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Let
[n] = {1, 2, . . . , n},

and

Sn = symmetric group of permutations π = x1 . . . xn of [n].

A subsequence of π of length k is xi1 . . . xik with i1 < . . . < ik .
The subsequence is increasing (respectively, decreasing) if
xi1 < . . . < xik (respectively, xi1 > . . . > xik ). A sequence of
either type is monotone.
Ex. If π = 6 4 1 3 2 5 then 1 3 5 is an increasing sequence of
length 3 and 6 4 3 is a decreasing sequence of length 3.

Theorem (Erdős-Szekeres, 1935)
Any π ∈ Smn+1 has either an increasing subsequence of length
m + 1 or a decreasing subsequence of length n + 1.

Ex. If m = 2 and n = 3 then mn + 1 = 7. A permutation in S7,
please!!
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The Game (Harary-S-West, 1983). Given m, n ∈ Z≥0, players
A and B form a sequence x1x2 . . . of elements of S = [mn + 1]
by:

Player A picks x1 ∈ S. Then player B picks x2 ∈ S − x1, etc.
The first player to form an increasing subsequence of length
m + 1 or a decreasing subsequence of length n + 1 is the
winner. By the previous theorem, a winner exists.
Ex. Let m = 1 and n = 3 so [mn + 1] = [4]. Let’s play!!
Note that the game is symmetric in m and n.

Theorem
The winner of the game on [mn + 1] where m ≤ n is:

m\n 0 1 2 3 4 5 6 7
0 A A A A A A A A
1 B A B A B A B
2 A A A A A A
3 A A A A ?
4 A ? ? ?

where the patterns continue in each of the first 3 rows.
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Play the same game with [mn + 1] replaced by Q. As
π = x1x2 . . . is built, also build the increasing list I:

1. Initially I = ε, the empty sequence.
2. If I = y1y2 . . . when xi is picked, have xi replace the smallest
yj > xi or append xi to the right end of I if no such yj exists.
Ex. π =

4 2 5 3 1 6

I : ε,

4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

Since 6 was placed in the third column of I we have an
increasing subsequence of length three ending at 6, e.g., 2 3 6.

Theorem (Schensted, 1961)
If xi is placed in column j of I,

and in column k of D

j = length of a longest increasing subsequence ending at xi ,

k = length of a longest decreasing subsequence ending at xi .

Similarly build a decreasing list D by reversing the inequalities.
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Similarly build a decreasing list D by reversing the inequalities.



Play the same game with [mn + 1] replaced by Q. As
π = x1x2 . . . is built, also build the increasing list I:
1. Initially I = ε, the empty sequence.
2. If I = y1y2 . . . when xi is picked, have xi replace the smallest
yj > xi or append xi to the right end of I if no such yj exists.
Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6

D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

Since 6 was placed in the third column of I we have an
increasing subsequence of length three ending at 6, e.g., 2 3 6.

Theorem (Schensted, 1961)
If xi is placed in column j of I,

and in column k of D

j = length of a longest increasing subsequence ending at xi ,

k = length of a longest decreasing subsequence ending at xi .

Similarly build a decreasing list D by reversing the inequalities.



Play the same game with [mn + 1] replaced by Q. As
π = x1x2 . . . is built, also build the increasing list I:
1. Initially I = ε, the empty sequence.
2. If I = y1y2 . . . when xi is picked, have xi replace the smallest
yj > xi or append xi to the right end of I if no such yj exists.
Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε,

4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

Since 6 was placed in the third column of I we have an
increasing subsequence of length three ending at 6, e.g., 2 3 6.

Theorem (Schensted, 1961)
If xi is placed in column j of I,

and in column k of D

j = length of a longest increasing subsequence ending at xi ,

k = length of a longest decreasing subsequence ending at xi .

Similarly build a decreasing list D by reversing the inequalities.



Play the same game with [mn + 1] replaced by Q. As
π = x1x2 . . . is built, also build the increasing list I:
1. Initially I = ε, the empty sequence.
2. If I = y1y2 . . . when xi is picked, have xi replace the smallest
yj > xi or append xi to the right end of I if no such yj exists.
Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4,

4 2, 5 2, 5 3, 5 3 1, 6 3 1

Since 6 was placed in the third column of I we have an
increasing subsequence of length three ending at 6, e.g., 2 3 6.

Theorem (Schensted, 1961)
If xi is placed in column j of I,

and in column k of D

j = length of a longest increasing subsequence ending at xi ,

k = length of a longest decreasing subsequence ending at xi .

Similarly build a decreasing list D by reversing the inequalities.



Play the same game with [mn + 1] replaced by Q. As
π = x1x2 . . . is built, also build the increasing list I:
1. Initially I = ε, the empty sequence.
2. If I = y1y2 . . . when xi is picked, have xi replace the smallest
yj > xi or append xi to the right end of I if no such yj exists.
Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2,

5 2, 5 3, 5 3 1, 6 3 1

Since 6 was placed in the third column of I we have an
increasing subsequence of length three ending at 6, e.g., 2 3 6.

Theorem (Schensted, 1961)
If xi is placed in column j of I,

and in column k of D

j = length of a longest increasing subsequence ending at xi ,

k = length of a longest decreasing subsequence ending at xi .

Similarly build a decreasing list D by reversing the inequalities.



Play the same game with [mn + 1] replaced by Q. As
π = x1x2 . . . is built, also build the increasing list I:
1. Initially I = ε, the empty sequence.
2. If I = y1y2 . . . when xi is picked, have xi replace the smallest
yj > xi or append xi to the right end of I if no such yj exists.
Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2,

5 3, 5 3 1, 6 3 1

Since 6 was placed in the third column of I we have an
increasing subsequence of length three ending at 6, e.g., 2 3 6.

Theorem (Schensted, 1961)
If xi is placed in column j of I,

and in column k of D

j = length of a longest increasing subsequence ending at xi ,

k = length of a longest decreasing subsequence ending at xi .

Similarly build a decreasing list D by reversing the inequalities.



Play the same game with [mn + 1] replaced by Q. As
π = x1x2 . . . is built, also build the increasing list I:
1. Initially I = ε, the empty sequence.
2. If I = y1y2 . . . when xi is picked, have xi replace the smallest
yj > xi or append xi to the right end of I if no such yj exists.
Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3,

5 3 1, 6 3 1

Since 6 was placed in the third column of I we have an
increasing subsequence of length three ending at 6, e.g., 2 3 6.

Theorem (Schensted, 1961)
If xi is placed in column j of I,

and in column k of D

j = length of a longest increasing subsequence ending at xi ,

k = length of a longest decreasing subsequence ending at xi .

Similarly build a decreasing list D by reversing the inequalities.



Play the same game with [mn + 1] replaced by Q. As
π = x1x2 . . . is built, also build the increasing list I:
1. Initially I = ε, the empty sequence.
2. If I = y1y2 . . . when xi is picked, have xi replace the smallest
yj > xi or append xi to the right end of I if no such yj exists.
Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1,

6 3 1

Since 6 was placed in the third column of I we have an
increasing subsequence of length three ending at 6, e.g., 2 3 6.

Theorem (Schensted, 1961)
If xi is placed in column j of I,

and in column k of D

j = length of a longest increasing subsequence ending at xi ,

k = length of a longest decreasing subsequence ending at xi .

Similarly build a decreasing list D by reversing the inequalities.



Play the same game with [mn + 1] replaced by Q. As
π = x1x2 . . . is built, also build the increasing list I:
1. Initially I = ε, the empty sequence.
2. If I = y1y2 . . . when xi is picked, have xi replace the smallest
yj > xi or append xi to the right end of I if no such yj exists.
Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

Since 6 was placed in the third column of I we have an
increasing subsequence of length three ending at 6, e.g., 2 3 6.

Theorem (Schensted, 1961)
If xi is placed in column j of I,

and in column k of D

j = length of a longest increasing subsequence ending at xi ,

k = length of a longest decreasing subsequence ending at xi .

Similarly build a decreasing list D by reversing the inequalities.



Play the same game with [mn + 1] replaced by Q. As
π = x1x2 . . . is built, also build the increasing list I:
1. Initially I = ε, the empty sequence.
2. If I = y1y2 . . . when xi is picked, have xi replace the smallest
yj > xi or append xi to the right end of I if no such yj exists.
Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

Since 6 was placed in the third column of I we have an
increasing subsequence of length three ending at 6, e.g., 2 3 6.

Theorem (Schensted, 1961)
If xi is placed in column j of I, and in column k of D

j = length of a longest increasing subsequence ending at xi ,
k = length of a longest decreasing subsequence ending at xi .

Similarly build a decreasing list D by reversing the inequalities.



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,

xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,

xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,

↑
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,

↑
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,

↑
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,

↑
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1

C : ε,
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R and P are called redish and draining red is R ← ε, P ← B.

B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.

Algorithm for C. 1. Initially C = ε.
2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
new P (if any), and drain blue from the closest bluish element to
the left of the new P (if any).



Build a combined list C by assigning colors red (R), blue (B),
and purple (P) to the xi as follows:

xi ∈ I and xi 6∈ D =⇒ color xi with R,
xi 6∈ I and xi ∈ D =⇒ color xi with B,
xi ∈ I and xi ∈ D =⇒ color xi with P.

Ex. π = 4 2 5 3 1 6

I : ε, 4, 2, 2 5, 2 3, 1 3, 1 3 6
D : ε, 4, 4 2, 5 2, 5 3, 5 3 1, 6 3 1
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R and P are called redish and draining red is R ← ε, P ← B.
B and P are called bluish and draining blue is B ← ε, P ← R.
Algorithm for C. 1. Initially C = ε.

2. Each xi inserts a P into the corresponding space of C.
3. Drain red from the closest redish element to the right of the
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Theorem (Otago-S)
The winner of the game on Q where m ≤ n is:

m\n 0 1 2 3 4 5 6 7
0 A A A A A A A A
1 B B B B B B B
2 A B A B A B
3 A A A A A
4 A A A A

where the patterns continue in each of the first 5 rows.
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Let G be a 2-person, “last player to move wins” game with no
draw positions.

The game tree, T of G has
nodes v = positions of G,

children of v = all positions reachable in one move from v .

If the same position w is a child of both v and v ′ then identify
the copies of w to get a (di)graph T .
Ex.
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Let `(v) =

{
N if the next player wins from position v ,
P if the previous player wins from position v .

Now label all terminal v ∈ T with P, and work upwards using:
(i) if there is a P-child of v then let `(v) = N
(ii) if all children of v are N then let `(v) = P
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Suppose B wins, so `(ε) = P. So `(P) = N by (ii). So
`(PB) = P or `(RP) = P by (i). But m = n and PB, RP are
symmetric so `(PB) = `(RP) = P. So `(P2) = `(RPB) = N by
(ii). So `(PBP) = `(PRP) = P by (i) and symmetry. So
`(P2B) = `(RPB2) = `(R2PB) = `(RP2) = N by (ii). This
contradicts `(RPB) = N
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Suppose B wins, so `(ε) = P. So `(P) = N by (ii). So
`(PB) = P or `(RP) = P by (i). But m = n and PB, RP are
symmetric so `(PB) = `(RP) = P. So `(P2) = `(RPB) = N by
(ii). So `(PBP) = `(PRP) = P by (i) and symmetry.

So
`(P2B) = `(RPB2) = `(R2PB) = `(RP2) = N by (ii). This
contradicts `(RPB) = N
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Eine Kleine Game Theory

Open Questions



(1) Who wins the game for general m, n on either [mn + 1] or
Q? In appears as if A wins except when m or n is small.

(2) What can be said about playing on other partially ordered
sets?

Theorem (Otago-S)
If N ≥ mn + 1 then the winner playing on the Boolean algebra
BN is B.
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