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Stories
A classical zero-one law
Proviso

To Andreas, the true mathematician

Story 1. Irritated math. celebrity
Q (insists again and again): Why do you say that?
A (eventualy): To impress my friends and to get the girl.

Story 2. Calm Blass
Q: Why do you do set theory? Isn’t it a closed world these days?
Are there meaningful — to the mainstream math — results proved
after 1960?
A: But it is fun!
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Toronto blues

1978-79 academic year. My talk on the topology of real line,

and Alan Meckler.
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The most famous zero-one law

Consider independent random variables X1,X2, . . .

A tail event is independent of any finite subsequence of the
variables.

Examples

The sequence converges.

1/2 occurs infinitely many times.

Theorem (Kolmogorov)

Probability of any tail event is either 0 or 1.
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A little math logic may be useful

Wikipedia: “In many situations, it can be easy to apply
Kolmogorov’s zero-one law to show that some event has
probability 0 or 1, but surprisingly hard to determine which of
these . . . values is the correct one.”

Actually this is not that surprising.

Consider independent random variables Xi with only, two equally
probable values, 0 and 1.

For each polynomial p(x1, .., x4), consider this event: the binary
notations for an integer tuple 〈k1, . . . , k4〉 with p(k1, . . . , , k4) = 0
appears infinitely often as a contiguous subsequence.
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Finiteness

Proviso

By default, structures are finite.
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The isomorphism problem

Given two graphs, decide whether they are isomorphic.

It is a known hard problem,
not NP hard but neither is factoring —
that is routinely solved in practice,

e.g. in comparing the runtime heaps created by an object oriented
program.
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Graph coloring algorithm

C1(v) is the degree of v ,

Cs+1(v) is given by Cs(v) and Bag(Cs(w) : vEw).

Halt when the color-refinement process reaches a fixed point.
Success = the final parts are all singletons.

Use the colors to establish the isomorphism.

Generalize to relational structures of any fixed vocabulary.

8 26
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Rigidity

A graph is rigid if it has only the trivial automorphism, the identity.

The coloring algorithms gives a practical solution for the graph
rigidity problem.

9 32
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Uniform distribution

Labeled version (the default).
All graphs on {1, . . . , n} are equally probable; or toss a fair
coin for every pair {i , j} of distinct vertices.

Unlabeled version.
All isomorphism classes of n-vertex graphs are equally
probable.

10 34
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Almost sure properties

Definition

Let π be a graph property and pn be the fraction of π graphs
among all graphs on {1, . . . , n}. If pn approaches 1 when n grows
to infinity, then π is almost sure.

Fact: The coloring algorithm almost surely succeeds. Hence graphs
are a.s. rigid.

The fact survives in the unlabeled case.

11 35
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Arbitrary structures

Consider arbitrary (but finite) purely relational structures of a fixed
signature.

Fact: Structures are a.s. rigid.

Curiosity: Graphs do not constitute a special case.

12 37
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Thesauri

A thesaurus is a set of signa.

A signum R of arity j is a generalization of a relation symbol of
arity j .
It also has:

a value set V ,

a group G of permutations over {1, . . . , j},
a homomorphism h from G to the permutation group of V .

13 40
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Structures of a given thesaurus

The interpretation of a signum (R, j ,V ,G , h) assigns to each
j-tuple (a1, . . . , aj) of distinct elements a value in V subject to a
symmetry requirement

R(a1, . . . , aj) = h(π)R(aπ1, . . . , aπj) for every π ∈ G .

14 42



Preamble
Almost sure properties

Thesauri
Zero-one law for thesauri structures

Geometric zero-one law

Example: graphs

V = {true, false}.
G consists of all (two) permutations.
Every h(π) is the identity.

If π is the swap, we have

E (a1, a2) = h(π)E (a2, a1) = E (a2, a1).

15 43
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Example: tournaments

V = {true, false}.
G consists of all (two) permutations.
h of the swap is the negation.

If π is the swap, we have

E (a1, a2) = h(π)E (a2, a1) = ¬E (a2, a1).

Consider the generalization to tournaments with ties.
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Back and forth
The zero-one law
Generalizations

Two special cases

1 Structures of a fixed purely relational vocabulary.

2 Graphs.

To simplify the exposition, we speak about graphs.

17 48
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Back and forth
The zero-one law
Generalizations

Random infinite graphs

Toss a fair coin for every pair i < j of natural numbers; if it turns
up heads then put an edge between i and j .
What is the probability that two outcomes are isomorphic?

The answer is 1,
by the back and forth argument.

By the same argument, the infinite random graph has continuum
many automorphisms.

18 49
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Generalizations

Extension axioms

Ek for all disjoint k-element sets X ,Y ,
there is an element z
adjacent to all vertices in X and no vertex in Y .

Every Ek is almost surely true.

19 53
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Back and forth
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Generalizations

Almost sure theory

Let T be the theory given by all extension axioms Ek .

T has no finite models.

Any two countable models of T are isomorphic.

T is complete and decdiable.
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Generalizations

Zero-one law: graphs

Theorem (Transfer)

ϕ is a.s. true iff it holds at the random graph.

Theorem

Every first-order sentence ϕ in the language of graphs is a.s. true
or a.s. false. The almost sure theory is decidable.

Proof. Use the completeness and the fact that the axioms are
almost sure.

21 59
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Generalizations

Zero-one law for relational structures

Theorem (Glebsky et al. 1969; Fagin 1976)

Every first-order sentence ϕ is a.s. true or a.s. false. The almost
sure theory is decidable.

Lemma (Transfer lemma)

A first-order sentence ϕ is a.s. true if and only if it holds at the
random structure.

Theorem (Grandjean 1983)

The almost sure theory is pspace complete.
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Back and forth
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Generalizations

Zero-one law for thesaurus structures

Oberschelp, Generalizations to graphs and other “parametric
conditions”, 1982.
Blass and Gurevich, Zero-one laws: thesauri and parametric
conditions, 2007
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Richer logics

Zero-one laws “unexplained”
Blass and Harrary
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This is a joint work with Bob Gilman of Stevens and with Alexei
Miasnikov of McGill.

Forget thesauri; we are going back to relational structures
even though the generalization to thesauri may be straightforward.
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The Gaifman graph

For every relational structure X , we define the graph of X .

Vertices are the elements of X .

A pair {x , y} is an edge if x 6= y and there is a true atomic
relationship R(a1, . . . , aj) whose arguments contain both x and y .

The graph allows us to speak about distances, balls, etc.
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A structure of interest

Fix an infinite relational structure X such that every the degree (in
the sense of Graph(X )) of X is finite. Then every ball Bn(x) is
finite.

A good example for our purposes is the Cayley graph of a finitely
generated infinite group.

We are interested in finite substructures of X .
What does or should mean that a property π is a.s. true for finite
substructures of X ?
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Almost sure

A property π is a.s. true on finite substructures of X if, for every
x ∈ X , the fraction of π-substructures of the ball Bn(x)
approaches 1 as n grows to infinity.
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Geometric zero-one law: version 1

Theorem G1. Suppose that the infinite structure X is

connected,

of bounded degree,

with the duplicate substructure property.

Then any first-order sentence ϕ in the language of X is either a.s.
true or a.s. false on finite substructures of X
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Pseudo-connectivity

A class C of finite structures is pseudo-connected if every Y ∈ C
can be embedded into a connected member of C .
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Geometric zero-one law: version 2

Theorem G2. Let C be a pseudo-connected class of finite
structures of bounded degree that closed under substructures and
disjoint unions.

Ambient structure. There is an infinite structure X , an ambient
structure for C such that X satisfies the conditions of Theorem G1
and C is the collection of (isomorphic copies) of substructures of
X .

Transfer. Let S be the disjoint union of the members of C . A
first-order sentence ϕ is a.s. true for C if and only if it holds in S .
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Examples

The Cayley diagram of a finitely generated infinite group.

An infinite connected vertex-transitive graph of finite degree. For
example the graph obtained from a Cayley diagram of the type just
mentioned by removing all loops and combining all edges between
any two distinct vertices joined by an edge into a single undirected
edge.

The Cayley diagram of a free finitely generated monoid.

The full binary tree; i.e., the tree with one vertex of degree two
and all others of degree three. More generally the full k-ary tree
for k ≥ 1.
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Axioms

Call a finite graph G positive if it isomorphic to a member of C ;
otherwise call it negative.

Here is an axiom system for the a.s. theory of C . There is one
axiom for every (up to isomorphism) finite graph G .

Positive G There is a component isomorphic to G .

Negative G There are is no subgraph isomorphic to G .
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Is the geometric law different?

Theorem G3. There is a class C of finite structures that obeys the
geometric 0-1 law but does not obey the classical labeled or
unlabeled law.
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