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Introduction: What is a coloring theorem?

A Problem

Show that at any party with at least six guests, either there
are three people who are total strangers, or there are three
people, all of whom know each other.
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Introduction: What is a coloring theorem?

Ordinary Partition Symbol

I [A]n denotes the set of all n-element subsets of A.

I β→ (α)γ
δ means for every F : [β]γ → δ, there is an

H ∈ [β]α homogeneous for f , i.e., f � [H ]α is constant.
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Introduction: What is a coloring theorem?

Ramsey’s Theorem

For any positive integers k , r , and m, there is an N such that

N → (m)k
r .
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Introduction: What is a coloring theorem?

The Case of ω

At a party with infinitely many guests, there are either
infinitely many people all of whom know each other, or there
are infinitely many all of whom are strangers to each other.
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Introduction: What is a coloring theorem?

Thus ω → (ω)2
2.

In fact, for any natural numbers n and m, we have ω → (ω)n
m.
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Introduction: What is a coloring theorem?

The Uncountable

If κ is an uncountable cardinal such that κ → (κ)2
2, then κ is

weakly compact.

In particular, the naive generalization of Ramsey’s Theorem
fails at an awful lot of cardinals.
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Introduction: What is a coloring theorem?

General Question

Suppose κ isn’t weakly compact. How badly does Ramsey’s
Theorem fail?
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Introduction: What is a coloring theorem?

Glib Answer: Ask Stevo
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Introduction: What is a coloring theorem?

Square-brackets notation

κ → [σ]2θ

means that for any F : [κ]2 → θ, there is a set H ⊆ κ of size
σ such that F � [H ]2 omits at least one color.
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Introduction: What is a coloring theorem?

Breakdowns of Ramsey Theory

And therefore...

κ 9 [σ]2θ

means that there is a function F : [κ]2 → θ such that F
assumes every color on any set A ⊆ κ of cardinality σ.

We have a “coloring theorem” at κ.
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Introduction: What is a coloring theorem?

Things I will not be talking about:

I Coloring theorems for singular cardinals

I Coloring theorems for large cardinals

I Coloring theorems for successors of regular cardinals
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Introduction: What is a coloring theorem?

What’s left?

Suppose λ = µ+ for µ singular. What sorts of coloring
theorems hold for λ?

In particular, does λ 9 [λ]2λ hold?
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Successors of Singular Cardinals

� Introduction: What is a coloring theorem?

� Successors of Singular Cardinals

� Club-guessing and a Theorem

� Applications, Issues, and Open Questions
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Successors of Singular Cardinals

Some old results

Let µ be a singular cardinal. Then µ+ 9 [µ+]2µ+ holds under

each of the following hypotheses:

I µ+ has a non-reflecting stationary subset [Todorcevic]

• proved using minimal walks

I pp(µ) = µ+ [Shelah, Todorcevic]

• proved using scales

We will be combining these ideas.
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Successors of Singular Cardinals

Minimal Walks

A C -system on µ+ is a family C̄ = 〈Cα : α < µ+〉 such that
Cα is closed and unbounded in α.

If α < β < µ+, then the step from β to α along C is
min(Cβ \ α).

Iterating this “stepping process” defines a decreasing sequence
of ordinals starting with β and ending with α – the minimal
walk from β to α along C̄ .

We define Tr(α, β) to be the ordinals appearing in this walk.
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Successors of Singular Cardinals

Minimal Walks

Minimal walks can be used to define colorings F : [µ+]→ µ+

by using “braking technology” to pick out a special point
along the walk:

F (α, β) is the first place in the walk from β to α where

〈insert property here〉

happens.

We will use “braking technology” obtained from a scale for µ.

Todd Eisworth: Club-guessing and Coloring Theorems, 18
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Successors of Singular Cardinals

A Simplifying Assumption

For simplicity, we will temporarily assume that µ is singular of
countable cofinality.
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Successors of Singular Cardinals

A scale for µ is a pair (~µ,~f ) such that

I ~µ = 〈µn : n < ω〉 is a strictly increasing sequence of
regular cardinal, cofinal in µ, and

I ~f = 〈fα : α < µ+〉 is a sequence of functions in ∏n<ω µn

such that

• α < β =⇒ fα <∗ fβ, and

• for every f ∈ ∏n<ω µn, there is an α < µ+ such that
f <∗ fα.

Todd Eisworth: Club-guessing and Coloring Theorems, 20
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Successors of Singular Cardinals

Some Theorems

1. Scales always exist. [Shelah]

2. If in our scale we have µn 9 [µn]2µn
for all n, then

µ+ 9 [µ+]2µ+ . [Todorcevic])
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Successors of Singular Cardinals

The ∆ Map

If (~µ,~f ) is a scale for µ, then we define

∆ : [µ+]2 → ω

by (for α < β)

∆(α, β) = max{n < ω : fβ(n) ≤ fα(n)}.

The function ∆ establishes that µ+ 9 [µ+]2ℵ0
.

(In general, for singular µ we have µ+ 9 [µ+]2
cf(µ). )

Todd Eisworth: Club-guessing and Coloring Theorems, 22
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Successors of Singular Cardinals

Our “braking technology” is as follows:

Given α < β < µ+, let β = β0 > β1 > · · · > βn = α
enumerate Tr(α, β), and define

c(α, β) = βk ,

where k is least such that

∆(α, βk) 6= ∆(α, β).

Todd Eisworth: Club-guessing and Coloring Theorems, 23
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Successors of Singular Cardinals

Goals:

We will show that the function c : [µ+]→ µ+ just defined
has some quite strong properties IF the C -system we use is
suitably chosen.

What does this mean?

For that, we need to talk about club-guessing.

Todd Eisworth: Club-guessing and Coloring Theorems, 24
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Club-guessing and a Theorem

� Introduction: What is a coloring theorem?
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� Applications, Issues, and Open Questions
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Club-guessing and a Theorem

An Assumption

Let S be a stationary subset {δ < µ+ : cf(δ) = ℵ0}. Assume
there is a sequence C̄ = 〈Cδ : δ ∈ S〉 such that

1. Cδ is cofinal in δ of order-type ω

2. 〈cf(α) : α ∈ Cδ〉 increases to µ, and

3. for every closed unbounded E ⊆ µ+,

{δ ∈ S : Cδ ∩ E is infinite} is stationary.

We say that C̄ is a nice club-guessing sequence.

Todd Eisworth: Club-guessing and Coloring Theorems, 26



Club-guessing and a Theorem

An Assumption

Let S be a stationary subset {δ < µ+ : cf(δ) = ℵ0}. Assume
there is a sequence C̄ = 〈Cδ : δ ∈ S〉 such that

1. Cδ is cofinal in δ of order-type ω

2. 〈cf(α) : α ∈ Cδ〉 increases to µ, and

3. for every closed unbounded E ⊆ µ+,

{δ ∈ S : Cδ ∩ E is infinite} is stationary.

We say that C̄ is a nice club-guessing sequence.

Todd Eisworth: Club-guessing and Coloring Theorems, 26



Club-guessing and a Theorem

An Assumption

Let S be a stationary subset {δ < µ+ : cf(δ) = ℵ0}. Assume
there is a sequence C̄ = 〈Cδ : δ ∈ S〉 such that

1. Cδ is cofinal in δ of order-type ω

2. 〈cf(α) : α ∈ Cδ〉 increases to µ, and

3. for every closed unbounded E ⊆ µ+,

{δ ∈ S : Cδ ∩ E is infinite} is stationary.

We say that C̄ is a nice club-guessing sequence.

Todd Eisworth: Club-guessing and Coloring Theorems, 26



Club-guessing and a Theorem

An Assumption

Let S be a stationary subset {δ < µ+ : cf(δ) = ℵ0}. Assume
there is a sequence C̄ = 〈Cδ : δ ∈ S〉 such that

1. Cδ is cofinal in δ of order-type ω

2. 〈cf(α) : α ∈ Cδ〉 increases to µ, and

3. for every closed unbounded E ⊆ µ+,

{δ ∈ S : Cδ ∩ E is infinite} is stationary.

We say that C̄ is a nice club-guessing sequence.

Todd Eisworth: Club-guessing and Coloring Theorems, 26



Club-guessing and a Theorem

An Assumption

Let S be a stationary subset {δ < µ+ : cf(δ) = ℵ0}. Assume
there is a sequence C̄ = 〈Cδ : δ ∈ S〉 such that

1. Cδ is cofinal in δ of order-type ω

2. 〈cf(α) : α ∈ Cδ〉 increases to µ, and

3. for every closed unbounded E ⊆ µ+,

{δ ∈ S : Cδ ∩ E is infinite} is stationary.

We say that C̄ is a nice club-guessing sequence.

Todd Eisworth: Club-guessing and Coloring Theorems, 26



Club-guessing and a Theorem

“The Club-Guessing Ideal”

A ∈ I if and only if there is a closed unbounded E ⊆ µ+ such
that

{δ ∈ S ∩ A : Cδ ∩ E is infinite} is non-stationary.

I ∗ denotes the dual filter, and I+ denotes the I -positive sets.
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Club-guessing and a Theorem

In other words...

A ∈ I+ if and only if 〈Cδ : δ ∈ S ∩ A〉 is still a very nice
club-guessing sequence.

Todd Eisworth: Club-guessing and Coloring Theorems, 28



Club-guessing and a Theorem

Some Easy Facts

1. I is a proper normal ideal on µ+,

2. if E is club in µ+, then {δ ∈ S : Cδ ∩ E is infinite} is in
I ∗.
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Club-guessing and a Theorem

“The Other Club-Guessing Ideal”

A ∈ J if and only if there is a club E ⊆ µ+ such that

{δ ∈ S : A∩ E ∩ Cδ is infinite δ} is non-stationary.

So A ∈ J+ means 〈A∩ Cδ : δ ∈ S〉 “is” a nice club-guessing

sequence.
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Club-guessing and a Theorem

Fun Facts

I J is a proper ideal containing the bounded subsets of µ+,
but it isn’t normal.

I J is κ-indecomposable for every uncountable regular
κ < µ.

This means that J is closed under increasing unions of
length κ.
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Club-guessing and a Theorem

Goal Revisited

Where are we going with this? Let’s go back a few slides....
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Club-guessing and a Theorem

Suitably chosen?

Assume C̄ = 〈Cδ ∈ S〉 is a nice club-guessing sequence. Then
there is a C -system ē = 〈eα : α < λ〉 such that

I |eα| < µ (in fact, < cf(α) + ℵ1), and

I δ ∈ S ∩ eα =⇒ Cδ ⊆ eα.

“Shelah’s Ladder Swallowing Trick” — used extensively in his
work in the area.

We say that ē swallows C̄ .

Todd Eisworth: Club-guessing and Coloring Theorems, 33
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Club-guessing and a Theorem

Theorem [TE 2006]

If µ is singular, and if ē is a C -system on µ+ that swallows a
nice club-guessing sequence with associated ideal J , then the
function c : [µ+]2 → µ+ defined by “walking along ē until ∆
changes” has the property that it takes on J-almost all values
on any unbounded subset of µ+.
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Applications, Issues, and Open Questions
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Applications, Issues, and Open Questions

Application: A Theorem of Shelah

Suppose µ is a singular cardinal, and let J be the “other”
club-guessing ideal associated with a nice club-guessing
sequence on µ+. If µ+ can be partitioned into θ disjoint
J-positive sets, then

µ+ 9 [µ+]2θ .
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Applications, Issues, and Open Questions

A stronger result [TE 2006]

If µ+ can be partitioned into µ (not µ+!) disjoint J-positive
sets, then Pr1(µ+, µ+, µ+, cf(µ)) holds.

This is a much stronger version of µ+ 9 [µ+]2µ+ involving

“blocks” of ordinals.
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Applications, Issues, and Open Questions

A converse

Suppose µ is a strong limit singular cardinal, and
µ+ → [µ+]2µ+ . Then there is an ideal K on µ+ such that

1. K is cf(µ)-complete and contains all the bounded subsets
of µ+,

2. K is κ-indecomposable for all regular κ satisfying
cf(µ) < κ < µ, and

3. K is “close to maximal” in the sense that
|P(µ+)/K | < µ.
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Applications, Issues, and Open Questions

Comments

I This improves several earlier results of Shelah. The ideal
K is of the form J � A for some J-positive set.

I The existence of such an ideal implies that every
stationary subset of {δ < µ+ : cf(µ) 6= cf(δ)} reflects.

I We can always partition µ+ into cf(µ) disjoint J-positive
sets if µ is strong limit.
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Applications, Issues, and Open Questions

Can we satisfy our assumptions?

I If µ is singular of uncountable cofinality, then nice
club-guessing sequences exist on any stationary
S ⊆ {δ < µ+ : cf(δ) = cf(µ)}.

I The situation where µ has countable cofinality is still
unresolved, but we get an approximation to this.
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Applications, Issues, and Open Questions

Theorem [TE and Shelah 2007]

The “approximately nice club-guessing sequences” can be used
to get most of the above results.

I We need to use a generalized version of minimal walks.

I We partially fix a significant error in Cardinal Arithmetic.
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Applications, Issues, and Open Questions

Open Questions

1. Do nice club-guessing sequences exist at µ+ for µ
singular of countable cofinality?

2. How does one “saturate” an ideal of the form J?

3. Is it consistent that pp(µ) > µ+ and there is an
indecomposable ultrafilter on µ+? Can we get this an
have all stationary subsets of µ+ reflecting as well?
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Applications, Issues, and Open Questions

4. Can we have a Jonsson cardinal κ with the property that
there is an F : [κ]<ω → κ such that

{ran(F � [A]<ω) : A ∈ [κ]κ}

has the finite intersection property? What about
F : [κ]2 → κ?

5. Suppose (~µ,~f ) is a scale for µ, and µn 9 [µn]<ω
µn

for all

n < ω. Does µ+ 9 [µ+]2µ+?
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Applications, Issues, and Open Questions

Do I have time for some fun at the blackboard?
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Applications, Issues, and Open Questions

The End!
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