Menger-bounded subgroups of the Baer-Specker group

Heike Mildenberger

Kurt Gödel Research Center for Mathematical Logic, University of Vienna http://www.logic.univie.ac.at/~heike

Conference in Honour of Andreas Blass' 60th Birthday
The Fields Institute, Toronto
November 9-10, 2007

Outline

Non-dominating subgroups of the Baer-Specker group

Definitions

Studying the sufficient conditions
A proposed simplification
Bounds on the new cardinals
Studying the construction
Combinatorial possibilities for k-dominating families

Menger-boundedness

Definition

Let $k \geq 1$ and let $G \subseteq \mathbb{Z}^{\omega}$ be a subgroup. G^{k} is called Menger-bounded if

$$
\begin{aligned}
& \left(\exists f \in \omega^{\uparrow \omega}\right)\left(\forall g_{1}, \ldots g_{k} \in G\right) \\
& \qquad\left\{n: \max _{1 \leq i \leq k, 0 \leq m \leq n}\left|g_{i}(m)\right| \leq f(n)\right\} \text { is infinite }
\end{aligned}
$$

Menger-boundedness

Definition

Let $k \geq 1$ and let $G \subseteq \mathbb{Z}^{\omega}$ be a subgroup. G^{k} is called Menger-bounded if

$$
\begin{aligned}
\left(\exists f \in \omega^{\uparrow \omega}\right)\left(\forall g_{1}, \ldots\right. & \left.g_{k} \in G\right) \\
& \left\{n: \max _{1 \leq i \leq k, 0 \leq m \leq n}\left|g_{i}(m)\right| \leq f(n)\right\} \text { is infinite }
\end{aligned}
$$

Question

Are there subgroups of the Baer-Specker group whose k-th power is Menger-bounded but whose $(k+1)$-st power is not?

A related question

Definition

Let $k \geq 1$. $D \subseteq \omega^{\omega}$ is called k-dominating if
$\left\{\max \left(d_{1}, \ldots, d_{k}\right): d_{i} \in D\right\}$ is \leq^{*}-dominating. For every $f \in \omega^{\omega}$, there are $d_{1}, \ldots, d_{k} \in D$ such that for all but finitely many n, $f(n) \leq \max \left(d_{1}(n), \ldots, d_{k}(n)\right)$.

A related question

Definition

Let $k \geq 1$. $D \subseteq \omega^{\omega}$ is called k-dominating if $\left\{\max \left(d_{1}, \ldots, d_{k}\right): d_{i} \in D\right\}$ is \leq^{*}-dominating. For every $f \in \omega^{\omega}$, there are $d_{1}, \ldots, d_{k} \in D$ such that for all but finitely many n, $f(n) \leq \max \left(d_{1}(n), \ldots, d_{k}(n)\right)$.

Definition

Let $k \geq 1$. $D \subseteq \omega^{\uparrow \omega}$ is called k-dominating if $\left\{\max \left(d_{1}, \ldots, d_{k}\right): d_{i} \in D\right\}$ is \leq^{*}-dominating. For every $f \in \omega^{\omega}$, there are $d_{1}, \ldots, d_{k} \in D$ such that for all but finitely many n, $f(n) \leq \max \left(d_{1}(n), \ldots, d_{k}(n)\right)$.

A related question

Definition

Let $k \geq 1$. $D \subseteq \omega^{\omega}$ is called k-dominating if $\left\{\max \left(d_{1}, \ldots, d_{k}\right): d_{i} \in D\right\}$ is \leq^{*}-dominating. For every $f \in \omega^{\omega}$, there are $d_{1}, \ldots, d_{k} \in D$ such that for all but finitely many n, $f(n) \leq \max \left(d_{1}(n), \ldots, d_{k}(n)\right)$.

Definition

Let $k \geq 1$. $D \subseteq \omega^{\uparrow \omega}$ is called k-dominating if $\left\{\max \left(d_{1}, \ldots, d_{k}\right): d_{i} \in D\right\}$ is \leq^{*}-dominating. For every $f \in \omega^{\omega}$, there are $d_{1}, \ldots, d_{k} \in D$ such that for all but finitely many n, $f(n) \leq \max \left(d_{1}(n), \ldots, d_{k}(n)\right)$.

Question

Are there k-dominating, not $k+1$-dominating families?

Sharp and not so sharp dividing lines

Proposition

There is a 2-dominating not dominating family in the subsets of $\omega^{\uparrow \omega}$, namely $H=\left\{f \in \omega^{\uparrow \omega}:\left(\exists^{\infty} n\right)(f(n) \leq n)\right\}$.

Sharp and not so sharp dividing lines

Proposition

There is a 2-dominating not dominating family in the subsets of $\omega^{\uparrow \omega}$, namely $H=\left\{f \in \omega^{\uparrow \omega}:\left(\exists^{\infty} n\right)(f(n) \leq n)\right\}$.

Theorem 1, Blass
Under $\mathfrak{u}<\mathfrak{g}$ every k-dominating family is 2 -dominating.

Sharp and not so sharp dividing lines

Proposition

There is a 2-dominating not dominating family in the subsets of $\omega^{\uparrow \omega}$, namely $H=\left\{f \in \omega^{\uparrow \omega}:\left(\exists^{\infty} n\right)(f(n) \leq n)\right\}$.

Theorem 1, Blass
Under $\mathfrak{u}<\mathfrak{g}$ every k-dominating family is 2 -dominating.

Theorem 2, Blass

If there are k pairwise non-nearly-coherent ultrafilters then there is
a $k+1$-dominating family in $\omega^{\uparrow \omega}$ that is not k-dominating.

The condition on the non-existence side

Definition

\mathfrak{u} is the smallest cardinality of a basis of a non-principal ultrafilter over ω.

The condition on the non-existence side

Definition

\mathfrak{u} is the smallest cardinality of a basis of a non-principal ultrafilter over ω. \mathfrak{g} is the groupwise density number.

The condition on the non-existence side

Definition

\mathfrak{u} is the smallest cardinality of a basis of a non-principal ultrafilter over ω.
\mathfrak{g} is the groupwise density number.
Under $\mathfrak{u}<\mathfrak{g}$ often non-dominating means being bounded on witnesses from an ultrafilter. These can be intersected and hence we get non-dominating for all finite k.

The conditions on the positive side

Definition

Let \mathscr{U} and \mathscr{V} be non-principal ultrafilters on ω. We say \mathscr{U} and \mathscr{V} are nearly coherent if there is some finite-to-one function $f: \omega \rightarrow \omega$ such that $f(\mathscr{U})=f(\mathscr{V}) . f(\mathscr{U})=\left\{X \subseteq \omega: f^{-1}[X] \in \mathscr{U}\right\}$.

The conditions on the positive side

Definition

Let \mathscr{U} and \mathscr{V} be non-principal ultrafilters on ω. We say \mathscr{U} and \mathscr{V} are nearly coherent if there is some finite-to-one function $f: \omega \rightarrow \omega$ such that $f(\mathscr{U})=f(\mathscr{V}) . f(\mathscr{U})=\left\{X \subseteq \omega: f^{-1}[X] \in \mathscr{U}\right\}$.

Theorem, Blass, Laflamme

$\mathfrak{r}<\mathfrak{g}$ implies that any two non-principal ultrafilters are nearly coherent.

The conditions on the positive side

Definition

Let \mathscr{U} and \mathscr{V} be non-principal ultrafilters on ω. We say \mathscr{U} and \mathscr{V} are nearly coherent if there is some finite-to-one function $f: \omega \rightarrow \omega$ such that $f(\mathscr{U})=f(\mathscr{V}) . f(\mathscr{U})=\left\{X \subseteq \omega: f^{-1}[X] \in \mathscr{U}\right\}$.

Theorem, Blass, Laflamme

$\mathfrak{r}<\mathfrak{g}$ implies that any two non-principal ultrafilters are nearly coherent.

Theorem, M., Shelah [MdSh:894]
The converse is not true.

More cardinals

Definition

$\mathfrak{r}=\min \left\{\mathscr{R} \subseteq[\omega]^{\omega}:(\forall f: \omega \rightarrow\{0,1\})(\exists R \in \mathscr{R})\right.$
$f \upharpoonright R$ is (almost) constant $\}$ is called the reaping number or refining number or unsplitting number.

More cardinals

Definition

$\mathfrak{r}=\min \left\{\mathscr{R} \subseteq[\omega]^{\omega}:(\forall f: \omega \rightarrow\{0,1\})(\exists R \in \mathscr{R})\right.$
$f \upharpoonright R$ is (almost) constant $\}$ is called the reaping number or refining number or unsplitting number.

Definition

The dominating number is
$\mathfrak{d}=\min \left\{\mathscr{D} \subseteq{ }^{\omega} \omega:\left(\forall g \in{ }^{\omega} \omega\right)(\exists f \in \mathscr{D})\left(g \leq^{*} f\right)\right\}$ is called the dominating number.

Inequalities

\mathfrak{u} and \mathfrak{d} can be in any order.
$\mathfrak{u} \geq \mathfrak{r}$, Balcar and Simon.
Theorem, Goldstern Shelah
$\mathfrak{d}=\mathfrak{u}<\mathfrak{r}$ is consistent relative to ZFC.

Theorem, Aubrey
Aubrey: If $\mathfrak{r}<\mathfrak{d}$, then $\mathfrak{u}=\mathfrak{r}$.
So $\mathfrak{r}<\mathfrak{d}$ is as strong as $\mathfrak{u}<\mathfrak{d}$. We can write \mathfrak{r} instead of \mathfrak{u} all the time in this talk.

Inequalities

\mathfrak{u} and \mathfrak{d} can be in any order.
$\mathfrak{u} \geq \mathfrak{r}$, Balcar and Simon.
Theorem, Goldstern Shelah
$\mathfrak{d}=\mathfrak{u}<\mathfrak{r}$ is consistent relative to ZFC.

Theorem, Aubrey
Aubrey: If $\mathfrak{r}<\mathfrak{d}$, then $\mathfrak{u}=\mathfrak{r}$.
So $\mathfrak{r}<\mathfrak{d}$ is as strong as $\mathfrak{u}<\mathfrak{d}$. We can write \mathfrak{r} instead of \mathfrak{u} all the time in this talk.

Remark

In ZFC, $\mathfrak{b}, \operatorname{cov}(\mathcal{M}) \leq \mathfrak{r}$ by results of Solomon and of Vojtáš.

Two sorts of ZFC models and an area between them

First sort: $\mathfrak{r} \geq \mathfrak{d}$. Many construction possibilities.

Two sorts of ZFC models and an area between them

First sort: $\mathfrak{r} \geq \mathfrak{d}$. Many construction possibilities.
Second sort: $\mathfrak{u}<\mathfrak{g}$, semifilter trichotomy. Four unbounded growth types.

Two sorts of ZFC models and an area between them

First sort: $\mathfrak{r} \geq \mathfrak{d}$. Many construction possibilities.
Second sort: $\mathfrak{u}<\mathfrak{g}$, semifilter trichotomy. Four unbounded growth types.
In between: $\mathfrak{g} \leq \mathfrak{u}<\mathfrak{d}$. Known that not empty. Two types of models, BsSh:257 and MdSh:894 are known, maybe more.

Two sorts of ZFC models and an area between them

First sort: $\mathfrak{r} \geq \mathfrak{d}$. Many construction possibilities.
Second sort: $\mathfrak{u}<\mathfrak{g}$, semifilter trichotomy. Four unbounded growth types.
In between: $\mathfrak{g} \leq \mathfrak{u}<\mathfrak{d}$. Known that not empty. Two types of models, BsSh:257 and MdSh:894 are known, maybe more.

Theorem

In the models of the first type, there are many near coherence classes.

Two sorts of ZFC models and an area between them

First sort: $\mathfrak{r} \geq \mathfrak{d}$. Many construction possibilities.
Second sort: $\mathfrak{u}<\mathfrak{g}$, semifilter trichotomy. Four unbounded growth types.
In between: $\mathfrak{g} \leq \mathfrak{u}<\mathfrak{d}$. Known that not empty. Two types of models, BsSh:257 and MdSh:894 are known, maybe more.

Theorem

In the models of the first type, there are many near coherence classes.

I do not know whether there are k-bounded not $k+1$-bounded families in the second.

Partial answers to the question about the k-Menger-bounded not $(k+1)$-Menger-bounded groups

The following follows from Blass' result, Theorem 1, but people did not read ...

Obsolete Theorem, Banakh, Zdomskyy, Mildenberger
Under $\mathfrak{r}<\mathfrak{g}$, the answer is "no" for $k \geq 2$.

Partial answers to the question about the k-Menger-bounded not $(k+1)$-Menger-bounded groups

The following follows from Blass' result, Theorem 1, but people did not read ...

Obsolete Theorem, Banakh, Zdomskyy, Mildenberger

Under $\mathfrak{r}<\mathfrak{g}$, the answer is "no" for $k \geq 2$.
Since the not dominating but 2-dominating H is so easy to describe, it is a bit astonishing that the following is open.

Question

Are there in ZFC Menger-bounded groups whose square is not Menger-bounded?

A consistency result from some ad hoc condition

Theorem, Machura, Shelah, Tsaban MShT:903
Under a weakening of CH , for every $k \geq 1$, there is a group whose k-th power is Menger-bounded but whose $(k+1)$-st power is not.

A consistency result from some ad hoc condition

Theorem, Machura, Shelah, Tsaban MShT:903
Under a weakening of CH , for every $k \geq 1$, there is a group whose k-th power is Menger-bounded but whose $(k+1)$-st power is not.

Remark: The construction for $k=1$ is not even a bit easier than the construction for other k. There does not seem to be a hint to convert it in a ZFC construction.

Good partitions of ω and a cardinal

Definition

A good partition of ω is a partition $P=\left\{A_{n}: n \in \omega\right\}$ into such that for all n, there are infinitely many i with $i, i+1 \in A_{n}$.

Good partitions of ω and a cardinal

Definition

A good partition of ω is a partition $P=\left\{A_{n}: n \in \omega\right\}$ into such that for all n, there are infinitely many i with $i, i+1 \in A_{n}$.

Definition

Let P be a good partition. We define a cardinal with no name yet

$$
\begin{aligned}
\mathfrak{d}^{\prime}(P)=\min \{|\mathscr{F}|: \mathscr{F} \subseteq & \omega^{\uparrow \omega} \wedge\left(\forall g \in \omega^{\uparrow \omega}\right)(\exists A \in P)(\exists f \in \mathscr{F}) \\
& \left(\forall^{\infty} n \in A\right)
\end{aligned}
$$

$$
(f(g(n)) \geq g(n+1) \vee f(g(n+1)) \geq g(n+2) \vee n+1 \notin A)\}
$$

The sufficient condition

The weakening of CH used in Machura, Shelah and Tsaban's theorem

A sufficient condition is: There is a good partition P such that $\mathfrak{d}^{\prime}(P) \geq \mathfrak{d}$.

Dispensing with the alternative

We define another cardinal without a name:

Definition

Now let P be any partition of ω into infinitely many infinite sets.

$$
\begin{array}{r}
\mathfrak{d}_{*}(P)=\min \left\{|\mathscr{F}|: \mathscr{F} \subseteq \omega^{\uparrow \omega} \wedge\left(\forall g \in \omega^{\uparrow \omega}\right)(\exists A \in P)(\exists f \in \mathscr{F})\right. \\
\left.\left(\forall^{\infty} n \in A\right)(f(g(n)) \geq g(n+1))\right\}
\end{array}
$$

Dispensing with the alternative

We define another cardinal without a name:

Definition

Now let P be any partition of ω into infinitely many infinite sets.

$$
\begin{array}{r}
\mathfrak{d}_{*}(P)=\min \left\{|\mathscr{F}|: \mathscr{F} \subseteq \omega^{\uparrow \omega} \wedge\left(\forall g \in \omega^{\uparrow \omega}\right)(\exists A \in P)(\exists f \in \mathscr{F})\right. \\
\left.\left(\forall^{\infty} n \in A\right)(f(g(n)) \geq g(n+1))\right\}
\end{array}
$$

Question

Is $\mathfrak{d}_{*}(P)=\mathfrak{d}^{\prime}(P)$?

Locating the ad hoc premise

Question

Is $(\exists P)\left(\mathfrak{D}_{*}(P) \geq \mathfrak{d}\right)$ sufficient for the construction?

Locating the ad hoc premise

Question

Is $(\exists P)\left(\mathfrak{d}_{*}(P) \geq \mathfrak{d}\right)$ sufficient for the construction?

Question

How do $\mathfrak{d}_{*}(P)$ and $\mathfrak{d}^{\prime}(P)$ depend on P ?

Some estimates with other cardinals

Proposition, M

$\mathfrak{d}_{*}(P)$ does not depend on P.

Some estimates with other cardinals

Proposition, M

$\mathfrak{d}_{*}(P)$ does not depend on P.
Since $\mathfrak{d}^{\prime}(P)$ has the disjunction in its requirement, which \mathfrak{d}_{*} does not have, $\mathfrak{d}_{*}(P) \geq \mathfrak{d}^{\prime}(P)$ for good P.

$\mathfrak{d}^{\prime}(P)$ and P

Slimmer A 's in the partition give smaller $\mathfrak{d}^{\prime}(P)$.

$\mathfrak{d}^{\prime}(P)$ and P

Slimmer A 's in the partition give smaller $\mathfrak{d}^{\prime}(P)$.
Recall the definition:

$$
\begin{aligned}
\mathfrak{d}^{\prime}(P)=\min \{|\mathscr{F}|: \mathscr{F} \subseteq & \omega^{\uparrow \omega} \wedge\left(\forall g \in \omega^{\uparrow \omega}\right)(\exists A \in P)(\exists f \in \mathscr{F}) \\
& \left(\forall^{\infty} n \in A\right)
\end{aligned}
$$

$$
(f(g(n)) \geq g(n+1) \vee f(g(n+1)) \geq g(n+2) \vee n+1 \notin A)\}
$$

The premise $(\exists$ a good $P)\left(\mathfrak{d}^{\prime}(P) \geq \mathfrak{d}\right)$ is not so weak

The premise $(\exists \operatorname{agood} P)\left(\mathfrak{d}^{\prime}(P) \geq \mathfrak{d}\right)$ is not so weak

The premise implies that $\mathfrak{u} \geq \mathfrak{g}$.

The premise $(\exists$ a good $P)\left(\mathfrak{d}^{\prime}(P) \geq \mathfrak{d}\right)$ is not so weak

The premise implies that $\mathfrak{u} \geq \mathfrak{g}$.
Conjecture: The premise implies that there are k near-coherence classes or even that $\mathfrak{u} \geq \mathfrak{d}$.

The premise $(\exists$ a good $P)\left(\mathfrak{d}^{\prime}(P) \geq \mathfrak{d}\right)$ is not so weak

The premise implies that $\mathfrak{u} \geq \mathfrak{g}$.
Conjecture: The premise implies that there are k near-coherence classes or even that $\mathfrak{u} \geq \mathfrak{d}$.
Mathematically this is a pessimistic conjecture, because if it were false, then the construction of the k-Menger-bounded not
$k+1$-Menger-bounded groups would also be possible in this hardly known land $\mathfrak{g} \leq \mathfrak{u}<\mathfrak{d}$.

The conjecture is true

For the moment we also allow P that have only one or two parts. It is clear that this leads to larger cardinals.

The conjecture is true

For the moment we also allow P that have only one or two parts. It is clear that this leads to larger cardinals. We are in the $\mathfrak{r} \geq \mathfrak{d}$ area:

Proposition

$$
\mathfrak{d}_{*}(\{A, \omega \backslash A\}) \leq \mathfrak{r} \text { and } \mathfrak{d}^{\prime}(\{\omega\}) \leq \mathfrak{r} .
$$

The conjecture is true

For the moment we also allow P that have only one or two parts. It is clear that this leads to larger cardinals. We are in the $\mathfrak{r} \geq \mathfrak{d}$ area:

Proposition

$\mathfrak{d}_{*}(\{A, \omega \backslash A\}) \leq \mathfrak{r}$ and $\mathfrak{d}^{\prime}(\{\omega\}) \leq \mathfrak{r}$.
Let \mathscr{R} be a refining family of size \mathfrak{r}.

The conjecture is true

For the moment we also allow P that have only one or two parts. It is clear that this leads to larger cardinals. We are in the $\mathfrak{r} \geq \mathfrak{d}$ area:

Proposition

$\mathfrak{d}_{*}(\{A, \omega \backslash A\}) \leq \mathfrak{r}$ and $\mathfrak{d}^{\prime}(\{\omega\}) \leq \mathfrak{r}$.
Let \mathscr{R} be a refining family of size \mathfrak{r}.
For $R \in \mathscr{R}$ let $f_{R}: \omega \rightarrow \omega$ be the increasing enumeration of R, that is $f_{R}(n)$ is the n-th element of R.

A reduction

Claim
$\left\{f_{R}: R \in \mathscr{R}\right\}$ is a family as in the computation of $\mathfrak{d}^{\prime}(\{\omega\})$ and in the computation of $\mathfrak{d}_{*}(\{A, \omega \backslash A\})$.

Proof of the claim

Proof of the claim: Assume that not. Then

$$
\begin{aligned}
\left(\exists g \in \omega^{\uparrow \omega}\right)(\forall R \in \mathscr{R}) & \left(\left(\exists^{\infty} n \in A\right)\left(f_{R}(g(n))<g(n+1)\right)\right. \\
& \left.\wedge\left(\exists^{\infty} n \in \omega \backslash A\right)\left(f_{R}(g(n))<g(n+1)\right)\right)
\end{aligned}
$$

(written for a partition into two parts)

Proof of the claim

Proof of the claim: Assume that not. Then

$$
\begin{aligned}
\left(\exists g \in \omega^{\uparrow \omega}\right)(\forall R \in \mathscr{R}) & \left(\left(\exists^{\infty} n \in A\right)\left(f_{R}(g(n))<g(n+1)\right)\right. \\
& \left.\wedge\left(\exists^{\infty} n \in \omega \backslash A\right)\left(f_{R}(g(n))<g(n+1)\right)\right)
\end{aligned}
$$

(written for a partition into two parts) or (for $\mathfrak{d}^{\prime}(\{\omega\})$
$\left(\exists h \in \omega^{\uparrow \omega}\right)(\forall R \in \mathscr{R})\left(\exists^{\infty} n \in \omega\right)$

$$
\left(f_{R}(g(n))<g(n+1) \wedge f_{R}(g(n+1))<g(n+2)\right)
$$

Does the reaping family actually reap?

Set $A=A_{0}$ and $\omega \backslash A=A_{1}$. Enumerate the $n \in A_{\ell}$ such that $f_{R}(g(n))<g(n+1)$ as $n_{\ell, k}^{R}, k \in \omega$, for $\ell=0,1$.
Since $f_{R}\left(g\left(n_{\ell, k}^{R}\right)\right) \geq g\left(n_{\ell, k}^{R}\right)$, we have

$$
(\forall \ell \in 2)(\forall R \in \mathscr{R})(\forall k \in \omega)\left(R \cap\left[g\left(n_{\ell, k}^{R}\right), g\left(n_{\ell, k}^{R}+1\right)\right) \neq \emptyset\right) .
$$

Does the reaping family actually reap?

Set $A=A_{0}$ and $\omega \backslash A=A_{1}$. Enumerate the $n \in A_{\ell}$ such that $f_{R}(g(n))<g(n+1)$ as $n_{\ell, k}^{R}, k \in \omega$, for $\ell=0,1$.
Since $f_{R}\left(g\left(n_{\ell, k}^{R}\right)\right) \geq g\left(n_{\ell, k}^{R}\right)$, we have

$$
(\forall \ell \in 2)(\forall R \in \mathscr{R})(\forall k \in \omega)\left(R \cap\left[g\left(n_{\ell, k}^{R}\right), g\left(n_{\ell, k}^{R}+1\right)\right) \neq \emptyset\right) .
$$

Set

$$
B_{\ell}=\bigcup_{k \in \omega, R \in \mathscr{R}}\left[g\left(n_{\ell, k}^{R}\right), g\left(n_{\ell, k}^{R}+1\right)\right) .
$$

Since $n_{\ell, k}^{R} \in A_{\ell}$ and $A_{0} \cap A_{1}=\emptyset, B_{0} \cap B_{1}=\emptyset$.

The contradiction

So

$$
(\forall R \in \mathscr{R})\left(R \cap B_{0} \neq \emptyset \wedge R \cap B_{1} \neq \emptyset\right),
$$ and hence \mathscr{R} is not refining.

The contradiction

So

$$
(\forall R \in \mathscr{R})\left(R \cap B_{0} \neq \emptyset \wedge R \cap B_{1} \neq \emptyset\right),
$$

and hence \mathscr{R} is not refining.
You see that for \mathfrak{d}^{\prime} we need only one part of the partition, since the negation gives two adjacent intervals that are hit by R.

The contradiction

So

$$
(\forall R \in \mathscr{R})\left(R \cap B_{0} \neq \emptyset \wedge R \cap B_{1} \neq \emptyset\right),
$$

and hence \mathscr{R} is not refining.
You see that for \mathfrak{d}^{\prime} we need only one part of the partition, since the negation gives two adjacent intervals that are hit by R. It is open whether $\mathfrak{d}^{\prime}(P)<\mathfrak{d}^{\prime}(\{\omega\})$ is possible.

The $\mathfrak{d}_{*}(P)$ are nothing new

Proposition

For every partition P into infinitely many infinite sets we have $\mathfrak{d}_{*}(P)=\min (\mathfrak{d}, \mathfrak{r})$.

Open for $\mathfrak{d}^{\prime}(P)$.

The $\mathfrak{d}_{*}(P)$ are nothing new

Proposition

For every partition P into infinitely many infinite sets we have $\mathfrak{d}_{*}(P)=\min (\mathfrak{d}, \mathfrak{r})$.

Open for $\mathfrak{d}^{\prime}(P)$.
Boaz Tsaban, Petr Simon
$\mathfrak{d}_{*}(\{\omega\})=\mathfrak{d}$.

A modified construction

Theorem

$\mathfrak{r} \geq \mathfrak{d}$ is a sufficient condition for the existence of subgroups of \mathbb{Z}^{ω} whose k-th power is Menger-bounded but whose $(k+1)$-st power is not.

A modified construction

Theorem

$\mathfrak{r} \geq \mathfrak{d}$ is a sufficient condition for the existence of subgroups of \mathbb{Z}^{ω} whose k-th power is Menger-bounded but whose ($k+1$)-st power is not.

Proof: We look at the properties of a stratification of ω^{ω} that are used. Change the construction slightly.

A modified construction

Theorem

$\mathfrak{r} \geq \mathfrak{d}$ is a sufficient condition for the existence of subgroups of \mathbb{Z}^{ω} whose k-th power is Menger-bounded but whose ($k+1$)-st power is not.

Proof: We look at the properties of a stratification of ω^{ω} that are used. Change the construction slightly. All k-tuples members of the groups are given by $(k+1) \times k$ matrices that make many k-vectors on huge stretches of coordinates (from \mathbb{Z}^{ω}) to zero, though the maxima over $k+1$-tuples are dominating.

A modified construction

Theorem

$\mathfrak{r} \geq \mathfrak{d}$ is a sufficient condition for the existence of subgroups of \mathbb{Z}^{ω} whose k-th power is Menger-bounded but whose ($k+1$)-st power is not.

Proof: We look at the properties of a stratification of ω^{ω} that are used. Change the construction slightly. All k-tuples members of the groups are given by $(k+1) \times k$ matrices that make many k-vectors on huge stretches of coordinates (from \mathbb{Z}^{ω}) to zero, though the maxima over $k+1$-tuples are dominating.
The partition P determines which matrix is just considered in an estimation. We may change the organisation along each layer, and do not need $\mathfrak{d}^{\prime}(P)$ for one fixed P.

Important: $\bigcup_{\alpha<0} M_{\alpha}=$ dominating. The union is increasing and the M_{α} are never refining and mildly closed.

Important: $\bigcup_{\alpha<\mathfrak{d}} M_{\alpha}=$ dominating. The union is increasing and the M_{α} are never refining and mildly closed.

Important: $\bigcup_{\alpha<\mathfrak{d}} M_{\alpha}=$ dominating. The union is increasing and the M_{α} are never refining and mildly closed.
Now, never refining can be based upon $\left|M_{\alpha}\right|<\mathfrak{r}$ or on other reasons.

Important: $\bigcup_{\alpha<\mathfrak{d}} M_{\alpha}=$ dominating. The union is increasing and the M_{α} are never refining and mildly closed.
Now, never refining can be based upon $\left|M_{\alpha}\right|<\mathfrak{r}$ or on other reasons.
Open whether the premise of 903 can be strictly stronger than $\mathfrak{r} \geq \mathfrak{d}$.

$\mathfrak{u} \geq \mathfrak{d}$ is not necessary

Theorem

In the c.c.c. models of $\mathfrak{u}<\mathfrak{d}$ (from BsSh:257) there are groups with Menger-bounded k-th power but non-Menger-bounded $(k+1)$-st power.

Theorem

In the c.c.c. models of $\mathfrak{u}<\mathfrak{d}$ (from BsSh:257) there are groups with Menger-bounded k-th power but non-Menger-bounded $(k+1)$-st power.

Question, Lyubomyr Zdomskyy

Does "there are $k+1$ near coherence classes of ultrafilters" imply that there are groups with Menger-bounded k-th power but non-Menger-bounded $(k+1)$-st power?

Comparing different k 's

Observation

If there is a k-non-dominating family that is $k+1$-dominating and $k^{\prime}<k$ and there is an n such that

$$
\begin{gathered}
k^{\prime} \cdot n \leq k, \\
\left(k^{\prime}+1\right) \cdot n \geq k+1,
\end{gathered}
$$

then the family of all maxima over n elements of the first family is not k^{\prime}-dominating but $k^{\prime}+1$ dominating.

Comparing different k 's

Observation

If there is a k-non-dominating family that is $k+1$-dominating and $k^{\prime}<k$ and there is an n such that

$$
\begin{gathered}
k^{\prime} \cdot n \leq k \\
\left(k^{\prime}+1\right) \cdot n \geq k+1
\end{gathered}
$$

then the family of all maxima over n elements of the first family is not k^{\prime}-dominating but $k^{\prime}+1$ dominating.

Does such a phenomenon also exist for the groups?

An overall picture

We do not yet know any model of ZFC where a k-non-dominating not $k+1$-dominating family exists and no k-Menger-bounded not $k+1$-Menger-bounded group exists.
Could there be such a significant difference?

In the direction of "no difference"

In ZFC. Case of $k=1$ for the Menger-bounded groups.

In the direction of "no difference"

In ZFC. Case of $k=1$ for the Menger-bounded groups.
Doing linear algebra as in the three authors' construction just under the condition that there are $k+1$ near-coherence classes.

In the direction of "no difference"

In ZFC. Case of $k=1$ for the Menger-bounded groups.
Doing linear algebra as in the three authors' construction just under the condition that there are $k+1$ near-coherence classes.
Construction in \mathfrak{u} steps, even if $\mathfrak{u}<\mathfrak{d}$?

