Menger-bounded subgroups of the Baer-Specker group

Heike Mildenberger

Kurt Gödel Research Center for Mathematical Logic, University of Vienna http://www.logic.univie.ac.at/~heike

Conference in Honour of Andreas Blass' 60th Birthday The Fields Institute, Toronto November 9 - 10, 2007

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

Non-dominating subgroups of the Baer-Specker group

Definitions

Studying the sufficient conditions

A proposed simplification

Bounds on the new cardinals

Studying the construction

Combinatorial possibilities for k-dominating families

(ロ) (型) (E) (E) (E) (O)

Menger-boundedness

Definition

Let $k \geq 1$ and let $G \subseteq \mathbb{Z}^{\omega}$ be a subgroup. G^k is called Menger-bounded if

$$(\exists f \in \omega^{\top \omega})(\forall g_1, \dots g_k \in G)$$

 $\{n : \max_{1 \le i \le k, 0 \le m \le n} |g_i(m)| \le f(n)\}$ is infinite

Question

Are there subgroups of the Baer-Specker group whose k-th power is Menger-bounded but whose (k + 1)-st power is not?

Menger-boundedness

Definition

Let $k \geq 1$ and let $G \subseteq \mathbb{Z}^\omega$ be a subgroup. G^k is called Menger-bounded if

$$(\exists f \in \omega^{\uparrow \omega})(\forall g_1, \dots g_k \in G)$$

 $\{n : \max_{1 \le i \le k, 0 \le m \le n} |g_i(m)| \le f(n)\}$ is infinite

Question

Are there subgroups of the Baer-Specker group whose k-th power is Menger-bounded but whose (k + 1)-st power is not?

A related question

Definition

Let $k \ge 1$. $D \subseteq \omega^{\omega}$ is called k-dominating if $\{\max(d_1, \ldots, d_k) : d_i \in D\}$ is \le^* -dominating. For every $f \in \omega^{\omega}$, there are $d_1, \ldots, d_k \in D$ such that for all but finitely many n, $f(n) \le \max(d_1(n), \ldots, d_k(n))$.

Definition

Let $k \ge 1$. $D \subseteq \omega^{\uparrow \omega}$ is called k-dominating if {max (d_1, \ldots, d_k) : $d_i \in D$ } is \le^* -dominating. For every $f \in \omega^{\omega}$, there are $d_1, \ldots, d_k \in D$ such that for all but finitely many n, $f(n) \le \max(d_1(n), \ldots, d_k(n))$.

A related question

Definition

Let $k \ge 1$. $D \subseteq \omega^{\omega}$ is called k-dominating if $\{\max(d_1, \ldots, d_k) : d_i \in D\}$ is \le^* -dominating. For every $f \in \omega^{\omega}$, there are $d_1, \ldots, d_k \in D$ such that for all but finitely many n, $f(n) \le \max(d_1(n), \ldots, d_k(n))$.

Definition

Let $k \ge 1$. $D \subseteq \omega^{\uparrow \omega}$ is called k-dominating if $\{\max(d_1, \ldots, d_k) : d_i \in D\}$ is \le^* -dominating. For every $f \in \omega^{\omega}$, there are $d_1, \ldots, d_k \in D$ such that for all but finitely many n, $f(n) \le \max(d_1(n), \ldots, d_k(n))$.

Question

Are there k-dominating, not k + 1-dominating families?

A related question

Definition

Let $k \ge 1$. $D \subseteq \omega^{\omega}$ is called k-dominating if $\{\max(d_1, \ldots, d_k) : d_i \in D\}$ is \le^* -dominating. For every $f \in \omega^{\omega}$, there are $d_1, \ldots, d_k \in D$ such that for all but finitely many n, $f(n) \le \max(d_1(n), \ldots, d_k(n))$.

Definition

Let $k \ge 1$. $D \subseteq \omega^{\uparrow \omega}$ is called k-dominating if $\{\max(d_1, \ldots, d_k) : d_i \in D\}$ is \le^* -dominating. For every $f \in \omega^{\omega}$, there are $d_1, \ldots, d_k \in D$ such that for all but finitely many n, $f(n) \le \max(d_1(n), \ldots, d_k(n))$.

Question

Are there k-dominating, not k + 1-dominating families?

Sharp and not so sharp dividing lines

Proposition

There is a 2-dominating not dominating family in the subsets of $\omega^{\uparrow \omega}$, namely $H = \{f \in \omega^{\uparrow \omega} : (\exists^{\infty} n)(f(n) \leq n)\}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem 1, Blass

Under $\mathfrak{u} < \mathfrak{g}$ every k-dominating family is 2-dominating.

Sharp and not so sharp dividing lines

Proposition

There is a 2-dominating not dominating family in the subsets of $\omega^{\uparrow \omega}$, namely $H = \{f \in \omega^{\uparrow \omega} : (\exists^{\infty} n)(f(n) \leq n)\}.$

Theorem 1, Blass

Under u < g every k-dominating family is 2-dominating.

Theorem 2, Blass

If there are k pairwise non-nearly-coherent ultrafilters then there is a k+1-dominating family in $\omega^{\dagger\omega}$ that is not k-dominating.

Sharp and not so sharp dividing lines

Proposition

There is a 2-dominating not dominating family in the subsets of $\omega^{\uparrow \omega}$, namely $H = \{f \in \omega^{\uparrow \omega} : (\exists^{\infty} n)(f(n) \leq n)\}.$

Theorem 1, Blass

Under u < g every k-dominating family is 2-dominating.

Theorem 2, Blass

If there are k pairwise non-nearly-coherent ultrafilters then there is a k + 1-dominating family in $\omega^{\uparrow \omega}$ that is not k-dominating.

ション ふゆ く 山 マ チャット しょうくしゃ

The condition on the non-existence side

Definition

 $\mathfrak u$ is the smallest cardinality of a basis of a non-principal ultrafilter over $\omega.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

g is the groupwise density number.

The condition on the non-existence side

Definition

 $\mathfrak u$ is the smallest cardinality of a basis of a non-principal ultrafilter over $\omega.$

${\mathfrak g}$ is the groupwise density number.

Under u < g often non-dominating means being bounded on witnesses from an ultrafilter. These can be intersected and hence we get non-dominating for all finite k.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The condition on the non-existence side

Definition

 $\mathfrak u$ is the smallest cardinality of a basis of a non-principal ultrafilter over $\omega.$

 \mathfrak{g} is the groupwise density number.

Under u < g often non-dominating means being bounded on witnesses from an ultrafilter. These can be intersected and hence we get non-dominating for all finite k.

ション ふゆ く 山 マ チャット しょうくしゃ

The conditions on the positive side

Definition

Let \mathscr{U} and \mathscr{V} be non-principal ultrafilters on ω . We say \mathscr{U} and \mathscr{V} are nearly coherent if there is some finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{U}) = f(\mathscr{V})$. $f(\mathscr{U}) = \{X \subseteq \omega : f^{-1}[X] \in \mathscr{U}\}$.

Theorem, Blass, Laflamme

 $\mathfrak{r} < \mathfrak{g}$ implies that any two non-principal ultrafilters are nearly coherent.

- コン (雪) (日) (日) (日)

The conditions on the positive side

Definition

Let \mathscr{U} and \mathscr{V} be non-principal ultrafilters on ω . We say \mathscr{U} and \mathscr{V} are nearly coherent if there is some finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{U}) = f(\mathscr{V})$. $f(\mathscr{U}) = \{X \subseteq \omega : f^{-1}[X] \in \mathscr{U}\}$.

Theorem, Blass, Laflamme

 $\mathfrak{r} < \mathfrak{g}$ implies that any two non-principal ultrafilters are nearly coherent.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem, M., Shelah [MdSh:894]

The converse is not true.

The conditions on the positive side

Definition

Let \mathscr{U} and \mathscr{V} be non-principal ultrafilters on ω . We say \mathscr{U} and \mathscr{V} are nearly coherent if there is some finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{U}) = f(\mathscr{V})$. $f(\mathscr{U}) = \{X \subseteq \omega : f^{-1}[X] \in \mathscr{U}\}$.

Theorem, Blass, Laflamme

 $\mathfrak{r} < \mathfrak{g}$ implies that any two non-principal ultrafilters are nearly coherent.

ション ふゆ く 山 マ チャット しょうくしゃ

```
Theorem, M., Shelah [MdSh:894]
```

The converse is not true.

More cardinals

Definition

$$\mathfrak{r} = \min\{\mathscr{R} \subseteq [\omega]^{\omega} : (\forall f \colon \omega \to \{0,1\}) (\exists R \in \mathscr{R})$$

 $f \upharpoonright R$ is (almost) constant} is called the reaping number or refining number or unsplitting number.

Definition

The dominating number is $\mathfrak{d} = \min\{\mathscr{D} \subseteq {}^{\omega}\omega : (\forall g \in {}^{\omega}\omega)(\exists f \in \mathscr{D})(g \leq^* f)\}$ is called the dominating number.

・ロト ・ 四ト ・ 日ト ・ 日 ・

More cardinals

Definition

$$\mathfrak{r} = \min\{\mathscr{R} \subseteq [\omega]^{\omega} : (\forall f : \omega \to \{0,1\}) (\exists R \in \mathscr{R})\}$$

 $f \upharpoonright R$ is (almost) constant} is called the reaping number or refining number or unsplitting number.

Definition

The dominating number is $\mathfrak{d} = \min\{\mathscr{D} \subseteq {}^{\omega}\omega : (\forall g \in {}^{\omega}\omega)(\exists f \in \mathscr{D})(g \leq {}^{*}f)\}$ is called the dominating number.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Inequalities

 \mathfrak{u} and \mathfrak{d} can be in any order. $\mathfrak{u} \geq \mathfrak{r}$, Balcar and Simon.

Theorem, Goldstern Shelah

 $\mathfrak{d} = \mathfrak{u} < \mathfrak{r}$ is consistent relative to ZFC.

Theorem, Aubrey

Aubrey: If $\mathfrak{r} < \mathfrak{d}$, then $\mathfrak{u} = \mathfrak{r}$.

So $r < \mathfrak{d}$ is as strong as $\mathfrak{u} < \mathfrak{d}$. We can write r instead of \mathfrak{u} all the time in this talk.

ション ふゆ く 山 マ チャット しょうくしゃ

Remark

In ZFC, $\mathfrak{b}, \operatorname{cov}(\mathcal{M}) \leq \mathfrak{r}$ by results of Solomon and of Vojtáš.

Inequalities

 \mathfrak{u} and \mathfrak{d} can be in any order. $\mathfrak{u} \geq \mathfrak{r}$, Balcar and Simon.

Theorem, Goldstern Shelah

 $\mathfrak{d} = \mathfrak{u} < \mathfrak{r}$ is consistent relative to ZFC.

Theorem, Aubrey

Aubrey: If $\mathfrak{r} < \mathfrak{d}$, then $\mathfrak{u} = \mathfrak{r}$.

So $r < \mathfrak{d}$ is as strong as $\mathfrak{u} < \mathfrak{d}$. We can write r instead of \mathfrak{u} all the time in this talk.

ション ふゆ く 山 マ チャット しょうくしゃ

Remark

In ZFC, $\mathfrak{b}, \operatorname{cov}(\mathcal{M}) \leq \mathfrak{r}$ by results of Solomon and of Vojtáš.

First sort: $\mathfrak{r} \geq \mathfrak{d}$. Many construction possibilities.

Second sort: $\mathfrak{u} < \mathfrak{g}$, semifilter trichotomy. Four unbounded growth types.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

First sort: $\mathfrak{r} \geq \mathfrak{d}$. Many construction possibilities. Second sort: $\mathfrak{u} < \mathfrak{g}$, semifilter trichotomy. Four unbounded growth types.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In between: $\mathfrak{g} \leq \mathfrak{u} < \mathfrak{d}$. Known that not empty. Two types of models, BsSh:257 and MdSh:894 are known, maybe more.

First sort: $\mathfrak{r} \geq \mathfrak{d}$. Many construction possibilities.

Second sort: u < g, semifilter trichotomy. Four unbounded growth types.

In between: $\mathfrak{g} \leq \mathfrak{u} < \mathfrak{d}$. Known that not empty. Two types of models, BsSh:257 and MdSh:894 are known, maybe more.

Theorem

In the models of the first type, there are many near coherence classes.

ション ふゆ く 山 マ チャット しょうくしゃ

First sort: $\mathfrak{r} \geq \mathfrak{d}$. Many construction possibilities.

Second sort: u < g, semifilter trichotomy. Four unbounded growth types.

In between: $\mathfrak{g} \leq \mathfrak{u} < \mathfrak{d}$. Known that not empty. Two types of models, BsSh:257 and MdSh:894 are known, maybe more.

Theorem

In the models of the first type, there are many near coherence classes.

I do not know whether there are k-bounded not k+1-bounded families in the second.

ション ふゆ アメリア メリア しょうくしゃ

First sort: $\mathfrak{r} \geq \mathfrak{d}$. Many construction possibilities.

Second sort: u < g, semifilter trichotomy. Four unbounded growth types.

In between: $\mathfrak{g} \leq \mathfrak{u} < \mathfrak{d}$. Known that not empty. Two types of models, BsSh:257 and MdSh:894 are known, maybe more.

Theorem

In the models of the first type, there are many near coherence classes.

I do not know whether there are k-bounded not k + 1-bounded families in the second.

ション ふゆ く 山 マ チャット しょうくしゃ

Partial answers to the question about the *k*-Menger-bounded not (k + 1)-Menger-bounded groups

The following follows from Blass' result, Theorem 1, but people did not read ...

Obsolete Theorem, Banakh, Zdomskyy, Mildenberger

Under r < g, the answer is "no" for $k \ge 2$.

Since the not dominating but 2-dominating *H* is so easy to describe, it is a bit astonishing that the following is open.

Question

Are there in ZFC Menger-bounded groups whose square is not Menger-bounded?

Partial answers to the question about the *k*-Menger-bounded not (k + 1)-Menger-bounded groups

The following follows from Blass' result, Theorem 1, but people did not read ...

Obsolete Theorem, Banakh, Zdomskyy, Mildenberger

Under r < g, the answer is "no" for $k \ge 2$.

Since the not dominating but 2-dominating H is so easy to describe, it is a bit astonishing that the following is open.

Question

Are there in ZFC Menger-bounded groups whose square is not Menger-bounded?

ション ふゆ アメリア メリア しょうくしゃ

A consistency result from some ad hoc condition

Theorem, Machura, Shelah, Tsaban MShT:903

Under a weakening of CH, for every $k \ge 1$, there is a group whose k-th power is Menger-bounded but whose (k + 1)-st power is not.

Remark: The construction for k = 1 is not even a bit easier than the construction for other k. There does not seem to be a hint to convert it in a ZFC construction.

ション ふゆ く 山 マ チャット しょうくしゃ

A consistency result from some ad hoc condition

Theorem, Machura, Shelah, Tsaban MShT:903

Under a weakening of CH, for every $k \ge 1$, there is a group whose k-th power is Menger-bounded but whose (k + 1)-st power is not.

Remark: The construction for k = 1 is not even a bit easier than the construction for other k. There does not seem to be a hint to convert it in a ZFC construction.

ション ふゆ アメリア メリア しょうくしゃ

Good partitions of ω and a cardinal

Definition

A good partition of ω is a partition $P = \{A_n : n \in \omega\}$ into such that for all *n*, there are infinitely many *i* with $i, i + 1 \in A_n$.

Definition

Let P be a good partition. We define a cardinal with no name yet

$$\mathfrak{d}'(P) = \min\{|\mathscr{F}| \, : \, \mathscr{F} \subseteq \omega^{\uparrow \omega} \land (\forall g \in \omega^{\uparrow \omega}) (\exists A \in P) (\exists f \in \mathscr{F}) \ (\forall^{\infty} n \in A)$$

 $(f(g(n)) \ge g(n+1) \lor f(g(n+1)) \ge g(n+2) \lor n+1 \notin A)\}$

- コン (雪) (日) (日) (日)

Good partitions of ω and a cardinal

Definition

A good partition of ω is a partition $P = \{A_n : n \in \omega\}$ into such that for all *n*, there are infinitely many *i* with $i, i + 1 \in A_n$.

Definition

Let P be a good partition. We define a cardinal with no name yet

$$\begin{split} \mathfrak{d}'(P) &= \min\{|\mathscr{F}| \, : \, \mathscr{F} \subseteq \omega^{\uparrow \omega} \land (\forall g \in \omega^{\uparrow \omega}) (\exists A \in P) (\exists f \in \mathscr{F}) \\ (\forall^{\infty} n \in A) \\ (f(g(n)) \geq g(n+1) \lor f(g(n+1)) \geq g(n+2) \lor n+1 \notin A) \} \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The sufficient condition

The weakening of CH used in Machura, Shelah and Tsaban's theorem

A sufficient condition is: There is a good partition P such that $\mathfrak{d}'(P) \geq \mathfrak{d}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dispensing with the alternative

We define another cardinal without a name:

Definition

Now let P be any partition of ω into infinitely many infinite sets.

$$\mathfrak{d}_*(P) = \min\{|\mathscr{F}| : \mathscr{F} \subseteq \omega^{\uparrow \omega} \land (\forall g \in \omega^{\uparrow \omega}) (\exists A \in P) (\exists f \in \mathscr{F}) \ (\forall^{\infty} n \in A) (f(g(n)) \ge g(n+1))\}$$

ション ふゆ アメリア メリア しょうくしゃ

Question

Is $\mathfrak{d}_*(P) = \mathfrak{d}'(P)$?

Dispensing with the alternative

We define another cardinal without a name:

Definition

Now let P be any partition of ω into infinitely many infinite sets.

$$\mathfrak{d}_*(P) = \min\{|\mathscr{F}| : \mathscr{F} \subseteq \omega^{\uparrow \omega} \land (\forall g \in \omega^{\uparrow \omega}) (\exists A \in P) (\exists f \in \mathscr{F}) \ (\forall^{\infty} n \in A) (f(g(n)) \ge g(n+1))\}$$

ション ふゆ アメリア メリア しょうくしゃ

Question

Is $\mathfrak{d}_*(P) = \mathfrak{d}'(P)$?

Locating the ad hoc premise

Question

Is $(\exists P)(\mathfrak{d}_*(P) \geq \mathfrak{d})$ sufficient for the construction?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

How do $\mathfrak{d}_*(P)$ and $\mathfrak{d}'(P)$ depend on P?

Locating the ad hoc premise

Question

Is $(\exists P)(\mathfrak{d}_*(P) \geq \mathfrak{d})$ sufficient for the construction?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Question

How do $\mathfrak{d}_*(P)$ and $\mathfrak{d}'(P)$ depend on P?

Some estimates with other cardinals

Proposition, M.

 $\mathfrak{d}_*(P)$ does not depend on P.

Since $\mathfrak{d}'(P)$ has the disjunction in its requirement, which \mathfrak{d}_* does not have, $\mathfrak{d}_*(P) \geq \mathfrak{d}'(P)$ for good P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some estimates with other cardinals

Proposition, M.

 $\mathfrak{d}_*(P)$ does not depend on P.

Since $\mathfrak{d}'(P)$ has the disjunction in its requirement, which \mathfrak{d}_* does not have, $\mathfrak{d}_*(P) \ge \mathfrak{d}'(P)$ for good P.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Slimmer A's in the partition give smaller $\vartheta'(P)$.

Recall the definition:

 $\mathfrak{d}'(P) = \min\{|\mathscr{F}| : \mathscr{F} \subseteq \omega^{\uparrow \omega} \land (\forall g \in \omega^{\uparrow \omega}) (\exists A \in P) (\exists f \in \mathscr{F}) \\ (\forall^{\infty} n \in A) \\ (f(\pi(n)) \geq \pi(n+1) \lor f(\pi(n+1)) \geq \pi(n+2) \lor (n+1 \notin A))$

$\mathfrak{d}'(P)$ and P

Slimmer A's in the partition give smaller $\vartheta'(P)$. Recall the definition:

$$\begin{split} \mathfrak{d}'(P) &= \min\{|\mathscr{F}| \, : \, \mathscr{F} \subseteq \omega^{\uparrow \omega} \land (\forall g \in \omega^{\uparrow \omega}) (\exists A \in P) (\exists f \in \mathscr{F}) \\ (\forall^{\infty} n \in A) \\ (f(g(n)) \geq g(n+1) \lor f(g(n+1)) \geq g(n+2) \lor n+1 \notin A) \} \end{split}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The premise $(\exists a \text{ good } P)(\mathfrak{d}'(P) \geq \mathfrak{d})$ is not so weak

The premise implies that $\mathfrak{u} \geq \mathfrak{g}$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The premise $(\exists a \text{ good } P)(\mathfrak{d}'(P) \geq \mathfrak{d})$ is not so weak

The premise implies that $\mathfrak{u} \geq \mathfrak{g}$.

Conjecture: The premise implies that there are k near-coherence classes or even that $\mathfrak{u} \geq \mathfrak{d}$.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

The premise $(\exists a \text{ good } P)(\mathfrak{d}'(P) \ge \mathfrak{d})$ is not so weak

The premise implies that $\mathfrak{u} \geq \mathfrak{g}$.

Conjecture: The premise implies that there are k near-coherence classes or even that $u \ge \mathfrak{d}$.

Mathematically this is a pessimistic conjecture, because if it were false, then the construction of the k-Menger-bounded not k + 1-Menger-bounded groups would also be possible in this hardly known land $\mathfrak{g} \leq \mathfrak{u} < \mathfrak{d}$.

ション ふゆ く 山 マ チャット しょうくしゃ

The premise $(\exists a \text{ good } P)(\mathfrak{d}'(P) \ge \mathfrak{d})$ is not so weak

The premise implies that $\mathfrak{u} \geq \mathfrak{g}$.

Conjecture: The premise implies that there are k near-coherence classes or even that $\mathfrak{u} \geq \mathfrak{d}$.

Mathematically this is a pessimistic conjecture, because if it were false, then the construction of the k-Menger-bounded not k + 1-Menger-bounded groups would also be possible in this hardly known land $\mathfrak{g} \leq \mathfrak{u} < \mathfrak{d}$.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

For the moment we also allow P that have only one or two parts. It is clear that this leads to larger cardinals. We are in the $t \ge 0$ area:

Proposition $\mathfrak{d}_*(\{A,\omega\smallsetminus A\}) \leq \mathfrak{r}$ and $\mathfrak{d}'(\{\omega\}) \leq \mathfrak{r}.$

For the moment we also allow P that have only one or two parts. It is clear that this leads to larger cardinals. We are in the $r \ge 0$ area:

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Proposition

 $\mathfrak{d}_*(\{A,\omega\smallsetminus A\})\leq \mathfrak{r} \text{ and } \mathfrak{d}'(\{\omega\})\leq \mathfrak{r}.$

Let \mathscr{R} be a refining family of size \mathfrak{r} .

For the moment we also allow P that have only one or two parts. It is clear that this leads to larger cardinals. We are in the $\mathfrak{r} \geq \mathfrak{d}$ area:

Proposition

 $\mathfrak{d}_*(\{A,\omega\smallsetminus A\})\leq \mathfrak{r} \text{ and } \mathfrak{d}'(\{\omega\})\leq \mathfrak{r}.$

Let ${\mathscr R}$ be a refining family of size ${\mathfrak r}.$

For $R \in \mathscr{R}$ let $f_R : \omega \to \omega$ be the increasing enumeration of R, that is $f_R(n)$ is the *n*-th element of R.

ション ふゆ く 山 マ チャット しょうくしゃ

For the moment we also allow P that have only one or two parts. It is clear that this leads to larger cardinals. We are in the $r \ge 0$ area:

Proposition

$$\mathfrak{d}_*(\{A, \omega \smallsetminus A\}) \leq \mathfrak{r} \text{ and } \mathfrak{d}'(\{\omega\}) \leq \mathfrak{r}.$$

Let \mathscr{R} be a refining family of size \mathfrak{r} . For $R \in \mathscr{R}$ let $f_R : \omega \to \omega$ be the increasing enumeration of R, that is $f_R(n)$ is the *n*-th element of R.

(ロ) (型) (E) (E) (E) (O)

A reduction

Claim

 $\{f_R : R \in \mathscr{R}\}\$ is a family as in the computation of $\mathfrak{d}'(\{\omega\})$ and in the computation of $\mathfrak{d}_*(\{A, \omega \smallsetminus A\})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof of the claim

Proof of the claim: Assume that not. Then

$$(\exists g \in \omega^{\uparrow \omega})(\forall R \in \mathscr{R})\Big((\exists^{\infty} n \in A)(f_R(g(n)) < g(n+1))$$

 $\wedge (\exists^{\infty} n \in \omega \smallsetminus A)(f_R(g(n)) < g(n+1))\Big)$

(written for a partition into two parts) or (for $\partial'(\{\omega\})$

$$(\exists h \in \omega^{\uparrow \omega})(\forall R \in \mathscr{R})(\exists^{\infty} n \in \omega)$$

 $\left(f_R(g(n)) < g(n+1) \land f_R(g(n+1)) < g(n+2)\right)$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Proof of the claim

Proof of the claim: Assume that not. Then

$$(\exists g \in \omega^{\uparrow \omega})(\forall R \in \mathscr{R})\Big((\exists^{\infty} n \in A)(f_R(g(n)) < g(n+1))$$

 $\wedge (\exists^{\infty} n \in \omega \smallsetminus A)(f_R(g(n)) < g(n+1))\Big)$

(written for a partition into two parts) or (for $\mathfrak{d}'(\{\omega\})$

$$(\exists h \in \omega^{\uparrow \omega})(\forall R \in \mathscr{R})(\exists^{\infty} n \in \omega)$$

 $\left(f_R(g(n)) < g(n+1) \land f_R(g(n+1)) < g(n+2)\right)$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

Does the reaping family actually reap?

Set
$$A = A_0$$
 and $\omega \setminus A = A_1$. Enumerate the $n \in A_\ell$ such that $f_R(g(n)) < g(n+1)$ as $n_{\ell,k}^R$, $k \in \omega$, for $\ell = 0, 1$.
Since $f_R(g(n_{\ell,k}^R)) \ge g(n_{\ell,k}^R)$, we have

$$(orall \ell \in 2)(orall R \in \mathscr{R})(orall k \in \omega)(R \cap [g(n_{\ell,k}^R),g(n_{\ell,k}^R+1))
eq \emptyset).$$

Set

$$B_{\ell} = \bigcup_{k \in \omega, R \in \mathscr{R}} [g(n_{\ell,k}^R), g(n_{\ell,k}^R + 1)).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Since $n_{\ell,k}^R \in A_\ell$ and $A_0 \cap A_1 = \emptyset$, $B_0 \cap B_1 = \emptyset$.

Does the reaping family actually reap?

Set
$$A = A_0$$
 and $\omega \setminus A = A_1$. Enumerate the $n \in A_\ell$ such that $f_R(g(n)) < g(n+1)$ as $n_{\ell,k}^R$, $k \in \omega$, for $\ell = 0, 1$.
Since $f_R(g(n_{\ell,k}^R)) \ge g(n_{\ell,k}^R)$, we have

$$(orall \ell \in 2)(orall R \in \mathscr{R})(orall k \in \omega)(R \cap [g(n^R_{\ell,k}),g(n^R_{\ell,k}+1))
eq \emptyset).$$

Set

$$B_{\ell} = \bigcup_{k \in \omega, R \in \mathscr{R}} [g(n_{\ell,k}^R), g(n_{\ell,k}^R+1)).$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Since $n_{\ell,k}^R \in A_\ell$ and $A_0 \cap A_1 = \emptyset$, $B_0 \cap B_1 = \emptyset$.

The contradiction

So

$(\forall R \in \mathscr{R})(R \cap B_0 \neq \emptyset \land R \cap B_1 \neq \emptyset),$

and hence ${\mathscr R}$ is not refining.

You see that for o' we need only one part of the partition, since the negation gives two adjacent intervals that are hit by *R*.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

The contradiction

So

$(\forall R \in \mathscr{R})(R \cap B_0 \neq \emptyset \land R \cap B_1 \neq \emptyset),$

and hence \mathscr{R} is not refining.

You see that for ϑ' we need only one part of the partition, since the negation gives two adjacent intervals that are hit by R.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

It is open whether $\mathfrak{d}'(P) < \mathfrak{d}'(\{\omega\})$ is possible.

The contradiction

So

$$(\forall R \in \mathscr{R})(R \cap B_0 \neq \emptyset \land R \cap B_1 \neq \emptyset),$$

and hence \mathscr{R} is not refining.

You see that for ϑ' we need only one part of the partition, since the negation gives two adjacent intervals that are hit by R. It is open whether $\vartheta'(P) < \vartheta'(\{\omega\})$ is possible.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

The $\mathfrak{d}_*(P)$ are nothing new

Proposition

For every partition P into infinitely many infinite sets we have $\mathfrak{d}_*(P) = \min(\mathfrak{d}, \mathfrak{r}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Open for $\vartheta'(P)$.

Boaz Tsaban, Petr Simon $\mathfrak{d}_*(\{\omega\}) = \mathfrak{d}.$

The $\mathfrak{d}_*(P)$ are nothing new

Proposition

For every partition P into infinitely many infinite sets we have $\mathfrak{d}_*(P) = \min(\mathfrak{d}, \mathfrak{r}).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Open for $\vartheta'(P)$.

Boaz Tsaban, Petr Simon

 $\mathfrak{d}_*(\{\omega\}) = \mathfrak{d}.$

Theorem

 $\mathfrak{r} \geq \mathfrak{d}$ is a sufficient condition for the existence of subgroups of \mathbb{Z}^{ω} whose k-th power is Menger-bounded but whose (k + 1)-st power is not.

Proof: We look at the properties of a stratification of ω^ω that are used. Change the construction slightly.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem

 $\mathfrak{r} \geq \mathfrak{d}$ is a sufficient condition for the existence of subgroups of \mathbb{Z}^{ω} whose k-th power is Menger-bounded but whose (k + 1)-st power is not.

Proof: We look at the properties of a stratification of ω^{ω} that are used. Change the construction slightly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

All k-tuples members of the groups are given by $(k + 1) \times k$ matrices that make many k-vectors on huge stretches of coordinates (from \mathbb{Z}^{ω}) to zero, though the maxima over k + 1-tuples are dominating.

Theorem

 $\mathfrak{r} \geq \mathfrak{d}$ is a sufficient condition for the existence of subgroups of \mathbb{Z}^{ω} whose k-th power is Menger-bounded but whose (k + 1)-st power is not.

Proof: We look at the properties of a stratification of ω^ω that are used. Change the construction slightly.

All k-tuples members of the groups are given by $(k + 1) \times k$ matrices that make many k-vectors on huge stretches of coordinates (from \mathbb{Z}^{ω}) to zero, though the maxima over k + 1-tuples are dominating.

The partition P determines which matrix is just considered in an estimation. We may change the organisation along each layer, and do not need $\mathfrak{d}'(P)$ for one fixed P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

 $\mathfrak{r} \geq \mathfrak{d}$ is a sufficient condition for the existence of subgroups of \mathbb{Z}^{ω} whose k-th power is Menger-bounded but whose (k + 1)-st power is not.

Proof: We look at the properties of a stratification of ω^{ω} that are used. Change the construction slightly.

All k-tuples members of the groups are given by $(k + 1) \times k$ matrices that make many k-vectors on huge stretches of coordinates (from \mathbb{Z}^{ω}) to zero, though the maxima over k + 1-tuples are dominating.

The partition P determines which matrix is just considered in an estimation. We may change the organisation along each layer, and do not need $\vartheta'(P)$ for one fixed P.

Important: $\bigcup_{\alpha < \mathfrak{d}} M_{\alpha} =$ dominating. The union is increasing and the M_{α} are never refining and mildly closed.

(ロ)、

Important: $\bigcup_{\alpha < \mathfrak{d}} M_{\alpha}$ = dominating. The union is increasing and the M_{α} are never refining and mildly closed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Now, never refining can be based upon $|M_lpha|<\mathfrak{r}$ or on other reasons.

Important: $\bigcup_{\alpha < \mathfrak{d}} M_{\alpha}$ = dominating. The union is increasing and the M_{α} are never refining and mildly closed. Now, never refining can be based upon $|M_{\alpha}| < \mathfrak{r}$ or on other reasons.

Open whether the premise of 903 can be strictly stronger than $t \geq \mathfrak{d}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Important: $\bigcup_{\alpha < \mathfrak{d}} M_{\alpha}$ = dominating. The union is increasing and the M_{α} are never refining and mildly closed. Now, never refining can be based upon $|M_{\alpha}| < \mathfrak{r}$ or on other reasons.

Open whether the premise of 903 can be strictly stronger than $\mathfrak{r} \geq \mathfrak{d}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$\mathfrak{u} \geq \mathfrak{d}$ is not necessary

Theorem

In the c.c.c. models of $u < \mathfrak{d}$ (from BsSh:257) there are groups with Menger-bounded k-th power but non-Menger-bounded (k + 1)-st power.

Question, Lyubomyr Zdomskyy

Does "there are k + 1 near coherence classes of ultrafilters" imply that there are groups with Menger-bounded k-th power but non-Menger-bounded (k + 1)-st power?

・ロト ・ 日本 ・ 日本 ・ 日本

э

Theorem

In the c.c.c. models of $u < \mathfrak{d}$ (from BsSh:257) there are groups with Menger-bounded k-th power but non-Menger-bounded (k + 1)-st power.

Question, Lyubomyr Zdomskyy

Does "there are k + 1 near coherence classes of ultrafilters" imply that there are groups with Menger-bounded k-th power but non-Menger-bounded (k + 1)-st power?

ション ふゆ く 山 マ チャット しょうくしゃ

Comparing different k's

Observation

If there is a k-non-dominating family that is k + 1-dominating and k' < k and there is an n such that

 $k' \cdot n \leq k$,

$$(k'+1)\cdot n\geq k+1,$$

then the family of all maxima over n elements of the first family is not k'-dominating but k' + 1 dominating.

ション ふゆ く 山 マ チャット しょうくしゃ

Does such a phenomenon also exist for the groups?

Comparing different k's

Observation

If there is a k-non-dominating family that is k + 1-dominating and k' < k and there is an n such that

 $k' \cdot n \leq k$,

$$(k'+1)\cdot n\geq k+1,$$

then the family of all maxima over n elements of the first family is not k'-dominating but k' + 1 dominating.

ション ふゆ く 山 マ チャット しょうくしゃ

Does such a phenomenon also exist for the groups?

We do not yet know any model of ZFC where a k-non-dominating not k + 1-dominating family exists and no k-Menger-bounded not k + 1-Menger-bounded group exists. Could there be such a significant difference?

(ロ) (型) (E) (E) (E) (O)

In the direction of "no difference"

In ZFC. Case of k = 1 for the Menger-bounded groups.

Doing linear algebra as in the three authors' construction just under the condition that there are k + 1 near-coherence classes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In the direction of "no difference"

In ZFC. Case of k = 1 for the Menger-bounded groups. Doing linear algebra as in the three authors' construction just under the condition that there are k + 1 near-coherence classes. Construction in a steps, even if u < 0?

ション ふゆ アメリア メリア しょうくしゃ

In the direction of "no difference"

In ZFC. Case of k = 1 for the Menger-bounded groups. Doing linear algebra as in the three authors' construction just under the condition that there are k + 1 near-coherence classes. Construction in u steps, even if $u < \mathfrak{d}$?

(ロ) (型) (E) (E) (E) (O)