Some Ramsey properties of the n-cube

(with Joszef Solymosi)

Some definitions.

$$\{0,1\}^n := \{(\epsilon_1,\epsilon_2,...,\epsilon_n) : \epsilon_i = 0 \text{ or } 1\}$$

$$D(n) := \{0,1\}^n \times \{0,1\}^n$$

(Can think of these as vertices and generalized diagonals of an n-cube).

Represent $(X,Y) \in D(n)$ schematically by:

X < X' means w(X) < w(X') where w(X) = # of 1's in X.

With $[n]:=\{1, 2, ..., n\}$, for $I\subseteq [n]$, we say that $X=(x_1, ..., x_n)$ and $Y=(y_1, ..., y_n)$ are I-complementary if $x_i=y_i$ iff $i\notin I$.

Define the line $L(I):=\{(X,Y): X \text{ and } Y \text{ are } I\text{-complementary}\}$

Thus, $|L(I)| = 2^{|I|}$. We say that L(I) has dimension |I|.

<u>Fact</u>: Every point (X,Y) in D(n) lies on a unique line L(I).

(Just take $I = \{i \in [n] : x_i \neq y_i\}$).

By a "corner" in D(n) we mean a set of 3 points of the form (X,Y), (X',Y), (X,Y') where (X,Y') and (X',Y) are on a common line L.

We can think of a corner as binary tree with one level and root (X,Y).

More generally, a binary tree B(m) with m levels and root (X,Y) is defined recursively by joining the root to two binary trees with m-1 levels. All of the 2^k points at level k are required to be on the same line.

Theorem. For all r and m, there is an $n_0 = n_0$ (r,m) such that if $n \ge n_0$ and the points of D(n) are arbitrarily r-colored, then there is always a monochromatic binary tree B(m) with m levels formed.

(In fact, we will show that we can take $n_0(r,m) = c \cdot 6^{rm}$). Sketch of proof: Let n be large (to be specified later) and suppose that D(n) is r-colored. Consider the 2^n points on the line $L_0 = L([n])$.

Let $S_0 \subseteq I_0$ be the set of points having the "most popular" color. Thus, $|S_0| \ge \frac{2^n}{r}$.

Consider the "grid" G_1 (\approx Cartesian product) defined by:

$$G_1 = \{(X,Y'): (X,Y) \in S_0, (X',Y') \in S_0, \text{ with } X < X'\}.$$

Thus,

$$|G_1| \ge {S_0 \choose 2} > \frac{1}{4} |S_0|^2 \ge \frac{1}{4r^2} \cdot 4^n := \alpha_1 4^n.$$

Let us call a line L of dimension t small if $t < \frac{n}{3}$ and deficient if $|L \cap G_1| \le a_1 2^{\dagger}$.

Thus, the total number of points on small or deficient lines is at most

$$\sum_{t < \frac{n}{3}} 2^t \binom{n}{t} \cdot 2^{n-t} \ + \ \sum_{t \geq \frac{n}{3}} \alpha_1 2^t \binom{n}{t} \cdot 2^{n-t}$$

But

$$\begin{split} &\sum_{t < n/3} 2^{t} \binom{n}{t} \cdot 2^{n-t} + \sum_{t \ge n/3} a_{1} 2^{t} \binom{n}{t} \cdot 2^{n-t} \\ &= 4^{n} - 2^{n} (1 - a_{1}) (2^{n} - \sum_{t < n/3} \binom{n}{t}) \\ &\leq 4^{n} - 2^{n} (1 - a_{1}) (2^{n} - 1.96^{n}) \\ &\qquad \qquad (\text{since } \sum_{t < n/3} \binom{n}{t} < 2^{n} (\frac{3}{4} e^{\frac{n}{4}})^{2n/3} < 1.96^{n}) \\ &\leq \frac{a_{1}}{2} 4^{n} \end{split}$$

provided $a_1 \ge 2 \cdot (.98^n)$.

Thus, if we discard these points, we still have at least $\frac{a_1}{2}4^n$ points remaining in G_1 , and all these points are on "good" lines, i.e., not small and not deficient.

Let $L_1 = L(I_1)$ be such a good line, say of dimension $|I_1| = n_1 \ge \frac{n}{3}$.

In particular, $|L_1 \cap G_1| \ge a_1 2^{n_1}$.

Let S_1 be the set of points of $L_1 \cap G_1$ with the most popular color c_1 . Therefore,

$$|S_1| \ge \frac{a_1}{r} 2^{n_1}$$
.

Now, let G_2 be the "grid" formed by S_1 , i.e., $G_2 = \{(X,Y'): (X,Y) \in S_1, (X',Y') \in S_1, \text{ with } X < X'\}.$

Observe that $G_2 \subset G_1$.

Now, let G_2 be the "grid" formed by S_1 , i.e.,

$$G_2 = \{(X,Y'): (X,Y) \in S_1, (X',Y') \in S_1, \text{ with } X < X'\}.$$

Observe that $G_2 \subset G_1$.

Therefore, we have

$$|G_2| \ge \left(\begin{vmatrix} S_1 \\ 2 \end{vmatrix} \right) \ge \left(\frac{\alpha_1}{2r} \right)^2 4^n := \alpha_2 4^n.$$

As before, let us classify a line L of dimension t small if $t < \frac{n_1}{3}$ and deficient if $|L \cap G_2| \le \alpha_2 2^{\dagger}$.

A similar calculation as before shows that if we remove from G_2 all the points on small or deficient lines, then at least $\frac{a_2}{2} 4^{n_1}$ points will remain in G_2 , provided $a_2 \ge 2 \cdot (.98^{n_1})$.

Now take some "good" line $L_2=L(I_2)$ with $I_2\subset I_1$, with dimension $|I_2|=n_2\geq \frac{n_1}{3}$ and with $|L_2\cap G_2|\geq \alpha_2 2^{n_2}$.

Let $S_2 \subseteq L_2 \cap G_2$ have the most popular color c_2 so that $|S_2| \ge \frac{a_2}{r} 2^{n_2}$.

Then, with G_3 defined to be the "grid" formed by S_2 , we have $|G_3| \ge (\frac{a_2}{2r})^2 4^{n_2}$, and so on.

We continue this process for rm steps.

In general, we define

$$a_{i+1} = (\frac{a_i}{2r})^2$$
, $1 \le i \le rm - 1$, with $a_1 = \frac{1}{4r^2}$.

Also, we have $n_{i+1} \ge \frac{n_i}{3}$. In addition, we need to have $\alpha_i \ge 2 \cdot (.98^{n_i})$ for all i.

In particular, this implies that in general

$$a_{k} = \frac{1}{2^{3 \cdot 2^{k} - 2} r^{2^{k+1} - 2}}$$

It is now straightforward to check that all the required inequalities are satisfied by choosing $n \ge n_0(r,m) = c \cdot 6^{rm} \quad \text{for some absolute constant } c.$

Hence, there must be m indices $i_1 < i_2 < ... < i_m$ such that all the sets S_{i_k} have the same color c_0 .

These m sets S_k contain the desired binary tree B(m).

Interpretation.

$$Q_n \coloneqq \{(x_1, x_2, ... x_n) : x_i = 0 \text{ or } 1, \ 1 \le i \le n\} \qquad \text{n-cube}$$

$$L_n \coloneqq \text{set of all} \begin{pmatrix} 2^n \\ 2 \end{pmatrix} \text{ line segments joining two vertices of } Q_n$$

$$L_n \text{ is the set of diagonals of } Q_n$$

$$\{x,\overline{x}\} = \{(x_1,...,x_n),(\overline{x}_1,...,\overline{x}_n)\}, \quad \overline{x}_i = 1 - x_i$$

is a main diagonal of Qn

An (affine) k-cube of Q_n is a subset of 2^k points of the form $\{(y_1,...,y_n): y_i=0 \text{ or } 1 \text{ iff } i \in I\}$ for some k-subset $I \subseteq [n]:=\{1,2,...,n\}$. (Thus, for $i \notin I$, the coordinate y_i is fixed).

We will say that three connected diagonals of the form $\{x,y\}$, $\{y,z\}$, $\{z,w\}$ form a self-crossing path, denoted by X, if $\{x,y\}$ and $\{z,w\}$ are both main diagonals of the same subcube.

Corollary

In any r-coloring of the edges in L_n , there is always a monochromatic \times , provided $n > c \cdot 6^r$.

The same argument should work for any subgraph G of (Q_n, L_n) , provided that G has enough edges and for any pair of crossing main diagonals, G has all the edges between the pairs endpoints.

Another application

(Partial Hales-Jewett lines)

For every r there is an $n_0 = n_0(r)$ with the following property. In any r-coloring of $\{0,1,2,3\}^n$, with $n > n_0$, there is always a monochromatic set of 3 points of the form

In other words, every column is either constant, increasing from 0, or decreasing from 3.

Idea of proof:

To each point $(x_1, x_2, ..., x_n)$ in $\{0,1,2,3\}^n$, we associate the point $((a_1, a_2, ..., a_n), (b_1, b_2, ..., b_n))$ in $\{0,1\}^n \times \{0,1\}^n$ by the following rule:

X_k	→ a _k	b_k
0	0	0
1	0	1
2	1	0
3	1	1

Then it is not hard to verify that a monochromatic corner in D(n) corresponds to a monochromatic partial Hales-Jewett line.

For example, the "corner"

```
(11000110,11011001)
(11000110,11010100)
(11000111,11010100)
```

For example, the "corner"

```
corresponds to
     (33011221)
(11000110, 1101101)
(11000110, 11010100)
                             (11001011, 11010100)
    (33010320)
                                  (33012122)
                (33010320)
     i.e.,
                 (33011221)
                (33012122)
```

Observe that if we associate the point

$$(a_1, a_2, ..., a_i, ..., a_n)$$

with the integer
$$\prod_{i} p_{i}^{\alpha_{i}}$$

where pi denotes the ith prime, then the points

correspond to a 3-term geometric progression.

By mapping points $(a_1, a_2, ..., a_i, ..., a_n) \in \{0,1,2,3\}^n$ to points $(b_1, b_2, ..., b_i, ..., b_n) \in F_3^n$ by: $a_i = 0$ or $3 \Rightarrow b_i = 0$, $a_i = 1 \Rightarrow b_i = 1$, $a_i = 2 \Rightarrow b_i = 2$ we obtain:

Theorem: If the points of F_3^n are colored with c log n colors then there is always a monochromatic affine line formed.

The same techniques can be used to prove the following:

Theorem. For every r, there exist $\delta = \delta(r)$ and $n_0 = n_0(r)$ with the following property:

If A and B are sets of real numbers with $|A|=|B|=n \ge n_0$ and $|A+B| \le n^{1+\delta}$, then any r-coloring of $A \times B$ contains a monochromatic "corner", i.e., a set of 3 points of the form (a,b), (a',b), (a,b').

(Can choose $\delta = \frac{1}{2^{2^{2r}}}$).

By iterating these techniques, one can also show that with the same hypotheses on A and B (with appropriate $\delta = \delta(r,m)$ and $n_0(r,m) = n_0$), if A x B is r-colored then each set contains a monochromatic translate of a fairly large "Hilbert cube", i.e., sets of the form

$$\begin{split} &H_m(a,a_1,...,a_m)=\{a+\sum_{1\leq i\leq m}\epsilon_ia_i\}\subset A,\quad H_m(b,a_1,...,a_m\}=\{b+\sum_{1\leq i\leq m}\epsilon_ia_i\}\subset B\\ &\text{where } m=\Omega(loglog(n))\quad and \quad \epsilon_i=0 \ \text{or} \ 1,\ 1\leq i\leq m. \end{split}$$

Some questions.

Can we "complete the square" for some of these results? For example, one can use these techniques to show that if the points of $[N] \times [N]$ are colored with fewer than c log log N colors, then there is always a monochromatic "corner" formed, i.e., 3 points (a,b), (a',b), (a,b') with a' + b = a + b'. (By projection, this gives a 3-AP).

Is it the case that with these bounds (or even better ones), we can guarantee the 4^{th} point (a',b') to be monochromatic, as well?

Similarly, if the diagonals on an n-cube are r-colored, with $r < c \log \log n$, is it true that a monochromatic X must be formed?

What about a monochromatic \square ?

What are the density analogs of these results? (Shkredov) We do know something about \boxtimes .

(the 6 diagonals spanned by 4 coplanar vertices of an n-cube).

For example, there is an N_0 so that if all the diagonals of an N-cube are 2-colored with $N \ge N_0$, then a monochromatic M must always be formed.

An estimate for N_0 .

Arrow notation

$$3 \uparrow n := 3^n$$
 $3 \uparrow n := 3 \uparrow (3 \uparrow (3 \uparrow ... (3 \uparrow 3)...)) = 3^{3^{3 \cdot \cdot \cdot \cdot (n \cdot 3' s)}}$

$$3111n := 311(311(311...(3113)...)), etc.$$
(n 3's)

For example:

$$3 \uparrow 3 = 3^3 = 27$$

$$3113 = 31(313) = 3^{27} = 7625597484987$$

Each additional arrow makes a very big difference!

It has just been shown that $N_0 \ge 11$.

There is clearly room for improvement here!

It has just been shown that $N_0 \ge 11$.

There is clearly room for improvement here!