) ≥ h−1µA(hD):

1
2 |hD| < µA(hD) ≤ hµA(D) < h|D|,

whence
|hD| < 2h|D|.

It does not follows that D is “close” to [1,m], and even not that D
is dense; however, it follows that hD is dense and consequently,
hD − hD ⊇ [1, |hD| − 1] (provided gcd(D) = 1, as we assume).
Now we use monotonicity and the Main Lemma:

µA(hD − hD) ≥ µA([1, |hD| − 1]) ≥ |hD| − 1

while, on the other hand,

µA(hD − hD) ≤ 2hµA(D) < 2h|D|.
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The Main Lemma Reduction to the case D = [1, m]

The Real Deduction, I
To make this approach work, we consider the set

D± := (−D) ∪ {0} ∪ D

instead of D: it grows faster, while µA(D±) = µA(D).

If µA(D) < |D|, then (as above) we get

|hD±| < 2h|D±|

implying
2hD± = hD± − hD± ⊇ [1, |hD±| − 1].

By monotonicity and the Main Lemma,

µA(2hD±) ≥ µA([1, |hD±| − 1]) ≥ |hD±| − 1.

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 13 / 20



The Main Lemma Reduction to the case D = [1, m]

The Real Deduction, I
To make this approach work, we consider the set

D± := (−D) ∪ {0} ∪ D

instead of D: it grows faster, while µA(D±) = µA(D).

If µA(D) < |D|, then (as above) we get

|hD±| < 2h|D±|

implying
2hD± = hD± − hD± ⊇ [1, |hD±| − 1].

By monotonicity and the Main Lemma,

µA(2hD±) ≥ µA([1, |hD±| − 1]) ≥ |hD±| − 1.

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 13 / 20



The Main Lemma Reduction to the case D = [1, m]

The Real Deduction, II

Comparing
µA(2hD±) ≥ |hD±| − 1

(from the last slide) to

µA(2hD±) ≤ 2hµA(D±) = 2hµA(D) < 2h|D|

we get

|hD±| − 1 < 2h|D| = h(|D±| − 1),

|hD±| ≤ h|D±| − h,

which is impossible. �

In fact, this approach works already for h = 3.
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The Main Lemma Sketch of the proof

m-Coverable Sets

Remainder of the talk: sketch of the proof
of the Main Lemma.

The Main Lemma
There is an absolute constant
C > 0 such that µA([1,m]) ≥ m
holds for every finite set A ⊆ Z
with |A| > Cm log m.

The Main Lemma, Restated
There is an absolute constant
C > 0 such that if the set
A ⊆ Z is m-coverable, then
|A| < Cm log m.

A (finite) set A ⊆ Z is m-coverable if
µA([1,m]) < m; that is, if
∆A(d) ≤ m − 1 for every d ∈ [1,m]; in other words, if
for every d ∈ [1,m], the set A is a union of at most m − 1
arithmetic progressions with difference d .
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The Main Lemma Sketch of the proof

Gaps and Problems
A set A ⊆ Z is m-coverable if for every d ∈ [1,m] it is

a union of at most m − 1 progressions with difference d .

The Main Lemma: if A ⊆ Z is m-coverable, then |A| < Cm log m.

Notice, that for any l ∈ N (and even very large), the interval A = [1, l] is
“almost” m-coverable: for each d ∈ [1,m − 1], it is a union of at most
m − 1 progressions with difference d . The only trouble is with d = m!

Two central notions in the proof of the Main Lemma are gaps and
problems.

A gap in a set S is an element of S which is not in A. We write
gA(S) := |S \ A|; this is the number of gaps in S.
A problem is a pair (a,a + d) with a ∈ A, a + d /∈ A, and d ∈ [1,m].
To every d ∈ [1,m] there correspond at most m − 1 problems.
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The Main Lemma Sketch of the proof

The Three Pillars

Lemma 1
Suppose that A is m-coverable. If ε > 0 and L ≥ m have the property
that for every u ∈ Z there exists w ∈ Z with |w − u| ≤ L such that
gA([w + 1,w + m]) ≥ εm, then |A| < 30ε−1L.

Lemma 2
There is an absolute constant K ≥ 2 with the following property: if A is
m-coverable, then for every u ∈ Z with K ≤ gA([u + 1,u + m]) ≤ m/K
there exists w ∈ Z such that |w − u| ≤ Km and

gA([w + 1,w + m]) > 2gA([u + 1,u + m]).

Lemma 3
If A is m-coverable, then for every u ∈ Z and 1 ≤ K ≤ m/2 there exists
w ∈ Z with |w − u| < Km such that gA([w + 1,w + m]) ≥ K .
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The Main Lemma Sketch of the proof

How it works

Combining Lemmas 1–3, we prove the Main Lemma as follows.

Suppose that A is m-coverable, and let u ∈ Z.

Applying Lemma 3, find w0 ∈ Z with |w0 − u| < Km and
gA([w0 + 1,w0 + m]) ≥ K (where K is a sufficiently large constant).

Applying Lemma 2 iteratively about logK m times, find w ∈ Z with
|w − w0| < Km ln m and gA([w + 1,w + m]) > m/K .

Thus, for every u ∈ Z there is w ∈ Z with |w − u| < 2Km ln m and
gA([w + 1,w + m]) > m/K . That is, the assumptions of Lemma 1
are satisfied with L = 2Km ln m and ε = 1/K . Hence, if A is
m-coverable, then |A| < 60K 2m ln m, proving the Main Lemma.
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The Main Lemma Sketch of the proof

Why it works?
Suppose that A is m-coverable.

Since A is a union of at most m − 1 progressions with difference m,
some residue class (mod m) is not represented in A. Hence every
interval of length m contains a gap.

This gap is a terminating point of m progressions with differences
1,2, . . . ,m. This potentially creates m problems as an element of A,
followed by an element not in A at distance d ∈ [1,m], results in
terminating a progression in A with difference d ; however the total
supply of such progressions is limited (at most m − 1).

To avoid having too many problems, a typical gap must have many
other gaps in its neighborhood. (If g /∈ A, but g − d ∈ A for d ∈ [1,m],
we have a problem.) Thus, gaps “breed”!

When “critical mass” of gaps is reached, there is no room for elements
of A around: mixing elements of A with gaps creates a lot of problems.

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 19 / 20



The Main Lemma Sketch of the proof

Why it works?
Suppose that A is m-coverable.

Since A is a union of at most m − 1 progressions with difference m,
some residue class (mod m) is not represented in A. Hence every
interval of length m contains a gap.

This gap is a terminating point of m progressions with differences
1,2, . . . ,m. This potentially creates m problems as an element of A,
followed by an element not in A at distance d ∈ [1,m], results in
terminating a progression in A with difference d ; however the total
supply of such progressions is limited (at most m − 1).

To avoid having too many problems, a typical gap must have many
other gaps in its neighborhood. (If g /∈ A, but g − d ∈ A for d ∈ [1,m],
we have a problem.) Thus, gaps “breed”!

When “critical mass” of gaps is reached, there is no room for elements
of A around: mixing elements of A with gaps creates a lot of problems.

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 19 / 20



The Main Lemma Sketch of the proof

Why it works?
Suppose that A is m-coverable.

Since A is a union of at most m − 1 progressions with difference m,
some residue class (mod m) is not represented in A. Hence every
interval of length m contains a gap.

This gap is a terminating point of m progressions with differences
1,2, . . . ,m. This potentially creates m problems as an element of A,
followed by an element not in A at distance d ∈ [1,m], results in
terminating a progression in A with difference d ; however the total
supply of such progressions is limited (at most m − 1).

To avoid having too many problems, a typical gap must have many
other gaps in its neighborhood. (If g /∈ A, but g − d ∈ A for d ∈ [1,m],
we have a problem.) Thus, gaps “breed”!

When “critical mass” of gaps is reached, there is no room for elements
of A around: mixing elements of A with gaps creates a lot of problems.

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 19 / 20



The Main Lemma Sketch of the proof

Why it works?
Suppose that A is m-coverable.

Since A is a union of at most m − 1 progressions with difference m,
some residue class (mod m) is not represented in A. Hence every
interval of length m contains a gap.

This gap is a terminating point of m progressions with differences
1,2, . . . ,m. This potentially creates m problems as an element of A,
followed by an element not in A at distance d ∈ [1,m], results in
terminating a progression in A with difference d ; however the total
supply of such progressions is limited (at most m − 1).

To avoid having too many problems, a typical gap must have many
other gaps in its neighborhood. (If g /∈ A, but g − d ∈ A for d ∈ [1,m],
we have a problem.) Thus, gaps “breed”!

When “critical mass” of gaps is reached, there is no room for elements
of A around: mixing elements of A with gaps creates a lot of problems.

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 19 / 20



The Main Lemma Sketch of the proof

Why it works?
Suppose that A is m-coverable.

Since A is a union of at most m − 1 progressions with difference m,
some residue class (mod m) is not represented in A. Hence every
interval of length m contains a gap.

This gap is a terminating point of m progressions with differences
1,2, . . . ,m. This potentially creates m problems as an element of A,
followed by an element not in A at distance d ∈ [1,m], results in
terminating a progression in A with difference d ; however the total
supply of such progressions is limited (at most m − 1).

To avoid having too many problems, a typical gap must have many
other gaps in its neighborhood. (If g /∈ A, but g − d ∈ A for d ∈ [1,m],
we have a problem.) Thus, gaps “breed”!

When “critical mass” of gaps is reached, there is no room for elements
of A around: mixing elements of A with gaps creates a lot of problems.

Vsevolod Lev (U Haifa — GA Tech) On the number of popular differences Toronto, April 8, 2008 19 / 20



More Questions

Open Problems

Problem 1: Z/pZ
How about abelian groups, other than Z? Is it true that for any
A,D ⊆ Z/pZ with |D| < c|A|/ ln |A| there exists d ∈ D with
|(A + d) \ A| ≥ (|D| − 1)/2?

Problem 2: Popular Sums
How about popular sums? Is it true that for any finite sets A,D ⊆ Z with
|D| < c|A|/ ln |A| there exists d ∈ D with |(d − A) \ A| ≥ (|D| − 1)/2?

Problem 3: Relaxing the Assumptions
Is it true that for any finite A ⊆ Z and D ⊆ N with |D| < c|A| there exists
d ∈ D with |(A + d) \ A| ≥ |D| −O(1)? That is, does |D| < c|A| imply
µA(D) ≥ |D| −O(1)?
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