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Consider dychotomy:

countable versus uncountable
Goal: (In ZFC and beyond) to describe uncountable as a
positive statement witnessed by a simple object.
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A continuous function f : K −→ R is nowhere constant if f is not
constant on any non-empty open subset of K .

Definition

A set X ⊂ R is universally meager if f −1(X ) is meager in K for
any continuous nowhere constant function f : K −→ R, where K is
a Baire space.

This is a variation on the notion of universally Baire in which we
require that f −1(X ) has the Baire property. All universally meager
sets are universally Baire, and so they have the usual regularity
properties.

Theorem (Todorcevic)

Assume that there exists a compact cardinal. Then X ⊂ R is
universally meager iff X is countable.
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Suppose that J is a translation invariant σ-ideal on R. Define

J ? =

{
X ⊂ R : ∀A ∈ J X + A =

⋃
x∈X

(A + x) 6= R

}
.

Clearly all countable sets of reals are in J ?.

Theorem (Solecki)

There exists a translation invariant σ-ideal J such that
J ? = [R]≤ℵ0 .
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Definition (Blass)

Suppose that A = (A−,A+,A), where A is a binary relation
between A− and A+.
Let

d(A) = {Z ⊆ A+ : ∀x ∈ A− ∃z ∈ Z A(x , z)}.

b(A) = {Z ⊆ A− : ∀y ∈ A+ ∃z ∈ Z ¬A(z , y)}.

||A|| = min{|Z | : Z ∈ d(A)}.

Define A⊥ = (A+,A−,A⊥), where A⊥ = {(z , x) : ¬A(x , z)}. Note
that b(A) = d(A⊥).

Note that ||A|| is the smallest size of the “dominating” family in
A+ and ||A⊥|| is the smallest size of the “unbounded” family in A−.
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For an ideal J of subsets of R we have:

cof(J ) = ||(J ,J ,⊆)||,
add(J ) = ||(J ,J ,⊆)⊥|| = ||(J ,J , 6⊇)||,
cov(J ) = ||(R,J ,∈)||,
non(J ) = ||(R,J ,∈)⊥|| = ||(J ,R, 63)||.

For f , g ∈ ωω we define f ≤? g if f (n) ≤ g(n) for all but finitely
many n ∈ ω.
Let

d = ||(ωω, ωω,≤?)||,
b = ||(ωω, ωω,≤?)⊥|| = ||(ωω, ωω, 6≥?)||.
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Suppose that A = (A−,A+,A) is given.
X ⊂ R is big if there is f : X −→ A+ such that
f [X ] ∈ d(A) = {Z ⊆ A+ : ∀x ∈ A− ∃z ∈ Z A(x , z)}.
The following observation is obvious:
In ZFC + ||A|| = ℵ1 we have

X is big ⇐⇒ X is uncountable.

To make it interesting we will require that f is Borel/continuous or
otherwise definable.

Definition

Suppose that A = (A−,A+,A) is given.
A Borel Conjecture for A (BC(A)) is the statement:
X ⊂ R is uncountable ⇐⇒ there exists a Borel/continuous
f : X −→ A+ such that f [X ] ∈ d(A)
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Let M and N be the ideals of meager and Lebesgue measure zero
subsets of R.
The following diagram show that status of Borel Conjecture for the
cardinal characteristics from the Cichon’s diagram.

cov(N ) // non(M) // cof(M) // cof(N )

b //

OO

d

OO

add(N )

OO

// add(M) //

OO

cov(M) //

OO

non(N )

OO

Green means that Borel Conjecture is consistent, red that it is not
and yellow that the question is open.

Tomek Bartoszynski Borel Conjecture(s)



Let M and N be the ideals of meager and Lebesgue measure zero
subsets of R.
The following diagram show that status of Borel Conjecture for the
cardinal characteristics from the Cichon’s diagram.

cov(N ) // non(M) // cof(M) // cof(N )

b //

OO

d

OO

add(N )

OO

// add(M) //

OO

cov(M) //

OO

non(N )

OO

Green means that Borel Conjecture is consistent, red that it is not
and yellow that the question is open.

Tomek Bartoszynski Borel Conjecture(s)



cov(N ) // non(M) // cof(M) // cof(N )

b //

OO

d

OO

add(N )

OO

// add(M) //

OO

cov(M) //

OO

non(N )

OO

BC(cov(M)) is Borel Conjecture (Laver)

Tomek Bartoszynski Borel Conjecture(s)



cov(N ) // non(M) // cof(M) // cof(N )

b //

OO

d

OO

add(N )

OO

// add(M) //

OO

cov(M) //

OO

non(N )

OO

BC(cov(M)) is Borel Conjecture (Laver)
BC(non(N )) (Bartoszynski-Shelah)

Tomek Bartoszynski Borel Conjecture(s)



cov(N ) // non(M) // cof(M) // cof(N )

b //

OO

d

OO

add(N )

OO

// add(M) //

OO

cov(M) //

OO

non(N )

OO

BC(cov(M)) is Borel Conjecture (Laver)
BC(non(N )) (Bartoszynski-Shelah)
BC(cov(N )) is Dual Borel Conjecture (Carlson)

Tomek Bartoszynski Borel Conjecture(s)



cov(N ) // non(M) // cof(M) // cof(N )

b //

OO

d

OO

add(N )

OO

// add(M) //

OO

cov(M) //

OO

non(N )

OO

BC(cov(M)) is Borel Conjecture (Laver)
BC(non(N )) (Bartoszynski-Shelah)
BC(cov(N )) is Dual Borel Conjecture (Carlson)
BC(b) (Miller)

Tomek Bartoszynski Borel Conjecture(s)



Theorem (Pawlikowski)

Borel Conjecture for (M,M,⊂) is false.

If cof(M) > ℵ1 then no ℵ1 set is in d((M,M,⊂). If
cof(M) = ℵ1 then there is a Lusin set. No Borel image of a Lusin
set is a dominating family (in ωω) and so it is also not in
d((M,M,⊂).
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Theorem (Miller)

Borel Conjecture for b, that is BC((ωω, ωω,≤?)), is consistent with
ZFC. Specifically, it s consistent that whenever X is uncountable
set of reals then there exists a Borel mapping of X onto an
unbounded family in ωω.

This holds in a model where every uncountable set has a subset
which is a Gδ but not Fσ.

Conjecture (Hurewicz)

Suppose that X ⊂ R. The following conditions are equivalent:

1 For every continuous function F : X −→ ωω, F [X ] is
≤?-bounded,

2 X is σ-compact.

Theorem (Just, Miller, Scheepers, Szeptycki)

Hurewicz Conjecture is false. In fact there is a set X ⊂ R of size b

whose every continuous image into ωω is bounded.
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Definition (Borel)

A metric space X has strong measure zero if for every sequence of
positive reals {εn : n ∈ ω} there exists a sequence {Xn : n ∈ ω}
such that each set Xn has diameter < εn and X ⊆

⋃
n∈ω Xn.

Let SN be the collection of all strong measure zero sets.

Theorem (Laver)

Borel Conjecture is consistent with ZFC. In particular BC implies
BC(cov(M)).

Theorem

The following are equivalent for X ⊂ 2ω:

1 X ∈ SN ,

2 X ∈M?, that is for every F ∈M, X + F 6= 2ω (Galvin,
Mycielski, Solovay),

3 X + E ∈ N for every closed measure zero set E ⊂ 2ω

(Pawlikowski).
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Let SN be the collection of all strong measure zero sets.

Theorem (Laver)

Borel Conjecture is consistent with ZFC. In particular BC implies
BC(cov(M)).

Theorem

The following are equivalent for X ⊂ 2ω:

1 X ∈ SN ,

2 X ∈M?, that is for every F ∈M, X + F 6= 2ω (Galvin,
Mycielski, Solovay),

3 X + E ∈ N for every closed measure zero set E ⊂ 2ω

(Pawlikowski).
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These properties make sense in the general context of an abelian
Polish group.

Theorem (Miller, Steprans)

Let κG = min{|X | : X ⊂ G & ∃F ∈M X + F = G}. It is
consistent that κ2ω < κZω .

Theorem (Elekes)

Suppose that G is locally compact Polish group and E is the ideal
of compact null subsets of G. Then
λG = min{|X | : X ⊂ G & ∃E ∈ E X + E = G} does not depend
on G.

There are also several generally non-equivalent statements
capturing the idea of strong measure zero (property C, C’,
Rothberger property).
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Lemma

Let m be Laver real over V. Let {sn : n ∈ ω} ∈ V[m] be such that
for all n ∈ ω, sn ∈ 2[m(n),m(n+1)).
Then in V[m], |{x ∈ V ∩ 2ω : ∃∞n sn ⊂ x | ≤ ℵ0.

Thus, if X ⊂ 2ω is uncountable then in V[m] |= X 6∈ SN .
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Question

Is is consistent with ZFC that every uncountable set of reals can
be Borel mapped onto a non-meager set?

Theorem (Bartoszynski,Shelah)

It is consistent with ZFC that every uncountable set of reals can
be mapped onto a non-null set by a uniformly continuous function.

Lemma

There exists a proper forcing notion P which adds an uniformly
continuous function F : 2ω −→ 2ω such that if X ⊆ V ∩ 2ω, X ∈ V
and X 6∈ SN then in VP, F [X ] + Q = 2ω.
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Definition

We say that a set of reals X is strongly meager (X ∈ SM) if
X ∈ N ?, that is for every G ∈ N , X + G 6= 2ω.
Dual Borel Conjecture DBC says that N ? = [R]≤ℵ0 .

Theorem (Carlson)

Dual Borel Conjecture is consistent with ZFC. In particular DBC
implies BC(cov(N )).

Definition

We say that a sequence of clopen subsets of 2ω, {Cn : n ∈ ω} is
big over N, if

1 Cn’s have pairwise disjoint supports,

2 µ(Cn) ≤ 2−n for n ∈ ω,

3 for every infinite set X ⊆ 2ω, X ∈ N, there exists infinitely
many n such that X + Cn = 2ω.
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The following are used in all constructions of the models for DBC
— one needs a forcing notion P which satisfies a strong form of
ccc and adds a big sequence.
The following is the key observation.

Theorem (Lorenz )

For every ε > 0 and a sufficiently large finite set I ⊂ ω there exists
Nε ∈ ω (not depending on I ) such that if X ⊆ 2I , |X | ≥ Nε then

there exists a set C ⊆ 2I ,
|C |
2|I |

≤ ε and C + X = 2I .
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Towards Borel Conjecture+ Dual Borel Conjecture consider a
smaller goal: to construct a model for DBC without adding Cohen
reals.
The key fact is the following strengthening of the Lorenz Theorem.

Theorem (Bartoszynski, Shelah)

For every ε, δ > 0 and a sufficiently large finite set I ⊆ ω there
exists Nε,δ ∈ ω (not depending on I ) and a family AI consisting of

sets C ⊆ 2I ,
|C |
2|I |

≤ ε such that if X ⊆ 2I , |X | ≥ Nε,δ then∣∣{C ∈ AI : C + X = 2I
}∣∣

|AI |
≥ 1− δ.
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This allows us to construct a forcing notion which preserves
non-null sets and adds a big sequence.
Next using ♦ for a given uncountable set of reals we can find a
subforcing PX such that

1 PX is ccc,

2 VPX |= V ∩ 2ω 6∈ N ∪M
3 VPX |= X 6∈ SM.

We will build the required forcing as a increasing chain of
approximations {Pα : α < ω1} and put PX =

⋃
α<ω1

Pα. In order
to guarantee that PX satisfies ccc we will use an oracle that will
tell us that whenever A is a maximal antichain in P then A is
frozen at some stage α.
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Thus we will have two disjoint stationary sets S0 and S1 and a
sequence of countable models {Mα : α ∈ S0 ∪ S1} which witness ♦
on S0 and S1.
We will be making two types of commitment by requiring that for
stationary many α:

1 If A ∈ Mα is a maximal antichain in Pα then A is a maximal
antichain P},

2 
P xα is random over Mα[Ġ ]} for a fixed set
Y = {xα : α ∈ S} such that xα is random over Mα.
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The forcing P will be constructed from ω1 × ω2 countable pieces.
The ω2 axis will correspond to the ω2-iteration while the ω1 axis
will correspond to the single task of making a given ℵ1-set not
strongly meager. In general, Pα+1 will be of the form Pα ? PX .
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New type of iteration:
instead of preservation theorems we have commitments.
The task at the limit step will be to extend the construction rather
than to prove a preservation theorem.
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