Some remarks on combinatorial geometry in vector spaces over finite fields

Alex losevich
University of Missouri

April 9, 2008

Topics covered in this talks

- The Erdős-Falconer distance problem: How large does $E \subset \mathbb{F}_{q}^{d}$ need to be to ensure that

$$
|\Delta(E)|=\left|\left\{||x-y|| \equiv\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{d}-y_{d}\right)^{2}: x, y \in E\right\}\right| \gtrsim q
$$

Topics covered in this talks

- The Erdös-Falconer distance problem: How large does $E \subset \mathbb{F}_{q}^{d}$ need to be to ensure that

$$
|\Delta(E)|=\left|\left\{||x-y|| \equiv\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{d}-y_{d}\right)^{2}: x, y \in E\right\}\right| \gtrsim q
$$

- The dot product problem: How large does $E \subset \mathbb{F}_{q}^{d}$ need to be to ensure that

$$
|\Pi(E)|=|\{x \cdot y: x, y \in E\}| \gtrsim q .
$$

Topics covered in this talks

- The Erdős-Falconer distance problem: How large does $E \subset \mathbb{F}_{q}^{d}$ need to be to ensure that

$$
|\Delta(E)|=\left|\left\{||x-y|| \equiv\left(x_{1}-y_{1}\right)^{2}+\cdots+\left(x_{d}-y_{d}\right)^{2}: x, y \in E\right\}\right| \gtrsim q
$$

- The dot product problem: How large does $E \subset \mathbb{F}_{q}^{d}$ need to be to ensure that

$$
|\Pi(E)|=|\{x \cdot y: x, y \in E\}| \gtrsim q .
$$

- The k-point configuration problem: How large does $E \subset \mathbb{F}_{q}^{d}$ need to be to ensure that a congruent copy of every non-degenerate k-point configuration is contained in E?

The Erdős-Falconer distance problem-basic obstructions

- Let $E=\mathbb{F}_{q}^{d}$. Then $\Delta(E)=\mathbb{F}_{q}$, so, in general,

$$
|\Delta(E)| \leq|E|^{\frac{1}{d}}
$$

The Erdős-Falconer distance problem-basic obstructions

- Let $E=\mathbb{F}_{q}^{d}$. Then $\Delta(E)=\mathbb{F}_{q}$, so, in general,

$$
|\Delta(E)| \leq|E|^{\frac{1}{d}}
$$

- Suppose that $d=2, \sqrt{-1} \in \mathbb{F}_{q}$ and consider

$$
E=\left\{(t, i t): t \in \mathbb{F}_{q}\right\}
$$

Then $|E|=q$ and $\Delta(E)=\{0\}$.

The Erdős-Falconer distance problem-basic obstructions

- Let $E=\mathbb{F}_{q}^{d}$. Then $\Delta(E)=\mathbb{F}_{q}$, so, in general,

$$
|\Delta(E)| \leq|E|^{\frac{1}{d}}
$$

- Suppose that $d=2, \sqrt{-1} \in \mathbb{F}_{q}$ and consider

$$
E=\left\{(t, i t): t \in \mathbb{F}_{q}\right\}
$$

Then $|E|=q$ and $\Delta(E)=\{0\}$.

- At least in even dimensions this shows that a set of size $q^{\frac{d}{2}}$ can have a distance set consisting of a single point.

A theorem of Bourgain, Katz and Tao

- Bourgain, Katz and Tao (2004) proved the following result as a corollary of their version of the Szemeredi-Trotter incidence theorem in two-dimensional vector spaces over finite fields:

A theorem of Bourgain, Katz and Tao

- Bourgain, Katz and Tao (2004) proved the following result as a corollary of their version of the Szemeredi-Trotter incidence theorem in two-dimensional vector spaces over finite fields:

Theorem

Let $q \equiv 3 \bmod (4), q$ a prime. Let $E \subset \mathbb{F}_{q}^{2}$ such that

$$
|E| \lesssim q^{2-\epsilon} .
$$

Then there exists $\delta(\epsilon)>0$ such that

$$
|\Delta(E)| \gtrsim|E|^{\frac{1}{2}+\delta}
$$

Falconer's exponent

- The following is an analog of Falconer's $\frac{d+1}{2}$ exponent in vector spaces over finite fields:

Theorem

(A.I. and M. Rudnev (2007)) Let $E \subset \mathbb{F}_{q}^{d}, d \geq 2$, such that $|E|>2 q^{\frac{d+1}{2}}$. Then

$$
\Delta(E)=\mathbb{F}_{q}
$$

Falconer's exponent

- The following is an analog of Falconer's $\frac{d+1}{2}$ exponent in vector spaces over finite fields:

Theorem

(A.I. and M. Rudnev (2007)) Let $E \subset \mathbb{F}_{q}^{d}, d \geq 2$, such that $|E|>2 q^{\frac{d+1}{2}}$. Then

$$
\Delta(E)=\mathbb{F}_{q}
$$

- The proof proceeds by showing that if $t \neq 0$,

$$
|\{(x, y) \in E \times E:\|x-y\|=t\}|=|E|^{2} q^{-1}+O\left(|E| q^{\frac{d-1}{2}}\right)
$$

where the error estimate is obtained by using Weil's (Salie's) bound for Kloosterman sums.

A proof of the $\frac{d+1}{2}$ exponent

- We have

$$
\mid\{(x, y) \in E \times E:\|x-y\|=t\}
$$

A proof of the $\frac{d+1}{2}$ exponent

- We have

$$
\begin{gathered}
\mid\{(x, y) \in E \times E:\|x-y\|=t\} \\
=\sum_{x, y} E(x) E(y) S_{t}(x-y)=q^{2 d} \sum_{m}|\widehat{E}(m)|^{2} \widehat{S}_{t}(m)
\end{gathered}
$$

A proof of the $\frac{d+1}{2}$ exponent

- We have

$$
\begin{gathered}
\mid\{(x, y) \in E \times E:\|x-y\|=t\} \\
=\sum_{x, y} E(x) E(y) S_{t}(x-y)=q^{2 d} \sum_{m}\left|\widehat{E}^{2}(m)\right|^{2} \widehat{S}_{t}(m) \\
=|E|^{2} q^{-1}+q^{2 d} \sum_{m \neq(0, \ldots, 0)}|\widehat{E}(m)|^{2} \widehat{S}_{t}(m)
\end{gathered}
$$

A proof of the $\frac{d+1}{2}$ exponent

- We have

$$
\begin{gathered}
\mid\{(x, y) \in E \times E:||x-y||=t\} \\
=\sum_{x, y} E(x) E(y) S_{t}(x-y)=q^{2 d} \sum_{m}|\widehat{E}(m)|^{2} \widehat{S}_{t}(m) \\
=|E|^{2} q^{-1}+q^{2 d} \sum_{m \neq(0, \ldots, 0)}|\widehat{E}(m)|^{2} \widehat{S}_{t}(m) \\
=|E|^{2} q^{-1}+O\left(|E| q^{\frac{d-1}{2}}\right)
\end{gathered}
$$

since

$$
\left|\widehat{S}_{t}(m)\right| \leq 2 q^{-\frac{d+1}{2}}
$$

using bound for Gauss and twisted Kloosterman sums.

Sharpness of exponents

- Moreover, the exponent $\frac{d+1}{2}$ is, in general, sharp in odd dimensions, as recently shown by D. Hart, A.I., D. Koh and M. Rudnev. The sharpness example relies on the existence of a large number of mutually orthogonal vectors of length zero, which explains why the corresponding exponents are better in the Euclidean space.

Sharpness of exponents

- Moreover, the exponent $\frac{d+1}{2}$ is, in general, sharp in odd dimensions, as recently shown by D. Hart, A.I., D. Koh and M. Rudnev. The sharpness example relies on the existence of a large number of mutually orthogonal vectors of length zero, which explains why the corresponding exponents are better in the Euclidean space.
- It seems quite likely that for Cartesian products the exponent can go down all the way to $\frac{d}{2}$. This is where we now turn our attention.

Improved estimates for Cartesian products

- While the exponent $\frac{d+1}{2}$ is sharp in general, at least in odd dimensions, we obtain a better exponent for product sets.

Theorem

(D. Hart and A.I. (2007)) Suppose that $E=A \times A \times \cdots \times A$ and

$$
|E| \gtrsim q^{\frac{d}{2}+\frac{d}{2(2 d-1)}}
$$

Then

$$
|\Delta(E)| \gtrsim q .
$$

Improved estimates for Cartesian products

- While the exponent $\frac{d+1}{2}$ is sharp in general, at least in odd dimensions, we obtain a better exponent for product sets.

Theorem

(D. Hart and A.I. (2007)) Suppose that $E=A \times A \times \cdots \times A$ and

$$
|E| \gtrsim q^{\frac{d}{2}+\frac{d}{2(2 d-1)}}
$$

Then

$$
|\Delta(E)| \gtrsim q
$$

- This matches the Euclidean exponent in two dimensions (Wolff (1999)) and beats it slightly in higher dimensions (Erdogan (2005)). Note that these Euclidean results hold for general sets.

Dot products: a geometric viewpoint

- The following is our main result on dot products:

Theorem

(D. Hart and A.I. (2007)) Let $E \subset \mathbb{F}_{q}^{d}$. Then

$$
\mathbb{F}_{q}^{*} \subset \Pi(E) \text { if }|E|>q^{\frac{d+1}{2}}
$$

and if E is a Cartesian product, then

$$
|\Pi(E)| \geq q \frac{C^{2-\frac{1}{d}}}{1+C^{2-\frac{1}{d}}} \text { if }|E| \geq C q^{\frac{d}{2}+\frac{d}{2(2 d-1)}}
$$

Dot products: a geometric viewpoint

- The following is our main result on dot products:

Theorem

(D. Hart and A.I. (2007)) Let $E \subset \mathbb{F}_{q}^{d}$. Then

$$
\mathbb{F}_{q}^{*} \subset \Pi(E) \text { if }|E|>q^{\frac{d+1}{2}}
$$

and if E is a Cartesian product, then

$$
|\Pi(E)| \geq q \frac{C^{2-\frac{1}{d}}}{1+C^{2-\frac{1}{d}}} \text { if }|E| \geq C q^{\frac{d}{2}+\frac{d}{2(2 d-1)}}
$$

- The exponent $\frac{d+1}{2}$ is, in general, sharp. The sharpness example requires $q=p^{2}$ and we do not know if an improvement is possible in \mathbb{Z}_{p}^{d}.

A closely related problem: sums-products

- The following can be deduced from a recent result due to Bourgain:

Theorem

(Bourgain (2006)) Suppose that $A \subset \mathbb{F}_{q}$ with

$$
|A| \geq C q^{\frac{1}{2}+\frac{1}{2(d-1)}}
$$

Then

$$
d A^{2}=\mathbb{F}_{q}
$$

A closely related problem: sums-products

- The following can be deduced from a recent result due to Bourgain:

Theorem

(Bourgain (2006)) Suppose that $A \subset \mathbb{F}_{q}$ with

$$
|A| \geq C q^{\frac{1}{2}+\frac{1}{2(d-1)}}
$$

Then

$$
d A^{2}=\mathbb{F}_{q}
$$

- When d is sufficiently large, things get better:

Theorem

(Glibichuk with an improvement by Rudnev (2008)) Suppose that $|A|>q^{\frac{1}{2}}$. Then

$$
\left|6 A^{2}\right|>\frac{q}{2} \text { and } 12 A^{2}=\mathbb{F}_{q}
$$

A corollary of the dot product estimates

- The dot product result mentioned above has the following immediate consequence:

A corollary of the dot product estimates

- The dot product result mentioned above has the following immediate consequence:

Corollary

(D. Hart and A.I. (2007)) Let $A \subset \mathbb{F}_{q}$. If $|A|>q^{\frac{1}{2}+\frac{1}{2 d}}$, then $\mathbb{F}_{q}^{*} \subset d A^{2}$. Moreover, if

$$
|A| \geq C^{\frac{1}{d}} q^{\frac{d}{2}+\frac{d}{2(2 d-1)}}
$$

then

$$
\left|d A^{2}\right| \geq q \frac{C^{2-\frac{1}{d}}}{1+C^{2-\frac{1}{d}}}
$$

A corollary of the dot product estimates

- The dot product result mentioned above has the following immediate consequence:

Corollary

(D. Hart and A.I. (2007)) Let $A \subset \mathbb{F}_{q}$. If $|A|>q^{\frac{1}{2}+\frac{1}{2 d}}$, then $\mathbb{F}_{q}^{*} \subset d A^{2}$. Moreover, if

$$
|A| \geq C^{\frac{1}{d}} q^{\frac{d}{2}+\frac{d}{2(2 d-1)}}
$$

then

$$
\left|d A^{2}\right| \geq q \frac{C^{2-\frac{1}{d}}}{1+C^{2-\frac{1}{d}}}
$$

- Attempts to improve the second exponent above lead to a rather interesting problem and this is where we now turn our attention.

Incidence theory behind the dot product estimate

- Using the Radon transform, we establish the following incidence estimates: Let $\nu(t)=|\{(x, y) \in E \times E: x \cdot y=t\}|$. Then

Incidence theory behind the dot product estimate

- Using the Radon transform, we establish the following incidence estimates: Let $\nu(t)=|\{(x, y) \in E \times E: x \cdot y=t\}|$. Then

$$
\nu(t)=|E|^{2} q^{-1}+R(t), \text { where }|R(t)| \leq|E| q^{\frac{d-1}{2}}
$$

Incidence theory behind the dot product estimate

- Using the Radon transform, we establish the following incidence estimates: Let $\nu(t)=|\{(x, y) \in E \times E: x \cdot y=t\}|$. Then

$$
\nu(t)=|E|^{2} q^{-1}+R(t), \text { where }|R(t)| \leq|E| q^{\frac{d-1}{2}}
$$

- and

$$
\sum_{t} \nu^{2}(t) \leq|E|^{4} q^{-1}+|E| q^{2 d-1} \sum_{k \neq(0, \ldots, 0)}|\widehat{E}(k)|^{2}\left|E \cap I_{k}\right|
$$

Incidence theory behind the dot product estimate

- Using the Radon transform, we establish the following incidence estimates: Let $\nu(t)=|\{(x, y) \in E \times E: x \cdot y=t\}|$. Then

$$
\nu(t)=|E|^{2} q^{-1}+R(t), \text { where }|R(t)| \leq|E| q^{\frac{d-1}{2}}
$$

- and

$$
\sum_{t} \nu^{2}(t) \leq|E|^{4} q^{-1}+|E| q^{2 d-1} \sum_{k \neq(0, \ldots, 0)}|\widehat{E}(k)|^{2}\left|E \cap I_{k}\right|
$$

- where

$$
I_{k}=\left\{t k: t \in \mathbb{F}_{q}\right\}, \text { the line generated by } k .
$$

Multiplicative sub-groups are difficult to handle

- The L^{2} estimate on the incidence function gives us a better exponent for the arithmetic problem because it allows us to use the estimate

$$
\left|E \cap I_{k}\right| \leq|A|=|E|^{\frac{1}{d}} .
$$

Multiplicative sub-groups are difficult to handle

- The L^{2} estimate on the incidence function gives us a better exponent for the arithmetic problem because it allows us to use the estimate

$$
\left|E \cap I_{k}\right| \leq|A|=|E|^{\frac{1}{d}}
$$

- Even the latter estimate is incredibly unlikely to be sharp unless A has much multiplicative structure.

Multiplicative sub-groups are difficult to handle

- The L^{2} estimate on the incidence function gives us a better exponent for the arithmetic problem because it allows us to use the estimate

$$
\left|E \cap I_{k}\right| \leq|A|=|E|^{\frac{1}{d}}
$$

- Even the latter estimate is incredibly unlikely to be sharp unless A has much multiplicative structure.
- In order to push the estimates further, it would be great to have a sharp lower bound on $|A+A|$ when A is a multiplicative subgroup.

Multiplicative sub-groups are difficult to handle

- The L^{2} estimate on the incidence function gives us a better exponent for the arithmetic problem because it allows us to use the estimate

$$
\left|E \cap I_{k}\right| \leq|A|=|E|^{\frac{1}{d}}
$$

- Even the latter estimate is incredibly unlikely to be sharp unless A has much multiplicative structure.
- In order to push the estimates further, it would be great to have a sharp lower bound on $|A+A|$ when A is a multiplicative subgroup.
- However, the best result to date, due to Bourgain and Konyagin, says that

$$
|A+A| \gtrsim \min \left\{|A|^{\frac{3}{2}}, q\right\} .
$$

k-point configurations in \mathbb{F}_{q}^{d}

- We have the following finite field analog of the classical results by Bourgain, Furstenberg, Katznelson, Weiss and others.

k-point configurations in \mathbb{F}_{q}^{d}

- We have the following finite field analog of the classical results by Bourgain, Furstenberg, Katznelson, Weiss and others.
- We say that a k point set P_{k} is non-degenerate if elements of P_{k} are linearly independent and if
$\left(P_{k}-P_{k}\right) \cap\left\{x \in \mathbb{F}_{q}^{d}:\|x\|=0\right\}=\{(0, \ldots, 0)\}$.

k-point configurations in \mathbb{F}_{q}^{d}

- We have the following finite field analog of the classical results by Bourgain, Furstenberg, Katznelson, Weiss and others.
- We say that a k point set P_{k} is non-degenerate if elements of P_{k} are linearly independent and if $\left(P_{k}-P_{k}\right) \cap\left\{x \in \mathbb{F}_{q}^{d}:\|x\|=0\right\}=\{(0, \ldots, 0)\}$.

Theorem

(D. Hart and A.I. (2007)) Let P_{k} be a non-degenerate set of k points in \mathbb{F}_{q}^{d}. Suppose that $E \subset \mathbb{F}_{q}^{d}$ such that

$$
|E| \geq C q^{d \frac{k-1}{k}+\frac{k-1}{2}}
$$

Then there exists $\tau \in \mathbb{F}_{q}^{d}$ and $O \in S O(d)$ such that

$$
O\left(P_{k}\right)+\tau \subset E
$$

Reformulation in terms of distances

- Observe that this result has some meaning as long as

$$
d \geq\binom{ k}{2}
$$

Reformulation in terms of distances

- Observe that this result has some meaning as long as

$$
d \geq\binom{ k}{2}
$$

- The result we actually prove is the following:

Theorem

(D. Hart and A.I. (2007)) Let $\left\{t_{i j}\right\}_{1 \leq i \neq j \leq k} \in \mathbb{F}_{q}^{*}$. Then

$$
\left|\left\{\left(x^{1}, \ldots, x^{k}\right) \in E \times \cdots \times E:\left\|x^{i}-x^{j}\right\|=t_{i j}\right\}\right|=|E|^{k} q^{-\binom{k}{2}}+R,
$$

where

$$
|R| \lesssim q^{\frac{k d}{2}} q^{-\frac{k(k+1)}{4}}|E|^{\frac{k+1}{2}} .
$$

Reformulation in terms of distances

- Observe that this result has some meaning as long as

$$
d \geq\binom{ k}{2}
$$

- The result we actually prove is the following:

Theorem

(D. Hart and A.I. (2007)) Let $\left\{t_{i j}\right\}_{1 \leq i \neq j \leq k} \in \mathbb{F}_{q}^{*}$. Then

$$
\left|\left\{\left(x^{1}, \ldots, x^{k}\right) \in E \times \cdots \times E:\left\|x^{i}-x^{j}\right\|=t_{i j}\right\}\right|=|E|^{k} q^{-\binom{k}{2}}+R
$$

where

$$
|R| \lesssim q^{\frac{k d}{2}} q^{-\frac{k(k+1)}{4}}|E|^{\frac{k+1}{2}} .
$$

- Note that any two sets with the same pair-wise distances are equivalent up to a translation and an orthogonal transformation.

An improvement: arbitrary subgraphs

- The previous result may be interpreted as a statement about large complete subgraphs of the distance graph. The following result addresses the issue of arbitrary subgraphs:

An improvement: arbitrary subgraphs

- The previous result may be interpreted as a statement about large complete subgraphs of the distance graph. The following result addresses the issue of arbitrary subgraphs:

Theorem

(D. Hart, A.I., D. Koh and I. Uriarte-Tuero) (2007)) Let

$$
J \subset\{1,2 \ldots, k\} \times\{1,2 \ldots, k\} \text { with }|J|=n .
$$

Then

$$
\begin{gathered}
\left|\left\{\left(x^{1}, \ldots, x^{k}\right) \in E \times \cdots \times E:\left\|x^{i}-x^{j}\right\|=t_{i j} ;(i, j) \in J\right\}\right| \\
=|E|^{k} q^{-n}(1+o(1))
\end{gathered}
$$

if

$$
|E| \geq C q^{d \frac{k-1}{k}+\frac{n}{k}}
$$

