Decompositions of reflexive groups A talk dedicated to Andreas Blass

Rüdiger Göbel

Universität Duisburg-Essen

November, 10th, 2007

Contents

1 History of reflexive groups

- From Nunke and Łoś, via Mekler and Eda to Shelah
- Contributions by Andreas Blass towards reflexivity

2 Towards the aim of this talk

Motivation: Two Theorems on Strange Decompositions

- Reflexive groups and Sabbagh
- Using MA to remove undesirable homomorphisms

3 The Main Theorem

Contents

History of reflexive groups

- From Nunke and Łoś, via Mekler and Eda to Shelah
- Contributions by Andreas Blass towards reflexivity

2 Towards the aim of this talk

• Motivation: Two Theorems on Strange Decompositions

- Reflexive groups and Sabbagh
- Using MA to remove undesirable homomorphisms

3 The Main Theorem

The Definition of Reflexivity

Definition

M is a dual group if there is a group X with $M \cong X^* := \operatorname{Hom}(X, \mathbb{Z})$.

Definition

If $M^{**} = (M^*)^*$, then let σ_M be the evaluation map

$$\sigma_M: M \to M^{**}(x \mapsto x\sigma_M)$$

defined by

$$y(x\sigma_M) = xy \quad \forall y \in M^*.$$

Then M is reflexive if σ_M is an isomorphism.

Examples: \mathbb{Z}^{κ} and $\mathbb{Z}^{(\kappa)}$ are reflexive for any cardinal $\kappa < \aleph_m$ (\aleph_m = first (ω -)measurable cardinal) [apply Łoś theorem [1958] on slender groups] **Counterexamples:** Essentially every group you can think of.

Observation

- Reflexive groups are dual group.
- [Mekler-Schlitt, 1986 and Eda-Ohta, 1987] There are dual groups which are not reflexive.

Mekler-Schlitt-idea: Construct a direct limit of an inverse-direct system of subgroups of \mathbb{Z}^{ω_1} .

Eda-Ohta-idea: Construct a topological space X and consider $C(X, \mathbb{Z})$.

Reference: Eklof-Mekler Almost Free Modules, Set-theoretic Methods, North-Holland 2002.

Theorem

Eda [1982, 1983] and Łoś [1958]: \mathbb{Z}^{κ} is reflexive if and only if κ is not measurable.

Problem 6 in Eklof-Mekler [1989]: *Is there a reflexive group of measurable cardinality*?

The answer:

Theorem

Shelah [2008]: If μ is a measurable cardinal, then there are reflexive subgroups of \mathbb{Z}^{μ} of cardinality μ .

see Shelah, *Reflexive abelian groups and measurable cardinals and saturated mad families, to appear in Algebra Universalis.*

Theorem

Eda [1982, 1983] and Loś [1958]:

 \mathbb{Z}^{κ} is reflexive if and only if κ is not measurable.

Problem 6 in Eklof-Mekler [1989]: *Is there a reflexive group of measurable cardinality*?

The answer:

Theorem

Shelah [2008]:

If μ is a measurable cardinal, then there are reflexive subgroups of \mathbb{Z}^{μ} of cardinality $\mu.$

see Shelah, *Reflexive abelian groups and measurable cardinals and saturated mad families, to appear in Algebra Universalis.*

More Results on Reflexive Groups

Observation

The class of reflexive groups is closed under direct summands, direct sums and products.

Thus the groups in the Reid-class \mathfrak{R} (obtained by transfinite iterated applications of products, direct sums and direct summands from \mathbb{Z}) are reflexive. [Dugas-Huisgen-Zimmermann, 1981] $\Rightarrow \mathfrak{R}$ is large. But:

[Eda-Kamo-Ohta, 1993]: $C(\mathbb{Q}, \mathbb{Z}) \notin \mathfrak{R}$ is reflexive. Moreover: Theorem The sentence: ' \aleph_1 -separable groups of cardinality \aleph_1 are reflexive' is independent of ZFC.		
	[Eda-Kamo-Ohta, 1993]: $C(\mathbb{Q},\mathbb{Z}) \notin \mathfrak{R}$ is reflexive.	
	Moreover:	

More Results on Reflexive Groups

Observation

The class of reflexive groups is closed under direct summands, direct sums and products.

Thus the groups in the Reid-class \mathfrak{R} (obtained by transfinite iterated applications of products, direct sums and direct summands from \mathbb{Z}) are reflexive. [Dugas-Huisgen-Zimmermann, 1981] $\Rightarrow \mathfrak{R}$ is large. But:

Theorem

[Eda-Kamo-Ohta, 1993]: $C(\mathbb{Q},\mathbb{Z}) \notin \mathfrak{R}$ is reflexive.

Moreover:

Theorem

The sentence:

'እ₁-separable groups of cardinality እ₁ are reflexive' is independent of ZFC.

More Results on Reflexive Groups

Observation

The class of reflexive groups is closed under direct summands, direct sums and products.

Thus the groups in the Reid-class \mathfrak{R} (obtained by transfinite iterated applications of products, direct sums and direct summands from \mathbb{Z}) are reflexive. [Dugas-Huisgen-Zimmermann, 1981] $\Rightarrow \mathfrak{R}$ is large. But:

Theorem

[Eda-Kamo-Ohta, 1993]: $C(\mathbb{Q},\mathbb{Z}) \notin \mathfrak{R}$ is reflexive.

Moreover:

Theorem

The sentence:

 \aleph_1 -separable groups of cardinality \aleph_1 are reflexive' is independent of ZFC.

A.B. and C. Laflamme: *Consistency results about filters and the number of inequivalent growth types*, Journ. Symb. Logic **54** (1989) 50 – 56.

A.B.: Cardinal characteristics and the product of countable many infinite cyclic groups, Journ. Algebra **169** (1994) 512 – 540.

A.B. and J. Irwin: Baer meets Baire: applications of category arguments and descriptive set theory to \mathbb{Z}^{\aleph_0} , Colorado Proceedings, Dekker, New York (1996) 193–202.

A.B. and R. Göbel: Subgroups of the Baer-Specker group with few endomorphisms but large dual, Fund. Math. **149** (1996) 19–29. A.B. and J. Irwin: Special families of sets and Baer-Specker groups,

Comm. Algebra **33** (2005) 1733–1744.

A.B.: Specker's theorem for Nöbeling's group, Proc. Amer. Math. Soc. **130** (2005) 1581 – 1587.

History of reflexive groups

- From Nunke and Łoś, via Mekler and Eda to Shelah
- Contributions by Andreas Blass towards reflexivity

2 Towards the aim of this talk

Motivation: Two Theorems on Strange Decompositions

- Reflexive groups and Sabbagh
- Using MA to remove undesirable homomorphisms

3 The Main Theorem

History of Particlar Decompositions of Abelian Groups

• The Sabbagh Problem, 1970

answered by Eklof and Shelah [Proceedings Oberwolfach 1975, Gordon and Breach, London 1978]: For any natural number m there is a locally free abelian group M with

$$M \cong M \oplus \mathbb{Z}^n \iff m \mid n.$$

• Eklof-Mekler Problem 12, 1989

Can we find a dual abelian group M (so $M = G^*$) such that $M \not\cong M \oplus \mathbb{Z}$?

• Göbel and Shelah, Proceedings of the Perth Conference, 2001: Assuming MA: There is a reflexive group M with $M \ncong M \oplus \mathbb{Z}$. Central topic of my talk:

Theorem

Assuming MA: For any natural number m there is a reflexive abelian group M with

$$M \cong M \oplus \mathbb{Z}^n \iff m \mid n.$$

Göbel –Agnes Paras: *Decompositions of reflexive groups and Martin's axiom*, to appear Houston Journal of Math. 2008

Shift maps on $P = \mathbb{Z}^{\omega}$

Let

$$S := \bigoplus_{i < \omega} \mathbb{Z} \mathbf{e}_i \subseteq P := \prod_{i < \omega} \mathbb{Z} \mathbf{e}_i$$

and put

$$\mathbf{x} = \sum_{i \in \omega} x_i \mathbf{e}_i, \text{ with } x_i \in \mathbb{Z}.$$

Let m be a fixed natural number and define $\varphi, \varphi^{-1} \in \operatorname{End} P$ by

$$\mathbf{x} \varphi = \sum_{i \in \omega} x_i \mathbf{e}_{i+m}$$
 and $\mathbf{x} \varphi^{-1} = \sum_{i \in \omega} x_i \mathbf{e}_{i-m}$

where $\mathbf{e}_{i-m} = 0$ if i < m and let

 $R = \mathbb{Z}[\langle \varphi \rangle] \subseteq \operatorname{End} P$, hence P is an R-module.

Scalar product and \mathbb{Z} -adic closure

Let \mathbb{D} be the \mathbb{Z} -adic closure of S in P. The *scalar product*

$$\Phi: S \times S \to \mathbb{Z}$$
 with $\Phi(\mathbf{e}_i, \mathbf{e}_j) = \delta_{ij}$

extends uniquely to $\Phi:\mathbb{D}\times\mathbb{D}\longrightarrow\widehat{\mathbb{Z}}$ and

$$\Phi(\mathbf{e}_i\varphi^k,\mathbf{e}_j) = \delta_{i+mk,j} = \Phi(\mathbf{e}_i,\mathbf{e}_j\varphi^{-k}).$$

If $\theta = \sum n_k \varphi^k \in R$, $\theta' = \sum n_k \varphi^{-k}$, then

$$\Phi(\mathbf{x}\theta,\mathbf{y}) = \Phi(\mathbf{x},\mathbf{y}\theta').$$

Goal: Find a reflexive R-module G such that

 $S \subset G \subset_* \mathbb{D}$ and $(\eta \in \operatorname{Mon} G \text{ and } G/G\eta \cong \mathbb{Z}^n) \Rightarrow m \mid n.$

The set \mathfrak{P} for MA

Let \mathfrak{P} be the set of pairs (H_1, H_2) where, for i = 1, 2,

- **2** H_i is an R-module,
- $|H_i| < 2^{\aleph_0}$ and

If $\mathbb{H} = (H_1, H_2)$ and $\mathbb{H}' = (H'_1, H'_2)$ are elements of \mathfrak{P} , define $\mathbb{H} \subseteq \mathbb{H}'$ if $H_i \subseteq H'_i$ (i = 1, 2). Thus \mathfrak{P} is a poset.

We say that a homomorphism $\eta:S\to\mathbb{D}$ is essentially in R if for some

 $\theta \in R \ \mathbf{e}_i \eta = \mathbf{e}_i \theta$ for almost all $i \in \omega$.

On the other hand a homomorphism $\eta: S \to \mathbb{D}$ which is not essentially in R is *undesirable*. We must get rid of those. The next lemma explains how this works.

Main Lemma

 $\begin{array}{l} (\operatorname{ZFC} + \operatorname{MA}) \ \textit{Let} \ \mathbb{H} = (H_1, H_2) \in \mathfrak{P}, \ \mathbf{b} = \sum_{i \in \omega} b_i \mathbf{e}_i \in P \setminus H_2, \\ \eta : S \to \mathbb{D} \ \textit{be undesirable and} \ 0 \in U < \mathbb{D} \ \textit{such that} \ |U| < 2^{\aleph_0}. \ \textit{Then} \\ \textit{there exists } \mathbf{a} = \sum_{i \in \omega} a_i \mathbf{e}_i \in \mathbb{D} \ \textit{such that} \\ \textcircled{1} \ \Phi(\mathbf{a}, \mathbf{b}) \in \widehat{\mathbb{Z}} \setminus \mathbb{Z}, \\ \textcircled{2} \ \mathbf{a}\eta \notin H'_1 := \langle H_1, R\mathbf{a} \rangle_*, \\ \textcircled{3} \ (H'_1, H_2) \in \mathfrak{P} \ \textit{and} \\ \textcircled{3} \ U \cap R\mathbf{a} = 0. \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Let $\mathbb{H} = (H_1, H_2) \in \mathfrak{P}$, $\mathbf{b} = \sum_{i \in \omega} b_i \mathbf{e}_i \in P \setminus H_2$ and $U < \mathbb{D}$ such that $|U| < 2^{\aleph_0}$. If $\eta : S \to \mathcal{D}$ is undesirable, then either

 $\eta - \theta$ has infinite rank, for all $\theta \in R$, (1)

so η is a *stray* or there exists $\theta \in R$ such that

 $f = \eta - \theta$ has finite rank and $f(\mathbf{e}_i) \neq 0$ for almost all $i \in \omega$. (2)

We approximate $\mathbf{a} \in \mathbb{D}$:

•
$$p = (u^p, A^p) \in \mathfrak{F}$$
 with:

2
$$u^p \subseteq H_2$$
 finite

 $\mathfrak F$ becomes a poset by $p\leq q$, for some $p,q\in \mathfrak F$, if

$$\begin{array}{l} \bullet \quad u^p \subseteq u^q \text{ and } a_i^p = a_i^q \text{ for } i < l^p \\ \bullet \quad \Phi(\sum_{i < l^p} a_i^p \mathbf{e}_i, \mathbf{x}) = \Phi(\sum_{i < l^q} a_i^q \mathbf{e}_i, \mathbf{x}), \text{ for all } \mathbf{x} \in u^p \end{array}$$

First we apply MA to \mathfrak{F} to get $\mathbf{a}:$

Step 1: \mathfrak{F} is σ -centered. Recall $p = (u^p, A^p)$. Define an equivalence relation \sim on \mathfrak{F} :

$$p \sim q$$
 if $A^p = A^q$.

Thus $[p] := \{q \in \mathcal{F} \mid q \sim p\}$ is directed and \mathfrak{F} is a countable union of [p]s. \Box

The Main Lemma

Step 2: We define $< 2^{\aleph_0}$ dense subsets of \mathfrak{F} which describe locally the desired properties of \mathbf{a} :

Given $(H_1, H_2) \in \mathfrak{P}$, let $\mathbf{x} \in H_2$, $\ell \in \mathbb{N}$, $k \in \mathbb{Z}$, $r \in R$ and $\mathbf{y} \in U$.

- $D_{\ell} = \{ p \in \mathfrak{F} \mid \ell < l^p \}$. This makes $\mathbf{a} : \omega \to \mathbb{Z}$ a total map.
- 2 $D_{\mathbf{x}} = \{ p \in \mathfrak{F} \mid \mathbf{x} \in u^p \}$. Hence a can be added to H_1 .
- $D_k = \{ p \in \mathfrak{F} \mid \sum_{i < l^p} a_i^p b_i \not\equiv k \mod l^p! \}.$ Thus $\Phi(\mathbf{a}, \mathbf{b}) \notin \mathbb{Z}.$
- $D_{r,\mathbf{y}} = \left\{ p \in \mathfrak{F} \mid r(\sum_{i < l^p} a_i^p \mathbf{e}_i) \not\equiv \mathbf{y} \mod l^p! \mathbb{D} \right\}, \text{ so } U \cap R\mathbf{a} = 0.$
- If $n \in \mathbb{N}$, $\mathbf{d} \in H_1$, $\theta \in R$ and $\operatorname{rk}(\eta \theta) = \infty$ then $D_{n,\theta,\mathbf{d}} = \{p \in \mathfrak{F} \mid (n\eta - \theta)(\sum_{i < l^p} a_i^p \mathbf{e}_i) \not\equiv \mathbf{d} \mod l^p! \mathbb{D}\}$. This kills any stray η [case (1)].
- If $\mathbf{x} \in H_2, z \in \mathbb{Z}, \mathbf{e}_i(\eta \theta) = \sum_{j=1}^k n_{ij} \mathbf{v}_j$ for $\bigoplus_{i=1}^k \mathbb{Z} \mathbf{v}_i \sqsubseteq \mathbb{D}$ and $n_i = n_{ij_0} \neq 0$ infinitely often, then $D_z^{\mathbf{x}} = \{p \in \mathfrak{F} \mid \mathbf{x} \in u^p, |z| < l^p \text{ and } \sum_{i < l^p} a_i^p n_i \not\equiv z \mod l^p!\}.$ This kills an undesired η which is not a stray [case (2)].

Applying MA for \mathfrak{F}

 $\begin{array}{l} \mathsf{MA} \ \Rightarrow \exists \mathbb{G} \subseteq \mathfrak{F} \text{ generic with } D \cap \mathbb{G} \neq \emptyset \text{ for all constructed dense } D. \\ \mathsf{Let} \ \mathbf{a} = \sum_{i \in \omega} a_i \mathbf{e}_i, \text{ where } a_i = a_i^p \text{ for any } p \in \mathbb{G} \text{ with } i < l^p. \\ \mathsf{Thus} \ \mathbf{a} \in \mathbb{D} \text{ well-defined.} \end{array}$

Put $H_1'' := H_1 + R\mathbf{a} \subseteq H_1' := \langle H_1, R\mathbf{a} \rangle_* \subseteq \mathbb{D}$ and $\mathbb{H}' = (H_1', H_2)$.

And show $\mathbb{H}' \in \mathfrak{P}$: **Convention:** If $r = \sum n_k \varphi^k \in R$ then $r' = \sum n_k \varphi^{-k} \in R$. Let $\mathbf{c} = r\mathbf{a} + \mathbf{f} \in H_1''$ and $\mathbf{y} \in H_2$. Then $\Phi(\mathbf{c}, \mathbf{y}) = \Phi(\mathbf{a}, r'\mathbf{y}) + \Phi(\mathbf{f}, \mathbf{y}). r'\mathbf{y} \in H_2$ and $D_{r'\mathbf{y}}$ is dense $\Rightarrow \exists p \in D_{r'\mathbf{y}} \cap \mathbb{G} \text{ and } \Phi(\mathbf{a}, r'\mathbf{y}) = \Phi(\sum_{i < l^p} a_i^p \mathbf{e}_i, r'\mathbf{y}) \in \mathbb{Z}.$ $\Phi(H_1 \times H_2) \subset \mathbb{Z} \Rightarrow \Phi(\mathbf{f}, \mathbf{y}) \in \mathbb{Z} \Rightarrow \Phi(\mathbf{c}, \mathbf{y}) \in \mathbb{Z} \Rightarrow \Phi(H_1'' \times H_2) \subset \mathbb{Z}.$ If $0 \neq \mathbf{x} = \sum_{i \in \mathcal{U}} x_i \mathbf{e}_i \in H'_1 \Rightarrow \exists t \in \mathbb{N} \ t\mathbf{x} = \mathbf{h} := \sum_{i \in \mathcal{U}} h_i \mathbf{e}_i \in H''_1$. Thus $tx_i = h_i$, for all i, and by purity $\Phi(\mathbf{h}, \mathbf{y}) = \Phi(t\mathbf{x}, \mathbf{y}) = \sum t x_i y_i = t \Phi(\mathbf{x}, \mathbf{y}) \in t \widehat{\mathbb{Z}} \cap \mathbb{Z} = t \mathbb{Z}. \Rightarrow$ $\Phi(\mathbf{x}, \mathbf{y}) \in \mathbb{Z}$. Thus $\mathbb{H}' \in \mathfrak{P}$.

Contents

History of reflexive groups

From Nunke and Łoś, via Mekler and Eda to Shelah
Contributions by Andreas Blass towards reflexivity

Towards the aim of this talk

Motivation: Two Theorems on Strange Decompositions

- Reflexive groups and Sabbagh
- Using MA to remove undesirable homomorphisms

3 The Main Theorem

Main Theorem

(ZFC + MA) Let m > 1. There are two subgroups H_i (i = 1, 2) of the Baer-Specker group P with the following properties:

- **2** H_i is \aleph_1 -free and slender.
- **3** There is a natural bilinear form $\Phi : H_1 \times H_2 \longrightarrow \mathbb{Z}$ induced by $\Phi(\mathbf{e}_i, \mathbf{e}_j) = \delta_{i,j}$ $(i, j \in \omega)$, which yields $H_1^* \cong H_2$ and $H_2^* \cong H_1$ such that H_1, H_2 are reflexive.

- $H_i \oplus \mathbb{Z}^n \cong H_i$ if and only if n is a multiple of m (i = 1, 2).