On the Number of Popular Differences

Vsevolod Lev

U Haifa — GA Tech

Toronto, April 8, 2008

(joint work with Sergei Konyagin)

Translation Invariance of Integer Sets

A finite set of elements in a group with torsion can be invariant under non-zero translates; a set of elements in a torsion-free group cannot.

The Problem

To what degree a finite set of integers can be translation-invariant?

Also, what are the most translation-invariant sets? ("Sure, arithmetic progressions"?)

The degree of invariance of a set $A \subseteq \mathbb{Z}$ is measured by the function

$$\Delta_A(d) := |(A+d) \setminus A|; \quad d \in \mathbb{Z}$$

showing by how much A "moves out itself" when gets translated by d; considered, say, by Olson in 1968 and by Erdős and Heilbronn in 1964.

Translation Invariance of Integer Sets

A finite set of elements in a group with torsion can be invariant under non-zero translates; a set of elements in a torsion-free group cannot.

The Problem

To what degree a finite set of integers can be translation-invariant?

Also, what are the most translation-invariant sets? ("Sure, arithmetic progressions"?)

The degree of invariance of a set $A \subseteq \mathbb{Z}$ is measured by the function

$$\Delta_A(d) := |(A+d) \setminus A|; \quad d \in \mathbb{Z}$$

showing by how much A "moves out itself" when gets translated by d; considered, say, by Olson in 1968 and by Erdős and Heilbronn in 1964.

Translation Invariance of Integer Sets

A finite set of elements in a group with torsion can be invariant under non-zero translates; a set of elements in a torsion-free group cannot.

The Problem

To what degree a finite set of integers can be translation-invariant?

Also, what are the most translation-invariant sets? ("Sure, arithmetic progressions"?)

The degree of invariance of a set $A \subseteq \mathbb{Z}$ is measured by the function

$$\Delta_{A}(d) := |(A+d) \setminus A|; \quad d \in \mathbb{Z}$$

showing by how much A "moves out itself" when gets translated by d; considered, say, by Olson in 1968 and by Erdős and Heilbronn in 1964.

The Properties of the Olson-Erdős-Heilbronn function

$$\Delta_A(d) := |(A+d) \setminus A|; \quad d \in \mathbb{Z}$$

Basic properties of the function Δ_A :

- $\Delta_{A}(0) = 0$;
- $\bullet \ \Delta_A(-d) = \Delta_A(d);$
- $\Delta_A(d_1 + d_2) \leq \Delta_A(d_1) + \Delta_A(d_2)$, whence $\Delta_A(hd) \leq h\Delta_A(d)$.

Furthermore,

- $\Delta_A(d) = |A| \nu_A(d)$, where $\nu_A(d)$ is the number of representations of d as a difference of two elements of A;
- $\Delta_A(d)$ is the minimal number of arithmetic progressions with difference d into which A can be partitioned.

The Properties of the Olson-Erdős-Heilbronn function

$$\Delta_A(d) := |(A+d) \setminus A|; \quad d \in \mathbb{Z}$$

Basic properties of the function Δ_A :

- $\Delta_A(0) = 0$;
- $\bullet \ \Delta_A(-d) = \Delta_A(d);$
- $\Delta_A(d_1 + d_2) \leq \Delta_A(d_1) + \Delta_A(d_2)$, whence $\Delta_A(hd) \leq h\Delta_A(d)$.

Furthermore,

- $\Delta_A(d) = |A| \nu_A(d)$, where $\nu_A(d)$ is the number of representations of d as a difference of two elements of A;
- $\Delta_A(d)$ is the minimal number of arithmetic progressions with difference d into which A can be partitioned.

We seek to show that Δ_A does not assume too many small values: the "enemy" gives us a set D, we try to select $d \in D$ with $\Delta_A(d)$ large.

As $\Delta_A(-d) = \Delta_A(d)$, we assume d > 0 whenever convenient. Easy:

- there is at most one $d \in \mathbb{N}$ with $\Delta_A(d) \leq 1$; moreover, for such d to exist, A must be an arithmetic progression
- there are at most two $d \in \mathbb{N}$ with $\Delta_A(d) \leq 2$; moreover, for *two* such d to exist, A must be an arithmetic progression or a progression with the second smallest / largest element deleted.

(Thus, given $D \subseteq \mathbb{N}$ with $|D| \ge 2$, we can find $d \in D$ with $\Delta_A(d) \ge 2$; if $|D| \ge 3$, we can find $d \in D$ with $\Delta_A(d) \ge 3$ — provided $|A| \ge 3$.)

Messy

We seek to show that Δ_A does not assume too many small values: the "enemy" gives us a set D, we try to select $d \in D$ with $\Delta_A(d)$ large.

As $\Delta_A(-d) = \Delta_A(d)$, we assume d > 0 whenever convenient. Easy:

- there is at most one $d \in \mathbb{N}$ with $\Delta_A(d) \leq 1$; moreover, for such d to exist, A must be an arithmetic progression;
- there are at most two $d \in \mathbb{N}$ with $\Delta_A(d) \leq 2$; moreover, for *two* such d to exist, A must be an arithmetic progression or a progression with the second smallest / largest element deleted.

(Thus, given $D \subseteq \mathbb{N}$ with $|D| \ge 2$, we can find $d \in D$ with $\Delta_A(d) \ge 2$; if $|D| \ge 3$, we can find $d \in D$ with $\Delta_A(d) \ge 3$ — provided $|A| \ge 3$.)

Messy

We seek to show that Δ_A does not assume too many small values: the "enemy" gives us a set D, we try to select $d \in D$ with $\Delta_A(d)$ large.

As $\Delta_A(-d) = \Delta_A(d)$, we assume d > 0 whenever convenient. Easy:

- there is at most one $d \in \mathbb{N}$ with $\Delta_A(d) \leq 1$; moreover, for such d to exist, A must be an arithmetic progression;
- there are at most two $d \in \mathbb{N}$ with $\Delta_A(d) \leq 2$; moreover, for *two* such d to exist, A must be an arithmetic progression or a progression with the second smallest / largest element deleted.

(Thus, given $D \subseteq \mathbb{N}$ with $|D| \ge 2$, we can find $d \in D$ with $\Delta_A(d) \ge 2$; if $|D| \ge 3$, we can find $d \in D$ with $\Delta_A(d) \ge 3$ — provided $|A| \ge 3$.)

Messy

We seek to show that Δ_A does not assume too many small values: the "enemy" gives us a set D, we try to select $d \in D$ with $\Delta_A(d)$ large.

As $\Delta_A(-d) = \Delta_A(d)$, we assume d > 0 whenever convenient. Easy:

- there is at most one $d \in \mathbb{N}$ with $\Delta_A(d) \leq 1$; moreover, for such d to exist, A must be an arithmetic progression;
- there are at most two $d \in \mathbb{N}$ with $\Delta_A(d) \leq 2$; moreover, for *two* such d to exist, A must be an arithmetic progression or a progression with the second smallest / largest element deleted.

(Thus, given $D \subseteq \mathbb{N}$ with $|D| \ge 2$, we can find $d \in D$ with $\Delta_A(d) \ge 2$; if $|D| \ge 3$, we can find $d \in D$ with $\Delta_A(d) \ge 3$ — provided $|A| \ge 3$.)

Messy:

The Behavior in Average

If A is a block of consecutive integers, then for every $1 \le m < |A|$ there is exactly one $d \in \mathbb{N}$ with $\Delta_A(d) = m$; thus, there are exactly m positive integers d with $\Delta_A(d) \le m$.

This turns out to be the "worst case in average":

Theorem (Gabriel 1932, extending Hardy-Littlewood 1928)

For any finite sets $A \subseteq \mathbb{Z}$, $D \subseteq \mathbb{N}$ we have

$$\frac{1}{|D|} \sum_{d=1}^{|D|} \Delta_{[1,|A|]}(d) \leq \frac{1}{|D|} \sum_{d \in D} \Delta_{A}(d).$$

That is, for |A| and |D| prescribed, the sum $\sum_{d \in D} \Delta_A(d)$ gets minimized when A = [1, |A|] and D = [1, |D|].

The Behavior in Average

If A is a block of consecutive integers, then for every $1 \le m < |A|$ there is exactly one $d \in \mathbb{N}$ with $\Delta_A(d) = m$; thus, there are exactly m positive integers d with $\Delta_A(d) \le m$.

This turns out to be the "worst case in average":

Theorem (Gabriel 1932, extending Hardy-Littlewood 1928)

For any finite sets $A \subseteq \mathbb{Z}, \ D \subseteq \mathbb{N}$ we have

$$\frac{1}{|D|}\sum_{d=1}^{|D|}\Delta_{[1,|A|]}(d)\leq \frac{1}{|D|}\sum_{d\in D}\Delta_{A}(d).$$

That is, for |A| and |D| prescribed, the sum $\sum_{d \in D} \Delta_A(d)$ gets minimized when A = [1, |A|] and D = [1, |D|].

From Average to Pointwise

In other words: for every $m \ge 1$, the average of the m smallest values of Δ_A is minimized when A is a block of consecutive integers; more generally, when A an arithmetic progression.

Are arithmetic progressions optimal pointwise?

Le

$$\mu_A(D) := \max_{d \in D} \Delta_A(d); \quad A, D \subseteq \mathbb{Z}.$$

By Gabriel,

$$\mu_A(D) \ge \frac{1}{|D|} \sum_{d=1}^{|D|} \Delta_{[1,|A|]}(d) = \frac{1}{|D|} \sum_{d=1}^{|D|} d = \frac{1}{2} (|D| + 1),$$

provided that $|D| \le |A|$. (If d > |A|, then $\Delta_A(d) = |A| \ne d$.)

From Average to Pointwise

In other words: for every $m \ge 1$, the average of the m smallest values of Δ_A is minimized when A is a block of consecutive integers; more generally, when A an arithmetic progression.

Are arithmetic progressions optimal pointwise?

Let

$$\mu_A(D) := \max_{d \in D} \Delta_A(d); \quad A, D \subseteq \mathbb{Z}.$$

By Gabriel,

$$\mu_{A}(D) \geq \frac{1}{|D|} \sum_{d=1}^{|D|} \Delta_{[1,|A|]}(d) = \frac{1}{|D|} \sum_{d=1}^{|D|} d = \frac{1}{2} (|D| + 1),$$

provided that $|D| \leq |A|$. (If d > |A|, then $\Delta_A(d) = |A| \neq d$.)

Beating Arithmetic Progressions

$$\Delta_{A}(d) = |(A+d) \setminus A|, \quad \mu_{A}(D) = \max_{d \in D} \Delta_{A}(d); \ A, D \subseteq \mathbb{Z}$$

If A is an AP, then $\mu_A(D) \ge |D|$ for any $D \subseteq \mathbb{N}$ with $|D| \le |A|$.

Is it true that $\mu_A(D) \ge |D|$ for any $A \subseteq \mathbb{Z}, \ D \subseteq \mathbb{N}$ (with $|D| \le |A|$)?

For an integer m > 2, let

$$A:=\bigcup_{0\leq k<\log_2 m}[km,(k+1)m-2^k).$$

Then $\Delta_A(d) \le m-1$ for every $d \in [1, m]$; that is, for D = [1, m] we have $\mu_A(D) < |D|$ — whereas $|D| = m \sim |A|/\log |A|!$

Beating Arithmetic Progressions

$$\Delta_{A}(d) = |(A+d) \setminus A|, \quad \mu_{A}(D) = \max_{d \in D} \Delta_{A}(d); \ A, D \subseteq \mathbb{Z}$$

If A is an AP, then $\mu_A(D) \ge |D|$ for any $D \subseteq \mathbb{N}$ with $|D| \le |A|$.

Is it true that $\mu_A(D) \ge |D|$ for any $A \subseteq \mathbb{Z}, \ D \subseteq \mathbb{N}$ (with $|D| \le |A|$)?

No!

For an integer m > 2, let

$$A:=\bigcup_{0\leq k<\log_2 m}[km,(k+1)m-2^k).$$

Then $\Delta_A(d) \le m-1$ for every $d \in [1, m]$; that is, for D = [1, m] we have $\mu_A(D) < |D|$ — whereas $|D| = m \sim |A|/\log |A|!$

The Interpretation

m = 100.

The Interpretation

m = 100:

For long time we believed that the answer is "ALMOST "YES":

A Wrong Theorem

There is an absolute constant c > 0 such that $\mu_A(D) \ge |D|$ holds for all finite sets $A \subseteq \mathbb{Z}$, $D \subseteq \mathbb{N}$ with |D| < c|A|.

The right interpretation of the example above: $|D| \le c|A|$ is *insufficient* for $\mu_A(D) \ge |D|$ to hold, a stronger assumption is needed!

The Interpretation

m = 100:

For long time we believed that the answer is "ALMOST "YES":

A Wrong Theorem

There is an absolute constant c > 0 such that $\mu_A(D) \ge |D|$ holds for all finite sets $A \subseteq \mathbb{Z}$, $D \subseteq \mathbb{N}$ with |D| < c|A|.

The right interpretation of the example above: $|D| \le c|A|$ is *insufficient* for $\mu_A(D) \ge |D|$ to hold, a stronger assumption is needed!

The Main Result

Turns out that $|D| < c|A|/\log |A|$ is sufficient:

The True Theorem (Konyagin, Lev)

There is an absolute constant c > 0 such that $\mu_A(D) \ge |D|$ holds for all finite sets $A \subseteq \mathbb{Z}$, $D \subseteq \mathbb{N}$ with $|D| < c|A|/\log |A|$.

• Both $\mu_A(D) \ge |D|$ and $|D| < c|A|/\log |A|$ are best possible, as shown by the AP example and the "logarithmic example".

A simple proof can be given if the assumption is strengthened:

The $\sqrt{|A|}$ -Theorem

We have $\mu_A(D) \ge |D|$ for all finite sets $A \subseteq \mathbb{Z}, \ D \subseteq \mathbb{N}$ with $|D| \le \sqrt{|A|}$.

The Main Result

Turns out that $|D| < c|A|/\log |A|$ is sufficient:

The True Theorem (Konyagin, Lev)

There is an absolute constant c > 0 such that $\mu_A(D) \ge |D|$ holds for all finite sets $A \subseteq \mathbb{Z}, \ D \subseteq \mathbb{N}$ with $|D| < c|A|/\log |A|$.

• Both $\mu_A(D) \ge |D|$ and $|D| < c|A|/\log |A|$ are best possible, as shown by the AP example and the "logarithmic example".

A simple proof can be given if the assumption is strengthened:

The $\sqrt{|A|}$ -Theorem

We have $\mu_A(D) \ge |D|$ for all finite sets $A \subseteq \mathbb{Z}, D \subseteq \mathbb{N}$ with $|D| \le \sqrt{|A|}$.

We have $\mu_A(D) \ge |D|$ for all finite sets $A \subseteq \mathbb{Z}, \ D \subseteq \mathbb{N}$ with $|D| \le \sqrt{|A|}$.

Proof of the $\sqrt{|A|}$ -Theorem.

$$d_1, \ldots, d_m \in \mathbb{N}, \ m \leq \sqrt{|A|} \quad \Rightarrow \quad \Delta_A(d_i) \geq m \text{ for some } i \in [1, m]$$

For a contradiction, suppose that $\Delta_A(d_i) \leq m-1$ for $i=1,\ldots,m$; thus, A is a union of at most m-1 AP with difference d_i , for each i.

At least one of these AP has m or more terms (as $(m-1)^2 < |A|$); say, $a + kd_i \in A$ for k = 1, ..., m. But A is also a union of at most m-1 AP with difference d_j ! Hence, $a + k_1d_i \equiv a + k_2d_i \pmod{d_j}$ for some $k_1, k_2 \in [1, m], \ k_1 \neq k_2$.

This yields $d_j \mid (k_2 - k_1)d_i$, implying $d_j / \gcd(d_i, d_j) \mid k_2 - k_1$ and, consequently, $d_j / \gcd(d_i, d_j) \leq m - 1$, contradicting "Graham's g.c.d. conjecture"!

We have $\mu_A(D) \ge |D|$ for all finite sets $A \subseteq \mathbb{Z}, \ D \subseteq \mathbb{N}$ with $|D| \le \sqrt{|A|}$.

Proof of the $\sqrt{|A|}$ -Theorem.

$$d_1,\ldots,d_m\in\mathbb{N},\ m\leq\sqrt{|A|}\quad\stackrel{?}{\Rightarrow}\quad \Delta_A(d_i)\geq m \ ext{for some} \ i\in[1,m]$$

For a contradiction, suppose that $\Delta_A(d_i) \leq m-1$ for $i=1,\ldots,m$; thus, A is a union of at most m-1 AP with difference d_i , for each i.

At least one of these AP has m or more terms (as $(m-1)^2 < |A|$); say, $a + kd_i \in A$ for k = 1, ..., m. But A is also a union of at most m-1 AP with difference d_j ! Hence, $a + k_1d_i \equiv a + k_2d_i \pmod{d_j}$ for some $k_1, k_2 \in [1, m], \ k_1 \neq k_2$.

This yields $d_j \mid (k_2 - k_1)d_i$, implying $d_j / \gcd(d_i, d_j) \mid k_2 - k_1$ and, consequently, $d_j / \gcd(d_i, d_j) \leq m - 1$, contradicting "Graham's g.c.d. conjecture"!

The $\sqrt{|A|}$ -Theorem

We have $\mu_A(D) \ge |D|$ for all finite sets $A \subseteq \mathbb{Z}, \ D \subseteq \mathbb{N}$ with $|D| \le \sqrt{|A|}$.

Proof of the $\sqrt{|A|}$ -Theorem.

$$d_1,\ldots,d_m\in\mathbb{N},\ m\leq\sqrt{|A|}\quad\stackrel{?}{\Rightarrow}\quad \Delta_A(d_i)\geq m \ ext{for some} \ i\in[1,m]$$

For a contradiction, suppose that $\Delta_A(d_i) \leq m-1$ for $i=1,\ldots,m$; thus, A is a union of at most m-1 AP with difference d_i , for each i.

At least one of these AP has m or more terms (as $(m-1)^2 < |A|$); say, $a + kd_i \in A$ for k = 1, ..., m. But A is also a union of at most m-1 AP with difference d_j ! Hence, $a + k_1d_i \equiv a + k_2d_i \pmod{d_j}$ for some $k_1, k_2 \in [1, m], \ k_1 \neq k_2$.

This yields $d_j \mid (k_2 - k_1)d_i$, implying $d_j / \gcd(d_i, d_j) \mid k_2 - k_1$ and, consequently, $d_j / \gcd(d_i, d_j) \leq m - 1$, contradicting "Graham's g.c.d. conjecture"!

The Main Lemma

An important particular case of the Main Theorem, from which the general result is derived, is the case D = [1, m].

The Main Lemma

There is an absolute constant C > 0 such that $\mu_A([1, m]) \ge m$ holds for every finite set $A \subseteq \mathbb{Z}$ with $|A| > Cm \log m$.

Plain-terms restatement, avoiding non-standard notation:

if
$$|A| > Cm \log m$$
, then there exists $d \in [1, m]$ with $|(A + d) \setminus A| \ge m$.

The "Deduction Toolbox":

- $\mu_A(hD) \le h\mu_A(D)$ (recall $\Delta_A(d_1 + d_2) \le \Delta_A(d_1) + \Delta_A(d_2)!$);
- $\mu_A(D) \ge (|D| + 1)/2$ for $|D| \le |A|$;
- monotonicity: if $D \subseteq C$, then $\mu_A(D) \le \mu_A(C)$;
- estimates of |hA| and results on the structure of hA.

The Main Lemma

An important particular case of the Main Theorem, from which the general result is derived, is the case D = [1, m].

The Main Lemma

There is an absolute constant C > 0 such that $\mu_A([1, m]) \ge m$ holds for every finite set $A \subseteq \mathbb{Z}$ with $|A| > Cm \log m$.

Plain-terms restatement, avoiding non-standard notation:

if
$$|A| > Cm \log m$$
, then there exists $d \in [1, m]$ with $|(A + d) \setminus A| \ge m$.

The "Deduction Toolbox":

- $\mu_A(hD) \le h\mu_A(D)$ (recall $\Delta_A(d_1 + d_2) \le \Delta_A(d_1) + \Delta_A(d_2)!$);
- $\mu_A(D) \ge (|D| + 1)/2$ for $|D| \le |A|$;
- monotonicity: if $D \subseteq C$, then $\mu_A(D) \le \mu_A(C)$;
- estimates of |hA| and results on the structure of hA.

Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_A(D) < |D|$. The idea: if D is unstructured, then the sumsets hD grow fast; hence $\mu_A(hD)$ are large, and so is $\mu_A(D) \ge h^{-1}\mu_A(hD)$:

$$\frac{1}{2}|hD| < \mu_A(hD) \le h\mu_A(D) < h|D|,$$

whence

$$|hD| < 2h|D|$$
.

It does not follows that D is "close" to [1, m], and even not that D is dense; however, it follows that hD is dense and consequently, $hD - hD \supseteq [1, |hD| - 1]$ (provided $\gcd(D) = 1$, as we assume). Now we use monotonicity and the Main Lemma:

$$\mu_A(hD - hD) \ge \mu_A([1, |hD| - 1]) \ge |hD| - 1$$

$$\mu_A(hD-hD)\leq 2h\mu_A(D)<2h|D|.$$

Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_A(D) < |D|$. The idea: if D is unstructured, then the sumsets hD grow fast; hence $\mu_A(hD)$ are large, and so is $\mu_A(D) \ge h^{-1}\mu_A(hD)$:

$$\frac{1}{2}|hD| < \mu_A(hD) \le h\mu_A(D) < h|D|,$$

whence

$$|hD| < 2h|D|$$
.

It does not follows that D is "close" to [1, m], and even not that D is dense; however, it follows that hD is dense and consequently, $hD - hD \supseteq [1, |hD| - 1]$ (provided $\gcd(D) = 1$, as we assume). Now we use monotonicity and the Main Lemma:

$$\mu_A(hD - hD) \ge \mu_A([1, |hD| - 1]) \ge |hD| - 1$$

$$\mu_A(hD-hD)\leq 2h\mu_A(D)<2h|D|.$$

Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_A(D) < |D|$. The idea: if D is unstructured, then the sumsets hD grow fast; hence $\mu_A(hD)$ are large, and so is $\mu_A(D) \ge h^{-1}\mu_A(hD)$:

$$\frac{1}{2} |hD| < \mu_{A}(hD) \leq h\mu_{A}(D) < h|D|,$$

whence

$$|hD| < 2h|D|$$
.

It does not follows that D is "close" to [1, m], and even not that D is dense; however, it follows that hD is dense and consequently, $hD - hD \supseteq [1, |hD| - 1]$ (provided $\gcd(D) = 1$, as we assume). Now we use monotonicity and the Main Lemma:

$$\mu_A(hD - hD) \ge \mu_A([1, |hD| - 1]) \ge |hD| - 1$$

$$\mu_A(hD-hD)\leq 2h\mu_A(D)<2h|D|.$$

Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_A(D) < |D|$. The idea: if D is unstructured, then the sumsets hD grow fast; hence $\mu_A(hD)$ are large, and so is $\mu_A(D) \ge h^{-1}\mu_A(hD)$:

$$\frac{1}{2}|hD| < \mu_A(hD) \le \frac{h\mu_A(D)}{h} < \frac{h|D|}{h}$$

whence

$$|hD| < 2h|D|$$
.

It does not follows that D is "close" to [1, m], and even not that D is dense; however, it follows that hD is dense and consequently, $hD - hD \supseteq [1, |hD| - 1]$ (provided $\gcd(D) = 1$, as we assume). Now we use monotonicity and the Main Lemma:

$$\mu_A(hD - hD) \ge \mu_A([1, |hD| - 1]) \ge |hD| - 1$$

$$\mu_A(hD-hD)\leq 2h\mu_A(D)<2h|D|.$$

Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_A(D) < |D|$. The idea: if D is unstructured, then the sumsets hD grow fast; hence $\mu_A(hD)$ are large, and so is $\mu_A(D) \ge h^{-1}\mu_A(hD)$:

$$\frac{1}{2}|hD| < \mu_A(hD) \le h\mu_A(D) < h|D|,$$

whence

$$|hD| < 2h|D|$$
.

It does not follows that D is "close" to [1, m], and even not that D is dense; however, it follows that hD is dense and consequently, $hD - hD \supseteq [1, |hD| - 1]$ (provided gcd(D) = 1, as we assume). Now we use monotonicity and the Main Lemma:

$$\mu_A(hD - hD) \ge \mu_A([1, |hD| - 1]) \ge |hD| - 1$$

$$\mu_A(hD-hD)\leq 2h\mu_A(D)<2h|D|.$$

Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_A(D) < |D|$. The idea: if D is unstructured, then the sumsets hD grow fast; hence $\mu_A(hD)$ are large, and so is $\mu_A(D) \ge h^{-1}\mu_A(hD)$:

$$\frac{1}{2}|hD| < \mu_A(hD) \le h\mu_A(D) < h|D|,$$

whence

$$|hD| < 2h|D|$$
.

It does not follows that D is "close" to [1, m], and even not that D is dense; however, it follows that hD is dense and consequently, $hD - hD \supseteq [1, |hD| - 1]$ (provided gcd(D) = 1, as we assume). Now we use monotonicity and the Main Lemma:

$$\mu_A(hD - hD) \ge \mu_A([1, |hD| - 1]) \ge |hD| - 1$$

$$\mu_{\mathcal{A}}(hD-hD)\leq 2h\mu_{\mathcal{A}}(D)<2h|D|.$$

Let $D \subseteq \mathbb{N}$ and suppose that $A \subseteq \mathbb{Z}$ is "large", while $\mu_A(D) < |D|$. The idea: if D is unstructured, then the sumsets hD grow fast; hence $\mu_A(hD)$ are large, and so is $\mu_A(D) \ge h^{-1}\mu_A(hD)$:

$$\frac{1}{2}|hD| < \mu_A(hD) \le h\mu_A(D) < h|D|,$$

whence

$$|hD| < 2h|D|$$
.

It does not follows that D is "close" to [1, m], and even not that D is dense; however, it follows that hD is dense and consequently, $hD - hD \supseteq [1, |hD| - 1]$ (provided $\gcd(D) = 1$, as we assume). Now we use monotonicity and the Main Lemma:

$$\mu_{A}(hD - hD) \ge \mu_{A}([1, |hD| - 1]) \ge |hD| - 1$$

$$\mu_A(hD-hD)\leq 2h\mu_A(D)<2h|D|.$$

The Real Deduction, I

To make this approach work, we consider the set

$$D^{\pm}:=(-D)\cup\{0\}\cup D$$

instead of D: it grows faster, while $\mu_A(D^{\pm}) = \mu_A(D)$.

If $\mu_A(D) < |D|$, then (as above) we get

$$|hD^{\pm}|<2h|D^{\pm}|$$

implying

$$2hD^{\pm} = hD^{\pm} - hD^{\pm} \supseteq [1, |hD^{\pm}| - 1].$$

By monotonicity and the Main Lemma,

$$\mu_A(2hD^{\pm}) \ge \mu_A([1,|hD^{\pm}|-1]) \ge |hD^{\pm}|-1$$

The Real Deduction, I

To make this approach work, we consider the set

$$D^{\pm}:=(-D)\cup\{0\}\cup D$$

instead of D: it grows faster, while $\mu_A(D^{\pm}) = \mu_A(D)$.

If $\mu_A(D) < |D|$, then (as above) we get

$$|hD^{\pm}|<2h|D^{\pm}|$$

implying

$$2hD^{\pm} = hD^{\pm} - hD^{\pm} \supseteq [1, |hD^{\pm}| - 1].$$

By monotonicity and the Main Lemma,

$$\mu_A(2hD^{\pm}) \ge \mu_A([1,|hD^{\pm}|-1]) \ge |hD^{\pm}|-1.$$

The Real Deduction, II

Comparing

$$\mu_A(2hD^\pm) \geq |hD^\pm| - 1$$

(from the last slide) to

$$\mu_{A}(2hD^{\pm}) \leq 2h\mu_{A}(D^{\pm}) = 2h\mu_{A}(D) < 2h|D|$$

we get

$$|hD^{\pm}| - 1 < 2h|D| = h(|D^{\pm}| - 1),$$

 $|hD^{\pm}| \le h|D^{\pm}| - h,$

which is impossible

In fact, this approach works already for h = 3.

The Real Deduction, II

Comparing

$$\mu_A(2hD^{\pm}) \ge |hD^{\pm}| - 1$$

(from the last slide) to

$$\mu_{A}(2hD^{\pm}) \leq 2h\mu_{A}(D^{\pm}) = 2h\mu_{A}(D) < \frac{2h|D|}{2h}$$

we get

$$|hD^{\pm}| - 1 < 2h|D| = h(|D^{\pm}| - 1),$$

 $|hD^{\pm}| \le h|D^{\pm}| - h,$

which is impossible.

In fact, this approach works already for h = 3.

The Real Deduction, II

Comparing

$$\mu_{A}(2hD^{\pm}) \geq |hD^{\pm}| - 1$$

(from the last slide) to

$$\mu_{A}(2hD^{\pm}) \leq 2h\mu_{A}(D^{\pm}) = 2h\mu_{A}(D) < 2h|D|$$

we get

$$|hD^{\pm}| - 1 < 2h|D| = h(|D^{\pm}| - 1),$$

 $|hD^{\pm}| \le h|D^{\pm}| - h,$

which is impossible.

In fact, this approach works already for h = 3.

Remainder of the talk: sketch of the proof of the Main Lemma.

The Main Lemma

There is an absolute constant C > 0 such that $\mu_A([1, m]) \ge m$ holds for every finite set $A \subseteq \mathbb{Z}$ with $|A| > Cm \log m$.

The Main Lemma. Restated

There is an absolute constant C > 0 such that if the set $A \subseteq \mathbb{Z}$ is m-coverable, then $|A| < Cm \log m$.

- $\mu_A([1, m]) < m$; that is, if
- $\Delta_A(d) \leq m-1$ for every $d \in [1, m]$; in other words, if
- for every $d \in [1, m]$, the set A is a union of at most m 1 arithmetic progressions with difference d.

Remainder of the talk: sketch of the proof of the Main Lemma.

The Main Lemma

There is an absolute constant C>0 such that $\mu_A([1,m])\geq m$ holds for every finite set $A\subseteq \mathbb{Z}$ with $|A|>Cm\log m$.

The Main Lemma, Restated

There is an absolute constant C > 0 such that if the set $A \subseteq \mathbb{Z}$ is m-coverable, then $|A| < Cm \log m$.

- $\mu_A([1, m]) < m$; that is, if
- $\Delta_A(d) \leq m-1$ for every $d \in [1, m]$; in other words, if
- for every $d \in [1, m]$, the set A is a union of at most m 1 arithmetic progressions with difference d.

Remainder of the talk: sketch of the proof of the Main Lemma.

The Main Lemma

There is an absolute constant C > 0 such that $\mu_A([1, m]) \ge m$ holds for every finite set $A \subseteq \mathbb{Z}$ with $|A| > Cm \log m$.

There is an absolute constant C > 0 such that if the set $A \subseteq \mathbb{Z}$ is m-coverable, then

- $\mu_A([1, m]) < m$; that is, if
- $\Delta_A(d) \leq m-1$ for every $d \in [1, m]$; in other words, if
- for every $d \in [1, m]$, the set A is a union of at most m 1 arithmetic progressions with difference d.

Remainder of the talk: sketch of the proof of the Main Lemma.

The Main Lemma

There is an absolute constant C > 0 such that $\mu_A([1, m]) \ge m$ holds for every finite set $A \subseteq \mathbb{Z}$ with $|A| > Cm \log m$.

The Main Lemma, Restated There is an absolute constant C > 0 such that if the set $A \subseteq \mathbb{Z}$ is m-coverable, then $|A| < Cm \log m$.

- $\mu_A([1, m]) < m$; that is, if
- $\Delta_A(d) \leq m-1$ for every $d \in [1, m]$; in other words, if
- for every $d \in [1, m]$, the set A is a union of at most m 1 arithmetic progressions with difference d.

Remainder of the talk: sketch of the proof of the Main Lemma.

The Main Lemma

There is an absolute constant C > 0 such that $\mu_A([1, m]) \ge m$ holds for every finite set $A \subseteq \mathbb{Z}$ with $|A| > Cm \log m$.

The Main Lemma, Restated

There is an absolute constant C > 0 such that if the set $A \subseteq \mathbb{Z}$ is m-coverable, then $|A| < Cm \log m$.

- $\mu_A([1, m]) < m$; that is, if
- $\Delta_A(d) \leq m-1$ for every $d \in [1, m]$; in other words, if
- for every $d \in [1, m]$, the set A is a union of at most m 1 arithmetic progressions with difference d.

Gaps and Problems

A set $A \subseteq \mathbb{Z}$ is m-coverable if for every $d \in [1, m]$ it is a union of at most m-1 progressions with difference d.

The Main Lemma: if $A \subseteq \mathbb{Z}$ is *m*-coverable, then $|A| < Cm \log m$.

Notice, that for any $I \in \mathbb{N}$ (and even very large), the interval A = [1, I] is "almost" m-coverable: for each $d \in [1, m-1]$, it is a union of at most m-1 progressions with difference d. The only trouble is with d=m!

Two central notions in the proof of the Main Lemma are gaps and problems.

- A gap in a set S is an element of S which is not in A. We write $\mathfrak{g}_A(S) := |S \setminus A|$; this is the number of gaps in S.
- A problem is a pair (a, a+d) with $a \in A$, $a+d \notin A$, and $d \in [1, m]$. To every $d \in [1, m]$ there correspond at most m-1 problems.

Gaps and Problems

A set $A \subseteq \mathbb{Z}$ is m-coverable if for every $d \in [1, m]$ it is a union of at most m-1 progressions with difference d.

The Main Lemma: if $A \subseteq \mathbb{Z}$ is *m*-coverable, then $|A| < Cm \log m$.

Notice, that for any $I \in \mathbb{N}$ (and even very large), the interval A = [1, I] is "almost" m-coverable: for each $d \in [1, m-1]$, it is a union of at most m-1 progressions with difference d. The only trouble is with d=m!

Two central notions in the proof of the Main Lemma are gaps and problems.

- A gap in a set S is an element of S which is not in A. We write $g_A(S) := |S \setminus A|$; this is the number of gaps in S.
- A problem is a pair (a, a + d) with $a \in A$, $a + d \notin A$, and $d \in [1, m]$. To every $d \in [1, m]$ there correspond at most m 1 problems.

The Three Pillars

Lemma 1

Suppose that A is m-coverable. If $\varepsilon > 0$ and $L \ge m$ have the property that for every $u \in \mathbb{Z}$ there exists $w \in \mathbb{Z}$ with $|w - u| \le L$ such that $\mathfrak{g}_{\mathcal{A}}([w+1,w+m]) \ge \varepsilon m$, then $|\mathcal{A}| < 30\varepsilon^{-1}L$.

Lemma 2

There is an absolute constant $K \ge 2$ with the following property: if A is m-coverable, then for every $u \in \mathbb{Z}$ with $K \le \mathfrak{g}_A([u+1,u+m]) \le m/K$ there exists $w \in \mathbb{Z}$ such that $|w-u| \le Km$ and $\mathfrak{g}_A([w+1,w+m]) > 2\mathfrak{g}_A([u+1,u+m])$.

Lemma 3

If A is m-coverable, then for every $u \in \mathbb{Z}$ and $1 \le K \le m/2$ there exists $w \in \mathbb{Z}$ with |w - u| < Km such that $\mathfrak{g}_{A}([w + 1, w + m]) \ge K$.

4 □ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Combining Lemmas 1–3, we prove the Main Lemma as follows.

- Applying Lemma 3, find $w_0 \in \mathbb{Z}$ with $|w_0 u| < Km$ and $\mathfrak{g}_A([w_0 + 1, w_0 + m]) \ge K$ (where K is a sufficiently large constant).
- Applying Lemma 2 iteratively about $\log_K m$ times, find $w \in \mathbb{Z}$ with $|w w_0| < Km \ln m$ and $\mathfrak{g}_A([w+1, w+m]) > m/K$.
- Thus, for every $u \in \mathbb{Z}$ there is $w \in \mathbb{Z}$ with $|w u| < 2Km \ln m$ and $\mathfrak{g}_A([w+1,w+m]) > m/K$. That is, the assumptions of Lemma 1 are satisfied with $L = 2Km \ln m$ and $\varepsilon = 1/K$. Hence, if A is m-coverable, then $|A| < 60K^2m \ln m$, proving the Main Lemma.

Combining Lemmas 1–3, we prove the Main Lemma as follows.

- Applying Lemma 3, find $w_0 \in \mathbb{Z}$ with $|w_0 u| < Km$ and $\mathfrak{g}_A([w_0 + 1, w_0 + m]) \ge K$ (where K is a sufficiently large constant).
- Applying Lemma 2 iteratively about $\log_K m$ times, find $w \in \mathbb{Z}$ with $|w w_0| < Km \ln m$ and $\mathfrak{g}_A([w+1, w+m]) > m/K$.
- Thus, for every $u \in \mathbb{Z}$ there is $w \in \mathbb{Z}$ with $|w u| < 2Km \ln m$ and $\mathfrak{g}_A([w+1,w+m]) > m/K$. That is, the assumptions of Lemma 1 are satisfied with $L = 2Km \ln m$ and $\varepsilon = 1/K$. Hence, if A is m-coverable, then $|A| < 60K^2m \ln m$, proving the Main Lemma.

Combining Lemmas 1–3, we prove the Main Lemma as follows.

- Applying Lemma 3, find $w_0 \in \mathbb{Z}$ with $|w_0 u| < Km$ and $\mathfrak{g}_A([w_0 + 1, w_0 + m]) \ge K$ (where K is a sufficiently large constant).
- Applying Lemma 2 iteratively about $\log_K m$ times, find $w \in \mathbb{Z}$ with $|w w_0| < Km \ln m$ and $\mathfrak{g}_A([w+1, w+m]) > m/K$.
- Thus, for every $u \in \mathbb{Z}$ there is $w \in \mathbb{Z}$ with $|w u| < 2Km \ln m$ and $\mathfrak{g}_A([w+1,w+m]) > m/K$. That is, the assumptions of Lemma 1 are satisfied with $L = 2Km \ln m$ and $\varepsilon = 1/K$. Hence, if A is m-coverable, then $|A| < 60K^2m \ln m$, proving the Main Lemma.

Combining Lemmas 1–3, we prove the Main Lemma as follows.

- Applying Lemma 3, find $w_0 \in \mathbb{Z}$ with $|w_0 u| < Km$ and $\mathfrak{g}_A([w_0 + 1, w_0 + m]) \ge K$ (where K is a sufficiently large constant).
- Applying Lemma 2 iteratively about $\log_K m$ times, find $w \in \mathbb{Z}$ with $|w w_0| < Km \ln m$ and $\mathfrak{g}_A([w+1, w+m]) > m/K$.
- Thus, for every $u \in \mathbb{Z}$ there is $w \in \mathbb{Z}$ with $|w u| < 2Km \ln m$ and $\mathfrak{g}_A([w+1,w+m]) > m/K$. That is, the assumptions of Lemma 1 are satisfied with $L = 2Km \ln m$ and $\varepsilon = 1/K$. Hence, if A is m-coverable, then $|A| < 60K^2m \ln m$, proving the Main Lemma.

Suppose that *A* is *m*-coverable.

Since A is a union of at most m-1 progressions with difference m, some residue class (mod m) is not represented in A. Hence every interval of length m contains a gap.

This gap is a terminating point of m progressions with differences $1, 2, \ldots, m$. This potentially creates m problems as an element of A, followed by an element not in A at distance $d \in [1, m]$, results in terminating a progression in A with difference d; however the total supply of such progressions is limited (at most m-1).

To avoid having too many problems, a typical gap must have many other gaps in its neighborhood. (If $g \notin A$, but $g - d \in A$ for $d \in [1, m]$, we have a problem.) Thus, gaps "breed"!

Suppose that *A* is *m*-coverable.

Since A is a union of at most m-1 progressions with difference m, some residue class (mod m) is not represented in A. Hence every interval of length m contains a gap.

This gap is a terminating point of m progressions with differences $1, 2, \ldots, m$. This potentially creates m problems as an element of A, followed by an element not in A at distance $d \in [1, m]$, results in terminating a progression in A with difference d; however the total supply of such progressions is limited (at most m-1).

To avoid having too many problems, a typical gap must have many other gaps in its neighborhood. (If $g \notin A$, but $g - d \in A$ for $d \in [1, m]$, we have a problem.) Thus, gaps "breed"!

Suppose that *A* is *m*-coverable.

Since A is a union of at most m-1 progressions with difference m, some residue class (mod m) is not represented in A. Hence every interval of length m contains a gap.

This gap is a terminating point of m progressions with differences $1, 2, \ldots, m$. This potentially creates m problems as an element of A, followed by an element not in A at distance $d \in [1, m]$, results in terminating a progression in A with difference d; however the total supply of such progressions is limited (at most m-1).

To avoid having too many problems, a typical gap must have many other gaps in its neighborhood. (If $g \notin A$, but $g - d \in A$ for $d \in [1, m]$, we have a problem.) Thus, gaps "breed"!

Suppose that *A* is *m*-coverable.

Since A is a union of at most m-1 progressions with difference m, some residue class (mod m) is not represented in A. Hence every interval of length m contains a gap.

This gap is a terminating point of m progressions with differences $1, 2, \ldots, m$. This potentially creates m problems as an element of A, followed by an element not in A at distance $d \in [1, m]$, results in terminating a progression in A with difference d; however the total supply of such progressions is limited (at most m-1).

To avoid having too many problems, a typical gap must have many other gaps in its neighborhood. (If $g \notin A$, but $g - d \in A$ for $d \in [1, m]$, we have a problem.) Thus, gaps "breed"!

Suppose that *A* is *m*-coverable.

Since A is a union of at most m-1 progressions with difference m, some residue class (mod m) is not represented in A. Hence every interval of length m contains a gap.

This gap is a terminating point of m progressions with differences $1, 2, \ldots, m$. This potentially creates m problems as an element of A, followed by an element not in A at distance $d \in [1, m]$, results in terminating a progression in A with difference d; however the total supply of such progressions is limited (at most m-1).

To avoid having too many problems, a typical gap must have many other gaps in its neighborhood. (If $g \notin A$, but $g - d \in A$ for $d \in [1, m]$, we have a problem.) Thus, gaps "breed"!

Open Problems

Problem 1: $\mathbb{Z}/p\mathbb{Z}$

How about abelian groups, other than \mathbb{Z} ? Is it true that for any $A, D \subseteq \mathbb{Z}/p\mathbb{Z}$ with $|D| < c|A|/\ln |A|$ there exists $d \in D$ with $|(A+d) \setminus A| \ge (|D|-1)/2$?

Problem 2: Popular Sums

How about popular *sums*? Is it true that for any finite sets $A, D \subseteq \mathbb{Z}$ with $|D| < c|A| / \ln |A|$ there exists $d \in D$ with $|(d - A) \setminus A| \ge (|D| - 1)/2$?

Problem 3: Relaxing the Assumptions

Is it true that for any finite $A \subseteq \mathbb{Z}$ and $D \subseteq \mathbb{N}$ with |D| < c|A| there exists $d \in D$ with $|(A+d) \setminus A| \ge |D| - O(1)$? That is, does |D| < c|A| imply $\mu_A(D) \ge |D| - O(1)$?

Open Problems

Problem 1: $\mathbb{Z}/p\mathbb{Z}$

How about abelian groups, other than \mathbb{Z} ? Is it true that for any $A, D \subseteq \mathbb{Z}/p\mathbb{Z}$ with $|D| < c|A|/\ln |A|$ there exists $d \in D$ with $|(A+d) \setminus A| \ge (|D|-1)/2$?

Problem 2: Popular Sums

How about popular *sums*? Is it true that for any finite sets $A, D \subseteq \mathbb{Z}$ with $|D| < c|A| / \ln |A|$ there exists $d \in D$ with $|(d - A) \setminus A| \ge (|D| - 1)/2$?

Problem 3: Relaxing the Assumptions

Is it true that for any finite $A \subseteq \mathbb{Z}$ and $D \subseteq \mathbb{N}$ with |D| < c|A| there exists $d \in D$ with $|(A+d) \setminus A| \ge |D| - O(1)$? That is, does |D| < c|A| imply $\mu_A(D) \ge |D| - O(1)$?