Monotonic Sequence Games

Bruce Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu
www.math.msu.edu/~sagan
and
The Otago Theory Group
Department of Computer Science
University of Otago
Dunedin, New Zealand
www.cs.otago.ac.nz

November 6, 2007

The Game on an Interval

The Game on the Rationals

Eine Kleine Game Theory

Open Questions

Outline

The Game on an Interval

The Game on the Rationals

Eine Kleine Game Theory

Open Questions

Let

$$
[n]=\{1,2, \ldots, n\},
$$

and
$S_{n}=$ symmetric group of permutations $\pi=x_{1} \ldots x_{n}$ of $[n]$.

Let

$$
[n]=\{1,2, \ldots, n\}
$$

and
$S_{n}=$ symmetric group of permutations $\pi=x_{1} \ldots x_{n}$ of $[n]$.
A subsequence of π of length k is $x_{i_{1}} \ldots x_{i_{k}}$ with $i_{1}<\ldots<i_{k}$.

Let

$$
[n]=\{1,2, \ldots, n\}
$$

and

$S_{n}=$ symmetric group of permutations $\pi=x_{1} \ldots x_{n}$ of $[n]$.

A subsequence of π of length k is $x_{i_{1}} \ldots x_{i_{k}}$ with $i_{1}<\ldots<i_{k}$. The subsequence is increasing (respectively, decreasing) if $x_{i_{1}}<\ldots<x_{i_{k}}\left(\right.$ respectively, $x_{i_{1}}>\ldots>x_{i_{k}}$).

Let

$$
[n]=\{1,2, \ldots, n\}
$$

and

$$
S_{n}=\text { symmetric group of permutations } \pi=x_{1} \ldots x_{n} \text { of }[n] .
$$

A subsequence of π of length k is $x_{i_{1}} \ldots x_{i_{k}}$ with $i_{1}<\ldots<i_{k}$. The subsequence is increasing (respectively, decreasing) if $x_{i_{1}}<\ldots<x_{i_{k}}$ (respectively, $x_{i_{1}}>\ldots>x_{i_{k}}$). A sequence of either type is monotone.

Let

$$
[n]=\{1,2, \ldots, n\}
$$

and

$$
S_{n}=\text { symmetric group of permutations } \pi=x_{1} \ldots x_{n} \text { of }[n] .
$$

A subsequence of π of length k is $x_{i_{1}} \ldots x_{i_{k}}$ with $i_{1}<\ldots<i_{k}$. The subsequence is increasing (respectively, decreasing) if $x_{i_{1}}<\ldots<x_{i_{k}}$ (respectively, $x_{i_{1}}>\ldots>x_{i_{k}}$). A sequence of either type is monotone.
Ex. If $\pi=641325$ then 135 is an increasing sequence of length 3 and 643 is a decreasing sequence of length 3.

Let

$$
[n]=\{1,2, \ldots, n\}
$$

and

$$
S_{n}=\text { symmetric group of permutations } \pi=x_{1} \ldots x_{n} \text { of }[n] .
$$

A subsequence of π of length k is $x_{i_{1}} \ldots x_{i_{k}}$ with $i_{1}<\ldots<i_{k}$. The subsequence is increasing (respectively, decreasing) if $x_{i_{1}}<\ldots<x_{i_{k}}$ (respectively, $x_{i_{1}}>\ldots>x_{i_{k}}$). A sequence of either type is monotone.
Ex. If $\pi=641325$ then 135 is an increasing sequence of length 3 and 643 is a decreasing sequence of length 3.
Theorem (Erdős-Szekeres, 1935)
Any $\pi \in S_{m n+1}$ has either an increasing subsequence of length $m+1$ or a decreasing subsequence of length $n+1$.

Let

$$
[n]=\{1,2, \ldots, n\}
$$

and

$$
S_{n}=\text { symmetric group of permutations } \pi=x_{1} \ldots x_{n} \text { of }[n] .
$$

A subsequence of π of length k is $x_{i_{1}} \ldots x_{i_{k}}$ with $i_{1}<\ldots<i_{k}$. The subsequence is increasing (respectively, decreasing) if $x_{i_{1}}<\ldots<x_{i_{k}}$ (respectively, $x_{i_{1}}>\ldots>x_{i_{k}}$). A sequence of either type is monotone.
Ex. If $\pi=641325$ then 135 is an increasing sequence of length 3 and 643 is a decreasing sequence of length 3.
Theorem (Erdős-Szekeres, 1935)
Any $\pi \in S_{m n+1}$ has either an increasing subsequence of length $m+1$ or a decreasing subsequence of length $n+1$.
Ex. If $m=2$ and $n=3$ then $m n+1=7$. A permutation in S_{7}, please!!

The Game (Harary-S-West, 1983). Given $m, n \in \mathbb{Z}_{\geq 0}$, players A and B form a sequence $x_{1} x_{2} \ldots$ of elements of $S=[m n+1]$ by:

The Game (Harary-S-West, 1983). Given $m, n \in \mathbb{Z}_{\geq 0}$, players A and B form a sequence $x_{1} x_{2} \ldots$ of elements of $S=[m n+1]$ by: Player A picks $x_{1} \in S$. Then player B picks $x_{2} \in S-x_{1}$, etc.

The Game (Harary-S-West, 1983). Given $m, n \in \mathbb{Z}_{\geq 0}$, players A and B form a sequence $x_{1} x_{2} \ldots$ of elements of $S=[m n+1]$ by: Player A picks $x_{1} \in S$. Then player B picks $x_{2} \in S-x_{1}$, etc. The first player to form an increasing subsequence of length $m+1$ or a decreasing subsequence of length $n+1$ is the winner. By the previous theorem, a winner exists.

The Game (Harary-S-West, 1983). Given $m, n \in \mathbb{Z}_{\geq 0}$, players A and B form a sequence $x_{1} x_{2} \ldots$ of elements of $S=[m n+1]$ by: Player A picks $x_{1} \in S$. Then player B picks $x_{2} \in S-x_{1}$, etc. The first player to form an increasing subsequence of length $m+1$ or a decreasing subsequence of length $n+1$ is the winner. By the previous theorem, a winner exists.
Ex. Let $m=1$ and $n=3$ so $[m n+1]=[4]$. Let's play!!

The Game (Harary-S-West, 1983). Given $m, n \in \mathbb{Z}_{\geq 0}$, players A and B form a sequence $x_{1} x_{2} \ldots$ of elements of $S=[m n+1]$ by: Player A picks $x_{1} \in S$. Then player B picks $x_{2} \in S-x_{1}$, etc. The first player to form an increasing subsequence of length $m+1$ or a decreasing subsequence of length $n+1$ is the winner. By the previous theorem, a winner exists.
Ex. Let $m=1$ and $n=3$ so $[m n+1]=[4]$. Let's play!!
Note that the game is symmetric in m and n.

The Game (Harary-S-West, 1983). Given $m, n \in \mathbb{Z}_{\geq 0}$, players A and B form a sequence $x_{1} x_{2} \ldots$ of elements of $S=[m n+1]$ by: Player A picks $x_{1} \in S$. Then player B picks $x_{2} \in S-x_{1}$, etc. The first player to form an increasing subsequence of length $m+1$ or a decreasing subsequence of length $n+1$ is the winner. By the previous theorem, a winner exists.
Ex. Let $m=1$ and $n=3$ so $[m n+1]=[4]$. Let's play!! Note that the game is symmetric in m and n.
Theorem
The winner of the game on $[m n+1]$ where $m \leq n$ is:

$m \backslash n$	0	1	2	3	4	5	6	7
0	A							
1		B	A	B	A	B	A	B
2			A	A	A	A	A	A
3				A	A	A	A	$?$
4					A	$?$	$?$	$?$

where the patterns continue in each of the first 3 rows.

Outline

The Game on an Interval

The Game on the Rationals

Eine Kleine Game Theory

Open Questions

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As
$\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list I:

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list l:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of I if no such y_{j} exists.

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=$

$$
I: \quad \epsilon,
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list l:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=4$

$$
I: \quad \epsilon,
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list l:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=4$

$$
l: \quad \epsilon, \quad 4
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list l:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=42$

$$
l: \quad \epsilon, 4
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=42$

$$
1: \quad \epsilon, 4, \quad 2,
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=425$

$$
1: \quad \epsilon, 4, \quad 2,
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=425$

$$
1: \quad \epsilon, 4, \quad 2,25,
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=4253$

$$
1: \quad \epsilon, 4, \quad 2,25,
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=4253$

$$
1: \quad \epsilon, 4, \quad 2,25,23,
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=42531$

$$
1: \quad \epsilon, 4, \quad 2,25,23,
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=42531$

$$
1: \quad \epsilon, 4,2,25,23,13,
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=425316$

$$
1: \quad \epsilon, 4,2,25,23,13,
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=425316$

$$
I: \quad \epsilon, 4, \quad 2,25,23,13,136
$$

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of l if no such y_{j} exists.
Ex. $\pi=425316$

$$
I: \quad \epsilon, 4, \quad 2,25,23,13,136
$$

Theorem (Schensted, 1961)
If x_{i} is placed in column j of I,
$j=$ length of a longest increasing subsequence ending at x_{i},

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list l:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of I if no such y_{j} exists.
Ex. $\pi=425316$

$$
I: \quad \epsilon, 4, \quad 2,25,23, \quad 13,136
$$

Since 6 was placed in the third column of I we have an increasing subsequence of length three ending at 6, e.g., 236.
Theorem (Schensted, 1961)
If x_{i} is placed in column j of I,
$j=$ length of a longest increasing subsequence ending at x_{i},

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list l:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of I if no such y_{j} exists.
Ex. $\pi=425316$

$$
I: \epsilon, 4, \quad 2,25,23,13,136
$$

Since 6 was placed in the third column of I we have an increasing subsequence of length three ending at 6, e.g., 236.
Theorem (Schensted, 1961)
If x_{i} is placed in column j of I,
$j=$ length of a longest increasing subsequence ending at x_{i},

Similarly build a decreasing list D by reversing the inequalities.

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list l:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of I if no such y_{j} exists.
Ex. $\pi=425316$

$$
\begin{array}{lllllll}
I: & \epsilon, & 4, & 2, & 25, & 23, & 13, \\
D: & \epsilon,
\end{array}
$$

Since 6 was placed in the third column of I we have an increasing subsequence of length three ending at 6, e.g., 236.
Theorem (Schensted, 1961)
If x_{i} is placed in column j of I,
$j=$ length of a longest increasing subsequence ending at x_{i},

Similarly build a decreasing list D by reversing the inequalities.

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list l:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of I if no such y_{j} exists.
Ex. $\pi=425316$

$$
\begin{array}{llllllll}
I: & \epsilon, & 4, & 2, & 25, & 23, & 13, & 136 \\
D: & \epsilon, & 4,
\end{array}
$$

Since 6 was placed in the third column of I we have an increasing subsequence of length three ending at 6, e.g., 236.
Theorem (Schensted, 1961)
If x_{i} is placed in column j of I,
$j=$ length of a longest increasing subsequence ending at x_{i},

Similarly build a decreasing list D by reversing the inequalities.

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list l:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of I if no such y_{j} exists.
Ex. $\pi=425316$

$$
\begin{array}{llllllll}
I: & \epsilon, & 4, & 2, & 25, & 23, & 13, & 136 \\
D: & \epsilon, & 4, & 42,
\end{array}
$$

Since 6 was placed in the third column of I we have an increasing subsequence of length three ending at 6, e.g., 236.
Theorem (Schensted, 1961)
If x_{i} is placed in column j of I,
$j=$ length of a longest increasing subsequence ending at x_{i},

Similarly build a decreasing list D by reversing the inequalities.

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list l:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of I if no such y_{j} exists.
Ex. $\pi=425316$

$$
\begin{array}{llllllll}
I: & \epsilon, & 4, & 2, & 25, & 23, & 13, & 136 \\
D: & \epsilon, & 4, & 42, & 52,
\end{array}
$$

Since 6 was placed in the third column of I we have an increasing subsequence of length three ending at 6, e.g., 236.
Theorem (Schensted, 1961)
If x_{i} is placed in column j of I,
$j=$ length of a longest increasing subsequence ending at x_{i},

Similarly build a decreasing list D by reversing the inequalities.

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of I if no such y_{j} exists.
Ex. $\pi=425316$

$$
\begin{array}{llllllll}
I: & \epsilon, & 4, & 2, & 25, & 23 & 13, & 136 \\
D: & \epsilon, & 4, & 42, & 52, & 53, & &
\end{array}
$$

Since 6 was placed in the third column of I we have an increasing subsequence of length three ending at 6, e.g., 236.
Theorem (Schensted, 1961)
If x_{i} is placed in column j of I,
$j=$ length of a longest increasing subsequence ending at x_{i},

Similarly build a decreasing list D by reversing the inequalities.

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list l:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of I if no such y_{j} exists.
Ex. $\pi=425316$

$$
\begin{array}{lrrrrrrr}
I: & \epsilon, & 4, & 2, & 25, & 233, & 133, & 136 \\
D: & \epsilon, & 4, & 42, & 52, & 53, & 531, &
\end{array}
$$

Since 6 was placed in the third column of I we have an increasing subsequence of length three ending at 6, e.g., 236.
Theorem (Schensted, 1961)
If x_{i} is placed in column j of I,
$j=$ length of a longest increasing subsequence ending at x_{i},

Similarly build a decreasing list D by reversing the inequalities.

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list l:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of I if no such y_{j} exists.
Ex. $\pi=425316$

$$
\begin{array}{lrrrrrrr}
I: & \epsilon, & 4, & 2, & 25, & 23, & 133, & 136 \\
D: & \epsilon, & 4, & 42, & 52, & 53, & 531, & 631
\end{array}
$$

Since 6 was placed in the third column of I we have an increasing subsequence of length three ending at 6, e.g., 236.
Theorem (Schensted, 1961)
If x_{i} is placed in column j of I,
$j=$ length of a longest increasing subsequence ending at x_{i},

Similarly build a decreasing list D by reversing the inequalities.

Play the same game with $[m n+1]$ replaced by \mathbb{Q}. As $\pi=x_{1} x_{2} \ldots$ is built, also build the increasing list $/$:

1. Initially $I=\epsilon$, the empty sequence.
2. If $I=y_{1} y_{2} \ldots$ when x_{i} is picked, have x_{i} replace the smallest $y_{j}>x_{i}$ or append x_{i} to the right end of I if no such y_{j} exists.
Ex. $\pi=425316$

$$
\begin{array}{lrrrrrrr}
I: & \epsilon, & 4, & 2, & 25, & 23 & 133, & 136 \\
D: & \epsilon, & 4, & 42, & 52, & 53, & 531, & 631
\end{array}
$$

Since 6 was placed in the third column of I we have an increasing subsequence of length three ending at 6, e.g., 236.
Theorem (Schensted, 1961)
If x_{i} is placed in column j of I, and in column k of D
$j=$ length of a longest increasing subsequence ending at x_{i},
$k=$ length of a longest decreasing subsequence ending at x_{i}.

Similarly build a decreasing list D by reversing the inequalities.

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
x_{i} \in I \quad \text { and } \quad x_{i} \notin D \quad \Longrightarrow \quad \text { color } x_{i} \text { with } R \text {, }
$$

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \text { with } B,
\end{array}
$$

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \text { color } x_{i} \text { with } P .
\end{array}
$$

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$I:$	ϵ,	4,	2,	25,	23,	13,
$D:$	ϵ,	4,	42,	52,	53,	531,
	631					

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$I:$	ϵ,	4,	2,	25,	23,	13,
$D:$	ϵ,	4,	42,	52,	53,	531,
631						

C: ϵ,

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$\begin{array}{ll} I: & \epsilon, \\ D: & \epsilon, \end{array}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{array}{r} 2, \\ 42, \end{array}$	$\begin{aligned} & 25, \\ & 52, \end{aligned}$	$\begin{aligned} & 23, \\ & 53, \end{aligned}$	$\begin{array}{r} 13, \\ 531, \end{array}$	$\begin{aligned} & 136 \\ & 631 \end{aligned}$
C : ϵ,	$\stackrel{4}{P}$,					

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

1	ϵ,	4,	2,	25,	23,	13,	136
D	ϵ,	4,	42,	52,	53,	531,	631
C	ϵ,	P,	$\stackrel{4}{B},$	$\stackrel{2}{P} \stackrel{5}{P},$	$\stackrel{2}{2} \stackrel{3}{P} \stackrel{5}{B},$		

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{aligned}
& x_{i} \in I \text { and } x_{i} \notin D \Longrightarrow \text { color } x_{i} \text { with } R \text {, } \\
& x_{i} \notin I \quad \text { and } \quad x_{i} \in D \quad \Longrightarrow \quad \text { color } x_{i} \text { with } B \text {, } \\
& x_{i} \in I \text { and } x_{i} \in D \quad \Longrightarrow \text { color } x_{i} \text { with } P \text {. }
\end{aligned}
$$

Ex. $\pi=425316$

$1:$	ϵ,	4,	2	25,	23 ,	13,	136
D	ϵ,	4,	42,	52,	53,	531,	631
C	ϵ,	$\stackrel{4}{P}$	$\stackrel{4}{4}_{B},$	$\stackrel{5}{P}$	$\begin{aligned} & { }_{R}^{R} \stackrel{3}{P} \stackrel{5}{B}, \end{aligned}$	$\begin{aligned} & 3 \\ & P \\ & P \\ & B \end{aligned}$	

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$\begin{array}{ll}\text { I: } \\ \text { D : } & \epsilon \\ \epsilon,\end{array}$	4, 4,	$\begin{array}{r}2, \\ 42 \\ \hline\end{array}$	25, 52,	23, 53,	$\begin{array}{r} 13, \\ 531, \end{array}$	$\begin{aligned} & 136 \\ & 631 \end{aligned}$
ϵ,	$\stackrel{4}{P}$,		P,	${ }^{3}{ }_{8}^{5}$	P B	$\stackrel{1}{P}{ }_{P}{ }_{P}^{6}$

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$\begin{array}{ll}\text { I: } \\ \text { D: } & \epsilon, \\ \text {, }\end{array}$	4, 4,	$\begin{array}{r}2, \\ 42 \\ \hline\end{array}$	25, 52,	23, 53,	$\begin{array}{r} 13, \\ 531, \end{array}$	$\begin{aligned} & 136 \\ & 631 \end{aligned}$
ϵ,	$\stackrel{4}{P}$,	${ }_{B}^{4}$	P,	$\stackrel{5}{8}$	P B	$\stackrel{1}{P} \stackrel{3}{P}{ }_{P}^{6}$

R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$.

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$1:$	ϵ,	4,	2,	25,	23,	13 ,	136
D	ϵ,	4 ,	42,	52,	53,	531,	631
C	ϵ,	$\stackrel{4}{P}$,	$\begin{aligned} & 2 \\ & P \stackrel{4}{B}, \\ & \hline \end{aligned}$	$\stackrel{2}{P} \stackrel{5}{P},$	$\begin{array}{ll} 2 & 3 \\ R & 5 \\ P \end{array}$	$\begin{array}{lll} 1 & 3 \\ P & 5 \\ P \end{array},$	$\begin{array}{lll} 1 & \stackrel{6}{P} \\ P \end{array}$

R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$.

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

D	ϵ,	4, 4,	$\begin{array}{r} 2 \\ 42 \end{array}$	$\begin{aligned} & 25, \\ & 52, \end{aligned}$	$\begin{aligned} & 23, \\ & 53, \end{aligned}$	$\begin{array}{r} 13, \\ 531, \end{array}$	$\begin{aligned} & 136 \\ & 631 \end{aligned}$
C		$P,$	$\stackrel{2}{P} \stackrel{4}{B},$	$\stackrel{2}{P} \stackrel{5}{P},$	$\begin{array}{lll} 2 & 3 & 5 \\ R & \stackrel{1}{P} \\ B \end{array}$	$\begin{array}{lll} 1 & 3 \\ P & 5 \\ P \end{array},$	$\stackrel{1}{P} \stackrel{3}{P} \stackrel{6}{P}$

R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

D	ϵ,	4, 4,	$\begin{array}{r} 2 \\ 42 \end{array}$	$\begin{aligned} & 25, \\ & 52, \end{aligned}$	$\begin{aligned} & 23, \\ & 53, \end{aligned}$	$\begin{array}{r} 13, \\ 531, \end{array}$	$\begin{aligned} & 136 \\ & 631 \end{aligned}$
C		$P,$	$\stackrel{2}{P} \stackrel{4}{B},$	$\stackrel{2}{P} \stackrel{5}{P},$	$\begin{array}{lll} 2 & 3 & 5 \\ R & \stackrel{1}{P} \\ B \end{array}$	$\begin{array}{lll} 1 & 3 \\ P & 5 \\ P \end{array},$	$\stackrel{1}{P} \stackrel{3}{P} \stackrel{6}{P}$

R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$I:$	ϵ,	4,	2,	25,	23,	13,	136
$D:$	ϵ,	4,	42,	52,	53,	531,	631
$C:$	ϵ,						

R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
x_{i} \in l o l & \text { and } & x_{i} \in D \text { with } B, \\
x_{i} & \Longrightarrow & \text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$I:$	ϵ,	4,	2,	25,	23,	13,	136
$D:$	ϵ,	4,	42,	52,	53,	531,	631
$C:$	ϵ,	$\stackrel{4}{P}$,					

R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$I:$	ϵ,	4,	2,	25,	23,	13,
$D:$	ϵ,	4,	42,	52,	53,	531,
631						

$C: \epsilon, \stackrel{4}{\uparrow}$,
R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
x_{i} \in l o l & \text { and } & x_{i} \in D \text { with } B, \\
x_{i} & \Longrightarrow & \text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$I:$	ϵ,	4,	2,	25,	23,	13,
$D:$	ϵ,	4,	42,	52,	53,	531,
631						

$C: \quad \epsilon \quad \stackrel{4}{\uparrow}, \stackrel{2}{P} \stackrel{4}{B}$,
R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
x_{i} \in l o l & \text { and } & x_{i} \in D \text { with } B, \\
x_{i} & \Longrightarrow & \text { color } x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$I:$	ϵ,	4,	2,	25,	23,	13,
$D:$	ϵ,	4,	42,	52,	53,	531,
631						

$C: \quad \epsilon \quad \stackrel{4}{\uparrow}, \quad \stackrel{2}{P} \stackrel{4}{B}{ }_{\uparrow}$
R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$I:$	ϵ,	4,	2,	25,	23,	13,
$D:$	ϵ,	4,	42,	52,	53,	531,
631						

C: $\epsilon, \stackrel{4}{\uparrow} \stackrel{2}{P}, \quad \stackrel{2}{P} \stackrel{4}{B} \uparrow \quad \stackrel{2}{P} \stackrel{5}{P}$,
R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$I:$	ϵ,	4,	2,	25,	23,	13,
$D:$	ϵ,	4,	42,	52,	53,	531,
631						

R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$I:$	ϵ,	4,	2,	25,	23,	13,
$D:$	ϵ,	4,	42,	52,	53,	531,
631						

$C: \begin{array}{llllll} & \stackrel{4}{P}, & \stackrel{2}{P} \stackrel{4}{B}\end{array}, \quad \stackrel{2}{P} \stackrel{5}{P}, \quad \stackrel{2}{R} \stackrel{3}{P} \stackrel{5}{B}$,
R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

$I:$	ϵ,	4,	2,	25,	23,	13,
$D:$	ϵ,	4,	42,	52,	53,	531,
631						

C: $\quad \epsilon, \stackrel{4}{\uparrow} \stackrel{2}{P}, \quad \stackrel{4}{P} \stackrel{2}{B}, \quad \stackrel{2}{P} \stackrel{5}{P}, \stackrel{2}{\stackrel{2}{R} \stackrel{3}{P} \stackrel{5}{B},}$
R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

1	ϵ,	4,	2,	25,	23,	13 ,	136
D	ϵ,	4 ,	42,	52,	53,	531,	631
C	ϵ,		B_{\uparrow}	${ }_{\uparrow} \stackrel{5}{P}$	$\stackrel{5}{B},$	$\stackrel{3}{P} \stackrel{5}{B},$	

R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

1	ϵ,	4,	2,	25,	23 ,	13 ,	136
D	ϵ,	4,	42,	52,	53,	531,	631
	ϵ,		β_{\uparrow}	${ }_{\uparrow} \stackrel{5}{P}$	B,	$\stackrel{3}{P} \stackrel{5}{B}_{\uparrow}$	

R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Build a combined list C by assigning colors red (R), blue (B), and purple (P) to the x_{i} as follows:

$$
\begin{array}{llll}
x_{i} \in I & \text { and } & x_{i} \notin D & \Longrightarrow \\
\text { color } x_{i} \text { with } R, \\
x_{i} \notin I & \text { and } & x_{i} \in D & \Longrightarrow \\
x_{i} \in I & \text { and } & x_{i} \in D & \Longrightarrow \\
\text { color } x_{i} \text { with } B, \\
x_{i} \text { with } P .
\end{array}
$$

Ex. $\pi=425316$

R and P are called redish and draining red is $R \leftarrow \epsilon, P \leftarrow B$. B and P are called bluish and draining blue is $B \leftarrow \epsilon, P \leftarrow R$. Algorithm for C. 1. Initially $C=\epsilon$.
2. Each x_{i} inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the new P (if any), and drain blue from the closest bluish element to the left of the new P (if any).

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m \leq n$ is:

$m \backslash n$	0	1	2	3	4	5	6	7
0	A							
1		B						
2			A	B	A	B	A	B
3				A	A	A	A	A
4					A	A	A	A

where the patterns continue in each of the first 5 rows.

Outline

The Game on an Interval

The Game on the Rationals

Eine Kleine Game Theory

Open Questions

Let G be a 2-person, "last player to move wins" game with no draw positions.

Let G be a 2-person, "last player to move wins" game with no draw positions. The game tree, T of G has
nodes $v=$ positions of G,

Let G be a 2-person, "last player to move wins" game with no draw positions. The game tree, T of G has
nodes $v=$ positions of G,
children of $v=$ all positions reachable in one move from v.

Ex.

Let G be a 2-person, "last player to move wins" game with no draw positions. The game tree, T of G has
nodes $v=$ positions of G,
children of $v=$ all positions reachable in one move from v. If the same position w is a child of both v and v^{\prime} then identify the copies of w to get a (di)graph \bar{T}.
Ex.

Let G be a 2-person, "last player to move wins" game with no draw positions. The game tree, T of G has
nodes $v=$ positions of G,
children of $v=$ all positions reachable in one move from v. If the same position w is a child of both v and v^{\prime} then identify the copies of w to get a (di)graph \bar{T}.
Ex.

Let G be a 2-person, "last player to move wins" game with no draw positions. The game tree, T of G has
nodes $v=$ positions of G,
children of $v=$ all positions reachable in one move from v. If the same position w is a child of both v and v^{\prime} then identify the copies of w to get a (di)graph \bar{T}.
Ex.

Let $\ell(v)= \begin{cases}\mathcal{N} & \text { if the next player wins from position } v, \\ \mathcal{P} & \text { if the previous player wins from position } v .\end{cases}$

Let G be a 2-person, "last player to move wins" game with no draw positions. The game tree, T of G has
nodes $v=$ positions of G,
children of $v=$ all positions reachable in one move from v. If the same position w is a child of both v and v^{\prime} then identify the copies of w to get a (di)graph \bar{T}.
Ex.

Let $\ell(v)= \begin{cases}\mathcal{N} & \text { if the next player wins from position } v, \\ \mathcal{P} & \text { if the previous player wins from position } v .\end{cases}$
Now label all terminal $v \in \bar{T}$ with \mathcal{P},

Let G be a 2-person, "last player to move wins" game with no draw positions. The game tree, T of G has
nodes $v=$ positions of G,
children of $v=$ all positions reachable in one move from v. If the same position w is a child of both v and v^{\prime} then identify the copies of w to get a (di)graph \bar{T}.
Ex.

Let $\ell(v)= \begin{cases}\mathcal{N} & \text { if the next player wins from position } v, \\ \mathcal{P} & \text { if the previous player wins from position } v .\end{cases}$
Now label all terminal $v \in \bar{T}$ with \mathcal{P},

Let G be a 2-person, "last player to move wins" game with no draw positions. The game tree, T of G has
nodes $v=$ positions of G,
children of $v=$ all positions reachable in one move from v. If the same position w is a child of both v and v^{\prime} then identify the copies of w to get a (di)graph \bar{T}.
Ex.

Let $\ell(v)= \begin{cases}\mathcal{N} & \text { if the next player wins from position } v, \\ \mathcal{P} & \text { if the previous player wins from position } v .\end{cases}$
Now label all terminal $v \in \bar{T}$ with \mathcal{P}, and work upwards using:
(i) if there is a \mathcal{P}-child of v then let $\ell(v)=\mathcal{N}$

Let G be a 2-person, "last player to move wins" game with no draw positions. The game tree, T of G has
nodes $v=$ positions of G,
children of $v=$ all positions reachable in one move from v. If the same position w is a child of both v and v^{\prime} then identify the copies of w to get a (di)graph \bar{T}.
Ex.

Let $\ell(v)= \begin{cases}\mathcal{N} & \text { if the next player wins from position } v, \\ \mathcal{P} & \text { if the previous player wins from position } v .\end{cases}$
Now label all terminal $v \in \bar{T}$ with \mathcal{P}, and work upwards using:
(i) if there is a \mathcal{P}-child of v then let $\ell(v)=\mathcal{N}$

Let G be a 2-person, "last player to move wins" game with no draw positions. The game tree, T of G has
nodes $v=$ positions of G,
children of $v=$ all positions reachable in one move from v. If the same position w is a child of both v and v^{\prime} then identify the copies of w to get a (di)graph \bar{T}.
Ex.

Let $\ell(v)= \begin{cases}\mathcal{N} & \text { if the next player wins from position } v, \\ \mathcal{P} & \text { if the previous player wins from position } v .\end{cases}$
Now label all terminal $v \in \bar{T}$ with \mathcal{P}, and work upwards using:
(i) if there is a \mathcal{P}-child of v then let $\ell(v)=\mathcal{N}$
(ii) if all children of v are \mathcal{N} then let $\ell(v)=\mathcal{P}$

Let G be a 2-person, "last player to move wins" game with no draw positions. The game tree, T of G has
nodes $v=$ positions of G,
children of $v=$ all positions reachable in one move from v. If the same position w is a child of both v and v^{\prime} then identify the copies of w to get a (di)graph \bar{T}.
Ex.

Let $\ell(v)= \begin{cases}\mathcal{N} & \text { if the next player wins from position } v, \\ \mathcal{P} & \text { if the previous player wins from position } v .\end{cases}$
Now label all terminal $v \in \bar{T}$ with \mathcal{P}, and work upwards using:
(i) if there is a \mathcal{P}-child of v then let $\ell(v)=\mathcal{N}$
(ii) if all children of v are \mathcal{N} then let $\ell(v)=\mathcal{P}$
(i) $\xrightarrow[p]{N}$
(ii) $\mathcal{N} \mathcal{N} \mathcal{N} \mathcal{N}$

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
(ii)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$.
(i)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$.
(i)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$. So $\ell(P)=\mathcal{N}$ by (ii).
(i)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$. So $\ell(P)=\mathcal{N}$ by (ii).
(i)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$. So $\ell(P)=\mathcal{N}$ by (ii). So $\ell(P B)=\mathcal{P}$ or $\ell(R P)=\mathcal{P}$ by (i).
(i)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$. So $\ell(P)=\mathcal{N}$ by (ii). So $\ell(P B)=\mathcal{P}$ or $\ell(R P)=\mathcal{P}$ by (i). But $m=n$ and $P B, R P$ are symmetric so $\ell(P B)=\ell(R P)=\mathcal{P}$.
(i)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$. So $\ell(P)=\mathcal{N}$ by (ii). So $\ell(P B)=\mathcal{P}$ or $\ell(R P)=\mathcal{P}$ by (i). But $m=n$ and $P B, R P$ are symmetric so $\ell(P B)=\ell(R P)=\mathcal{P}$.
(i)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$. So $\ell(P)=\mathcal{N}$ by (ii). So $\ell(P B)=\mathcal{P}$ or $\ell(R P)=\mathcal{P}$ by (i). But $m=n$ and $P B, R P$ are symmetric so $\ell(P B)=\ell(R P)=\mathcal{P}$. So $\ell\left(P^{2}\right)=\ell(R P B)=\mathcal{N}$ by (ii).
(i)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$. So $\ell(P)=\mathcal{N}$ by (ii). So $\ell(P B)=\mathcal{P}$ or $\ell(R P)=\mathcal{P}$ by (i). But $m=n$ and $P B, R P$ are symmetric so $\ell(P B)=\ell(R P)=\mathcal{P}$. So $\ell\left(P^{2}\right)=\ell(R P B)=\mathcal{N}$ by (ii).
(i)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$. So $\ell(P)=\mathcal{N}$ by (ii). So $\ell(P B)=\mathcal{P}$ or $\ell(R P)=\mathcal{P}$ by (i). But $m=n$ and $P B, R P$ are symmetric so $\ell(P B)=\ell(R P)=\mathcal{P}$. So $\ell\left(P^{2}\right)=\ell(R P B)=\mathcal{N}$ by
(ii). So $\ell(P B P)=\ell(P R P)=\mathcal{P}$ by (i) and symmetry.
(i)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$. So $\ell(P)=\mathcal{N}$ by (ii). So $\ell(P B)=\mathcal{P}$ or $\ell(R P)=\mathcal{P}$ by (i). But $m=n$ and $P B, R P$ are symmetric so $\ell(P B)=\ell(R P)=\mathcal{P}$. So $\ell\left(P^{2}\right)=\ell(R P B)=\mathcal{N}$ by
(ii). So $\ell(P B P)=\ell(P R P)=\mathcal{P}$ by (i) and symmetry.
(i)

(ii)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$. So $\ell(P)=\mathcal{N}$ by (ii). So $\ell(P B)=\mathcal{P}$ or $\ell(R P)=\mathcal{P}$ by (i). But $m=n$ and $P B, R P$ are symmetric so $\ell(P B)=\ell(R P)=\mathcal{P}$. So $\ell\left(P^{2}\right)=\ell(R P B)=\mathcal{N}$ by
(ii). So $\ell(P B P)=\ell(P R P)=\mathcal{P}$ by (i) and symmetry. So $\ell\left(P^{2} B\right)=\ell\left(R P B^{2}\right)=\ell\left(R^{2} P B\right)=\ell\left(R P^{2}\right)=\mathcal{N}$ by (ii).
(i)

(ii)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$. So $\ell(P)=\mathcal{N}$ by (ii). So $\ell(P B)=\mathcal{P}$ or $\ell(R P)=\mathcal{P}$ by (i). But $m=n$ and $P B, R P$ are symmetric so $\ell(P B)=\ell(R P)=\mathcal{P}$. So $\ell\left(P^{2}\right)=\ell(R P B)=\mathcal{N}$ by
(ii). So $\ell(P B P)=\ell(P R P)=\mathcal{P}$ by (i) and symmetry. So $\ell\left(P^{2} B\right)=\ell\left(R P B^{2}\right)=\ell\left(R^{2} P B\right)=\ell\left(R P^{2}\right)=\mathcal{N}$ by (ii).
(i)

Theorem (Otago-S)
The winner of the game on \mathbb{Q} where $m=n \geq 3$ is A.
Proof. Part of the top of \bar{T} is

Suppose B wins, so $\ell(\epsilon)=\mathcal{P}$. So $\ell(P)=\mathcal{N}$ by (ii). So $\ell(P B)=\mathcal{P}$ or $\ell(R P)=\mathcal{P}$ by (i). But $m=n$ and $P B, R P$ are symmetric so $\ell(P B)=\ell(R P)=\mathcal{P}$. So $\ell\left(P^{2}\right)=\ell(R P B)=\mathcal{N}$ by
(ii). So $\ell(P B P)=\ell(P R P)=\mathcal{P}$ by (i) and symmetry. So $\ell\left(P^{2} B\right)=\ell\left(R P B^{2}\right)=\ell\left(R^{2} P B\right)=\ell\left(R P^{2}\right)=\mathcal{N}$ by (ii). This contradicts $\ell(R P B)=\mathcal{N}$

Outline

The Game on an Interval

The Game on the Rationals

Eine Kleine Game Theory

Open Questions
(1) Who wins the game for general m, n on either [$m n+1$] or \mathbb{Q} ? In appears as if A wins except when m or n is small.
(1) Who wins the game for general m, n on either $[m n+1]$ or \mathbb{Q} ? In appears as if A wins except when m or n is small.
(2) What can be said about playing on other partially ordered sets?
(1) Who wins the game for general m, n on either $[m n+1]$ or \mathbb{Q} ? In appears as if A wins except when m or n is small.
(2) What can be said about playing on other partially ordered sets?

Theorem (Otago-S)
If $N \geq m n+1$ then the winner playing on the Boolean algebra B_{N} is B.

HAPPY BIRTHDAY
 ANDREAS!!

