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The Definition of Reflexivity

Definition

M is a dual group if there is a group X with M ∼= X∗ := Hom(X, Z).

Definition

If M∗∗ = (M∗)∗, then let σM be the evaluation map

σM : M → M∗∗(x 7→ xσM )

defined by
y(xσM ) = xy ∀y ∈ M∗.

Then M is reflexive if σM is an isomorphism.



Dual Groups versus Reflexivity

Examples: Zκ and Z(κ) are reflexive for any cardinal κ < ℵm

(ℵm = first (ω-)measurable cardinal)
[apply  Loś theorem [1958] on slender groups]
Counterexamples: Essentially every group you can think of.

Observation

Reflexive groups are dual group.

[Mekler-Schlitt, 1986 and Eda-Ohta, 1987]
There are dual groups which are not reflexive.

Mekler-Schlitt-idea: Construct a direct limit of an inverse-direct
system of subgroups of Zω1 .
Eda-Ohta-idea: Construct a topological space X and consider
C(X, Z).
Reference: Eklof-Mekler Almost Free Modules, Set-theoretic Methods,
North-Holland 2002.



More Results on Reflexive Groups

Theorem

Eda [1982, 1983] and  Loś [1958]:
Zκ is reflexive if and only if κ is not measurable.

Problem 6 in Eklof-Mekler [1989]: Is there a reflexive group of
measurable cardinality?
The answer:

Theorem

Shelah [2008]:
If µ is a measurable cardinal, then there are reflexive subgroups of
Zµ of cardinality µ.

see Shelah, Reflexive abelian groups and measurable cardinals and
saturated mad families, to appear in Algebra Universalis.
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More Results on Reflexive Groups

Observation

The class of reflexive groups is closed under direct summands, direct
sums and products.

Thus the groups in the Reid-class R (obtained by transfinite iterated
applications of products, direct sums and direct summands from Z)
are reflexive. [Dugas-Huisgen-Zimmermann, 1981] ⇒ R is large.
But:

Theorem

[Eda-Kamo-Ohta, 1993]: C(Q, Z) /∈ R is reflexive.

Moreover:

Theorem

The sentence:
‘ℵ1-separable groups of cardinality ℵ1 are reflexive’
is independent of ZFC.
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A choice of contributions by A. Blass towards reflexivity

A.B. and C. Laflamme: Consistency results about filters and the
number of inequivalent growth types, Journ. Symb. Logic 54 (1989)
50 – 56.
A.B.: Cardinal characteristics and the product of countable many
infinite cyclic groups, Journ. Algebra 169 (1994) 512 – 540.
A.B. and J. Irwin: Baer meets Baire: applications of category
arguments and descriptive set theory to Zℵ0 , Colorado Proceedings,
Dekker, New York (1996) 193–202.
A.B. and R. Göbel: Subgroups of the Baer-Specker group with few
endomorphisms but large dual, Fund. Math. 149 (1996) 19–29.
A.B. and J. Irwin: Special families of sets and Baer-Specker groups,
Comm. Algebra 33 (2005) 1733–1744.
A.B.: Specker’s theorem for Nöbeling’s group, Proc. Amer. Math.
Soc. 130 (2005) 1581 – 1587.
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Decompositions of Abelian Groups

History of Particlar Decompositions of Abelian Groups

The Sabbagh Problem, 1970
answered by Eklof and Shelah [Proceedings Oberwolfach 1975,
Gordon and Breach, London 1978]:
For any natural number m there is a locally free abelian group M
with

M ∼= M ⊕ Zn ⇐⇒ m | n.

Eklof-Mekler Problem 12, 1989
Can we find a dual abelian group M (so M = G∗) such that
M 6∼= M ⊕ Z?

Göbel and Shelah, Proceedings of the Perth Conference, 2001:
Assuming MA: There is a reflexive group M with M 6∼= M ⊕ Z.



Combining Eklof-Mekler’s and Sabbagh’s Problem

Central topic of my talk:

Theorem

Assuming MA: For any natural number m there is a reflexive abelian
group M with

M ∼= M ⊕ Zn ⇐⇒ m | n.

Göbel –Agnes Paras: Decompositions of reflexive groups and
Martin’s axiom, to appear Houston Journal of Math. 2008



Shift maps on P = Zω

Let
S :=

⊕
i<ω

Zei ⊆ P :=
∏
i<ω

Zei

and put

x =
∑
i∈ω

xiei, with xi ∈ Z.

Let m be a fixed natural number and define ϕ, ϕ−1 ∈ End P by

xϕ =
∑
i∈ω

xiei+m and xϕ−1 =
∑
i∈ω

xiei−m

where ei−m = 0 if i < m and let

R = Z[〈ϕ〉] ⊆ End P, hence P is an R-module.



Scalar product and Z-adic closure

Let D be the Z-adic closure of S in P .
The scalar product

Φ : S × S → Z with Φ(ei, ej) = δij

extends uniquely to Φ : D× D −→ Ẑ and

Φ(eiϕ
k, ej) = δi+mk,j = Φ(ei, ejϕ

−k).

If θ =
∑

nkϕ
k ∈ R, θ′ =

∑
nkϕ

−k, then

Φ(xθ,y) = Φ(x,yθ′).

Goal: Find a reflexive R-module G such that

S ⊂ G ⊂∗ D and (η ∈ Mon G and G/Gη ∼= Zn) ⇒ m | n.



The set P for MA

Let P be the set of pairs (H1,H2) where, for i = 1, 2,

1 S ⊆ Hi ⊆∗ D,

2 Hi is an R-module,

3 |Hi| < 2ℵ0 and

4 Φ : H1 ×H2 → Z
If H = (H1,H2) and H′ = (H ′

1,H
′
2) are elements of P, define H ⊆ H′

if Hi ⊆ H ′
i (i = 1, 2). Thus P is a poset.

We say that a homomorphism η : S → D is essentially in R if for some

θ ∈ R eiη = eiθ for almost all i ∈ ω.

On the other hand a homomorphism η : S → D which is not
essentially in R is undesirable. We must get rid of those. The next
lemma explains how this works.



The Main Lemma

Main Lemma

(ZFC + MA) Let H = (H1,H2) ∈ P, b =
∑

i∈ω biei ∈ P \H2,
η : S → D be undesirable and 0 ∈ U < D such that |U | < 2ℵ0 . Then
there exists a =

∑
i∈ω aiei ∈ D such that

1 Φ(a,b) ∈ Ẑ \ Z,

2 aη 6∈ H ′
1 := 〈H1, Ra〉∗,

3 (H ′
1,H2) ∈ P and

4 U ∩Ra = 0.



Let H = (H1,H2) ∈ P, b =
∑

i∈ω biei ∈ P \H2 and U < D such
that |U | < 2ℵ0 . If η : S → D is undesirable, then either

η − θ has infinite rank, for all θ ∈ R, (1)

so η is a stray or there exists θ ∈ R such that

f = η − θ has finite rank and f(ei) 6= 0 for almost all i ∈ ω. (2)

We approximate a ∈ D:

1 p = (up, Ap) ∈ F with:

2 up ⊆ H2 finite

3 Ap = 〈ap
i | i < lp and i! | ap

i ∈ Z, lp ∈ N〉.
F becomes a poset by p ≤ q, for some p, q ∈ F, if

1 up ⊆ uq and ap
i = aq

i for i < lp

2 Φ(
∑

i<lp ap
i ei,x) = Φ(

∑
i<lq aq

iei,x), for all x ∈ up.



The Main Lemma

First we apply MA to F to get a:

Step 1: F is σ-centered.
Recall p = (up, Ap). Define an equivalence relation ∼ on F:

p ∼ q if Ap = Aq.

Thus [p] := {q ∈ F | q ∼ p} is directed and F is a countable union of
[p]s. �



The Main Lemma

Step 2: We define < 2ℵ0 dense subsets of F which describe locally
the desired properties of a:
Given (H1,H2) ∈ P, let x ∈ H2, ` ∈ N, k ∈ Z, r ∈ R and y ∈ U .

1 D` = {p ∈ F | ` < lp}. This makes a : ω → Z a total map.

2 Dx = {p ∈ F | x ∈ up}. Hence a can be added to H1.

3 Dk = {p ∈ F |
∑

i<lp ap
i bi 6≡ k mod lp!}. Thus Φ(a,b) /∈ Z.

4 Dr,y =
{
p ∈ F | r(

∑
i<lp ap

i ei) 6≡ y mod lp!D
}

, so U ∩Ra = 0.

5 If n ∈ N, d ∈ H1, θ ∈ R and rk(η − θ) = ∞ then
Dn,θ,d = {p ∈ F | (nη − θ)(

∑
i<lp ap

i ei) 6≡ d mod lp!D}. This
kills any stray η [case (1)].

6 If x ∈ H2, z ∈ Z, ei(η − θ) =
∑k

j=1 nijvj for ⊕k
i=1Zvi v D and

ni = nij0 6= 0 infinitely often, then
Dx

z = {p ∈ F | x ∈ up, |z| < lp and
∑

i<lp ap
i ni 6≡ z mod lp!}.

This kills an undesired η which is not a stray [case (2)].



Applying MA for F

MA ⇒ ∃G ⊆ F generic with D ∩G 6= ∅ for all constructed dense D.
Let a =

∑
i∈ω aiei, where ai = ap

i for any p ∈ G with i < lp.
Thus a ∈ D well-defined.

Put H ′′
1 := H1 + Ra ⊆ H ′

1 := 〈H1, Ra〉∗ ⊆ D and H′ = (H ′
1,H2).

And show H′ ∈ P:
Convention: If r =

∑
nkϕ

k ∈ R then r′ =
∑

nkϕ
−k ∈ R.

Let c = ra + f ∈ H ′′
1 and y ∈ H2. Then

Φ(c,y) = Φ(a, r′y) + Φ(f ,y). r′y ∈ H2 and Dr′y is dense
⇒ ∃p ∈ Dr′y ∩G and Φ(a, r′y) = Φ(

∑
i<lp ap

i ei, r
′y) ∈ Z.

Φ(H1 ×H2) ⊆ Z ⇒ Φ(f ,y) ∈ Z ⇒ Φ(c,y) ∈ Z ⇒ Φ(H ′′
1 ×H2) ⊆ Z.

If 0 6= x =
∑

i∈ω xiei ∈ H ′
1 ⇒ ∃t ∈ N tx = h :=

∑
i∈ω hiei ∈ H ′′

1 .
Thus txi = hi, for all i, and by purity
Φ(h,y) = Φ(tx,y) =

∑
txiyi = tΦ(x,y) ∈ tẐ ∩ Z = tZ. ⇒

Φ(x,y) ∈ Z. Thus H′ ∈ P.
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Main Theorem

Main Theorem

(ZFC + MA) Let m > 1. There are two subgroups Hi (i = 1, 2) of
the Baer-Specker group P with the following properties:

1 S ⊆ Hi ⊆∗ D
2 Hi is ℵ1-free and slender.

3 There is a natural bilinear form Φ : H1 ×H2 −→ Z induced by
Φ(ei, ej) = δi,j (i, j ∈ ω), which yields H∗

1
∼= H2 and H∗

2
∼= H1

such that H1,H2 are reflexive.

4 Hi ⊕ Zn ∼= Hi if and only if n is a multiple of m (i = 1,2).
5 End Hi = R⊕ Fin Hi (i = 1,2).
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