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Menger-boundedness

De�nition

Let k ≥ 1 and let G ⊆ Zω be a subgroup. G k is called

Menger-bounded if

(∃f ∈ ω↑ω)(∀g1, . . . gk ∈ G )

{n : max
1≤i≤k,0≤m≤n

|gi (m)| ≤ f (n)} is in�nite

Question

Are there subgroups of the Baer-Specker group whose k-th power is

Menger-bounded but whose (k + 1)-st power is not?
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A related question
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Let k ≥ 1. D ⊆ ωω is called k-dominating if

{max(d1, . . . , dk) : di ∈ D} is ≤∗-dominating. For every f ∈ ωω,

there are d1, . . . , dk ∈ D such that for all but �nitely many n,

f (n) ≤ max(d1(n), . . . , dk(n)).
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Sharp and not so sharp dividing lines

Proposition

There is a 2-dominating not dominating family in the subsets of

ω↑ω, namely H = {f ∈ ω↑ω : (∃∞n)(f (n) ≤ n)}.

Theorem 1, Blass

Under u < g every k-dominating family is 2-dominating.

Theorem 2, Blass

If there are k pairwise non-nearly-coherent ultra�lters then there is

a k + 1-dominating family in ω↑ω that is not k-dominating.
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The condition on the non-existence side

De�nition

u is the smallest cardinality of a basis of a non-principal ultra�lter

over ω.

g is the groupwise density number.

Under u < g often non-dominating means being bounded on

witnesses from an ultra�lter. These can be intersected and hence

we get non-dominating for all �nite k .
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The conditions on the positive side

De�nition

Let U and V be non-principal ultra�lters on ω. We say U and V

are nearly coherent if there is some �nite-to-one function f : ω → ω

such that f (U ) = f (V ). f (U ) = {X ⊆ ω : f −1[X ] ∈ U }.

Theorem, Blass, La�amme

r < g implies that any two non-principal ultra�lters are nearly

coherent.

Theorem, M., Shelah [MdSh:894]

The converse is not true.



The conditions on the positive side

De�nition

Let U and V be non-principal ultra�lters on ω. We say U and V

are nearly coherent if there is some �nite-to-one function f : ω → ω

such that f (U ) = f (V ). f (U ) = {X ⊆ ω : f −1[X ] ∈ U }.

Theorem, Blass, La�amme

r < g implies that any two non-principal ultra�lters are nearly

coherent.

Theorem, M., Shelah [MdSh:894]

The converse is not true.



The conditions on the positive side

De�nition

Let U and V be non-principal ultra�lters on ω. We say U and V

are nearly coherent if there is some �nite-to-one function f : ω → ω

such that f (U ) = f (V ). f (U ) = {X ⊆ ω : f −1[X ] ∈ U }.

Theorem, Blass, La�amme

r < g implies that any two non-principal ultra�lters are nearly

coherent.

Theorem, M., Shelah [MdSh:894]

The converse is not true.



More cardinals

De�nition

r = min{R ⊆ [ω]ω : (∀f : ω → {0, 1})(∃R ∈ R)

f � R is (almost) constant} is called the reaping number or re�ning

number or unsplitting number.

De�nition

The dominating number is

d = min{D ⊆ ωω : (∀g ∈ ωω)(∃f ∈ D)(g ≤∗ f )} is called the

dominating number.
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Inequalities

u and d can be in any order.

u ≥ r, Balcar and Simon.

Theorem, Goldstern Shelah

d = u < r is consistent relative to ZFC.

Theorem, Aubrey

Aubrey: If r < d, then u = r.

So r < d is as strong as u < d. We can write r instead of u all the

time in this talk.

Remark

In ZFC, b, cov(M) ≤ r by results of Solomon and of Vojtá².
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Two sorts of ZFC models and an area between them

First sort: r ≥ d. Many construction possibilities.

Second sort: u < g, semi�lter trichotomy. Four unbounded growth

types.

In between: g ≤ u < d. Known that not empty. Two types of

models, BsSh:257 and MdSh:894 are known, maybe more.

Theorem

In the models of the �rst type, there are many near coherence

classes.

I do not know whether there are k-bounded not k + 1-bounded

families in the second.
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Partial answers to the question about the

k-Menger-bounded not (k + 1)-Menger-bounded groups

The following follows from Blass' result, Theorem 1, but people did

not read ...

Obsolete Theorem, Banakh, Zdomskyy, Mildenberger

Under r < g, the answer is �no� for k ≥ 2.

Since the not dominating but 2-dominating H is so easy to

describe, it is a bit astonishing that the following is open.

Question

Are there in ZFC Menger-bounded groups whose square is not

Menger-bounded?
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A consistency result from some ad hoc condition

Theorem, Machura, Shelah, Tsaban MShT:903

Under a weakening of CH, for every k ≥ 1, there is a group whose

k-th power is Menger-bounded but whose (k + 1)-st power is not.

Remark: The construction for k = 1 is not even a bit easier than

the construction for other k . There does not seem to be a hint to

convert it in a ZFC construction.
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Good partitions of ω and a cardinal

De�nition

A good partition of ω is a partition P = {An : n ∈ ω} into such

that for all n, there are in�nitely many i with i , i + 1 ∈ An.

De�nition

Let P be a good partition. We de�ne a cardinal with no name yet

d′(P) = min{|F | : F ⊆ ω↑ω ∧ (∀g ∈ ω↑ω)(∃A ∈ P)(∃f ∈ F )

(∀∞n ∈ A)

(f (g(n)) ≥ g(n + 1) ∨ f (g(n + 1)) ≥ g(n + 2) ∨ n + 1 6∈ A)}
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The su�cient condition

The weakening of CH used in Machura, Shelah and Tsaban's

theorem

A su�cient condition is: There is a good partition P such that

d′(P) ≥ d.



Dispensing with the alternative

We de�ne another cardinal without a name:

De�nition

Now let P be any partition of ω into in�nitely many in�nite sets.

d∗(P) = min{|F | : F ⊆ ω↑ω ∧ (∀g ∈ ω↑ω)(∃A ∈ P)(∃f ∈ F )

(∀∞n ∈ A)(f (g(n)) ≥ g(n + 1))}

Question

Is d∗(P) = d′(P)?
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How do d∗(P) and d′(P) depend on P?
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Some estimates with other cardinals

Proposition, M.

d∗(P) does not depend on P .

Since d′(P) has the disjunction in its requirement, which d∗ does

not have, d∗(P) ≥ d′(P) for good P .
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d′(P) and P

Slimmer A's in the partition give smaller d′(P).

Recall the de�nition:
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The premise (∃ a good P)(d′(P) ≥ d) is not so weak

The premise implies that u ≥ g.

Conjecture: The premise implies that there are k near-coherence

classes or even that u ≥ d.

Mathematically this is a pessimistic conjecture, because if it were

false, then the construction of the k-Menger-bounded not

k + 1-Menger-bounded groups would also be possible in this hardly

known land g ≤ u < d.
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The conjecture is true

For the moment we also allow P that have only one or two parts. It

is clear that this leads to larger cardinals. We are in the r ≥ d area:

Proposition

d∗({A, ω r A}) ≤ r and d′({ω}) ≤ r.

Let R be a re�ning family of size r.

For R ∈ R let fR : ω → ω be the increasing enumeration of R , that

is fR(n) is the n-th element of R .
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A reduction

Claim

{fR : R ∈ R} is a family as in the computation of d′({ω}) and in

the computation of d∗({A, ω r A}).



Proof of the claim

Proof of the claim: Assume that not. Then

(∃g ∈ ω↑ω)(∀R ∈ R)

(
(∃∞n ∈ A)(fR(g(n)) < g(n + 1))

∧ (∃∞n ∈ ω r A)(fR(g(n)) < g(n + 1))

)
(written for a partition into two parts) or (for d′({ω})

(∃h ∈ ω↑ω)(∀R ∈ R)(∃∞n ∈ ω)(
fR(g(n)) < g(n + 1) ∧ fR(g(n + 1)) < g(n + 2)
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Does the reaping family actually reap?

Set A = A0 and ω r A = A1. Enumerate the n ∈ A` such that

fR(g(n)) < g(n + 1) as nR`,k , k ∈ ω, for ` = 0, 1.

Since fR(g(nR`,k)) ≥ g(nR`,k), we have

(∀` ∈ 2)(∀R ∈ R)(∀k ∈ ω)(R ∩ [g(nR`,k), g(nR`,k + 1)) 6= ∅).

Set

B` =
⋃

k∈ω,R∈R

[g(nR`,k), g(nR`,k + 1)).

Since nR`,k ∈ A` and A0 ∩ A1 = ∅, B0 ∩ B1 = ∅.
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The contradiction

So

(∀R ∈ R)(R ∩ B0 6= ∅ ∧ R ∩ B1 6= ∅),

and hence R is not re�ning.

You see that for d′ we need only one part of the partition, since the

negation gives two adjacent intervals that are hit by R .

It is open whether d′(P) < d′({ω}) is possible.
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The d∗(P) are nothing new

Proposition

For every partition P into in�nitely many in�nite sets we have

d∗(P) = min(d, r).

Open for d′(P).

Boaz Tsaban, Petr Simon

d∗({ω}) = d.
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A modi�ed construction

Theorem

r ≥ d is a su�cient condition for the existence of subgroups of Zω

whose k-th power is Menger-bounded but whose (k + 1)-st power

is not.

Proof: We look at the properties of a strati�cation of ωω that are

used. Change the construction slightly.

All k-tuples members of the groups are given by (k + 1)× k

matrices that make many k-vectors on huge stretches of

coordinates (from Zω) to zero, though the maxima over

k + 1-tuples are dominating.

The partition P determines which matrix is just considered in an

estimation. We may change the organisation along each layer, and

do not need d′(P) for one �xed P .
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⋃
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Theorem
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Comparing di�erent k 's

Observation

If there is a k-non-dominating family that is k + 1-dominating and

k ′ < k and there is an n such that

k ′ · n ≤ k ,

(k ′ + 1) · n ≥ k + 1,

then the family of all maxima over n elements of the �rst family is

not k ′-dominating but k ′ + 1 dominating.

Does such a phenomenon also exist for the groups?
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An overall picture

We do not yet know any model of ZFC where a k-non-dominating

not k + 1-dominating family exists and no k-Menger-bounded not

k + 1-Menger-bounded group exists.

Could there be such a signi�cant di�erence?
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In ZFC. Case of k = 1 for the Menger-bounded groups.

Doing linear algebra as in the three authors' construction just under

the condition that there are k + 1 near-coherence classes.

Construction in u steps, even if u < d?



In the direction of �no di�erence�

In ZFC. Case of k = 1 for the Menger-bounded groups.

Doing linear algebra as in the three authors' construction just under

the condition that there are k + 1 near-coherence classes.

Construction in u steps, even if u < d?



In the direction of �no di�erence�

In ZFC. Case of k = 1 for the Menger-bounded groups.

Doing linear algebra as in the three authors' construction just under

the condition that there are k + 1 near-coherence classes.

Construction in u steps, even if u < d?


	Outline
	Non-dominating subgroups of the Baer-Specker group
	Definitions
	Studying the sufficient conditions
	A proposed simplification
	Bounds on the new cardinals
	Studying the construction
	Combinatorial possibilities for k-dominating families


