Borel Conjecture(s)

Tomek Bartoszynski
National Science Foundation

November 8, 2007

Consider dychotomy:

countable vessus uncountable

GOAl: (In ZFC and beyond) to describe uncountable as a positive statement witnessed by a simple object.

Consider dychotomy:

countable vessus uncountable

GOA1: (In ZFC and beyond) to describe uncountable as a positive statement witnessed by a simple object.

A continuous function $f: K \longrightarrow \mathbf{R}$ is nowhere constant if f is not constant on any non-empty open subset of K.

A continuous function $f: K \longrightarrow \mathbf{R}$ is nowhere constant if f is not constant on any non-empty open subset of K.

Definition

A set $X \subset \mathbf{R}$ is universally meager if $f^{-1}(X)$ is meager in K for any continuous nowhere constant function $f: K \longrightarrow \mathbf{R}$, where K is a Baire space.

This is a variation on the notion of universally Baire in which we require that $f^{-1}(X)$ has the Baire property. All universally meager sets are universally Baire, and so they have the usual regularity properties.

Theorem (Todorcevic)
Assume that there exists a compact cardinal. Then $X \subset R$ is universally meager iff X is countable.

A continuous function $f: K \longrightarrow \mathbf{R}$ is nowhere constant if f is not constant on any non-empty open subset of K.

Definition

A set $X \subset \mathbf{R}$ is universally meager if $f^{-1}(X)$ is meager in K for any continuous nowhere constant function $f: K \longrightarrow \mathbf{R}$, where K is a Baire space.

This is a variation on the notion of universally Baire in which we require that $f^{-1}(X)$ has the Baire property. All universally meager sets are universally Baire, and so they have the usual regularity properties.

Theorem (Todorcevic)
Assume that there exists a compact cardinal. Then $X \subset \mathbf{R}$ is universally meager iff X is countable.

A continuous function $f: K \longrightarrow \mathbf{R}$ is nowhere constant if f is not constant on any non-empty open subset of K.

Definition

A set $X \subset \mathbf{R}$ is universally meager if $f^{-1}(X)$ is meager in K for any continuous nowhere constant function $f: K \longrightarrow \mathbf{R}$, where K is a Baire space.

This is a variation on the notion of universally Baire in which we require that $f^{-1}(X)$ has the Baire property. All universally meager sets are universally Baire, and so they have the usual regularity properties.

Theorem (Todorcevic)

Assume that there exists a compact cardinal. Then $X \subset \mathbf{R}$ is universally meager iff X is countable.

Suppose that \mathcal{J} is a translation invariant σ-ideal on \mathbf{R}. Define

Clearly all countable sets of reals are in \mathcal{J}^{\star}

Theorem (Solecki)

There exists a translation invariant σ-ideal \mathcal{J} such that $\mathcal{J}^{\star}=[\mathbf{R}] \leq \aleph_{0}$

Suppose that \mathcal{J} is a translation invariant σ-ideal on \mathbf{R}. Define

$$
\mathcal{J}^{\star}=\left\{X \subset \mathbf{R}: \forall A \in \mathcal{J} X+A=\bigcup_{x \in X}(A+x) \neq \mathbf{R}\right\}
$$

Clearly all countable sets of reals are in \mathcal{J}^{\star}

Theorem (Solecki)

There exists a translation invariant σ-ideal \mathcal{J} such that

Suppose that \mathcal{J} is a translation invariant σ-ideal on \mathbf{R}. Define

$$
\mathcal{J}^{\star}=\left\{X \subset \mathbf{R}: \forall A \in \mathcal{J} X+A=\bigcup_{x \in X}(A+x) \neq \mathbf{R}\right\}
$$

Clearly all countable sets of reals are in \mathcal{J}^{\star}.

Theorem (Solecki)

There exists a translation invariant σ-ideal \mathcal{J} such that

Suppose that \mathcal{J} is a translation invariant σ-ideal on \mathbf{R}. Define

$$
\mathcal{J}^{\star}=\left\{X \subset \mathbf{R}: \forall A \in \mathcal{J} X+A=\bigcup_{x \in X}(A+x) \neq \mathbf{R}\right\}
$$

Clearly all countable sets of reals are in \mathcal{J}^{\star}.

Theorem (Solecki)

There exists a translation invariant σ-ideal \mathcal{J} such that $\mathcal{J}^{\star}=[\mathbf{R}]^{\leq \aleph_{0}}$.

Definition (Blass)

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$, where A is a binary relation between A_{-}and A_{+}.

$$
\begin{gathered}
\mathfrak{o}(\mathbf{A})=\left\{Z \subseteq A_{+}: \forall x \in A_{-} \exists z \in Z A(x, z)\right\} \\
\mathfrak{b}(\mathbf{A})=\left\{Z \subseteq A_{-}: \forall y \in A_{+} \exists z \in Z \neg A(z, y)\right\} . \\
\|\mathbf{A}\|=\min \{|Z|: Z \in \mathfrak{d}(\mathbf{A})\} .
\end{gathered}
$$

Define $\mathbf{A}^{\perp}=\left(A_{+}, A_{-}, A^{\perp}\right)$, where $A^{\perp}=\{(z, x): \neg A(x, z)\}$. Note that $\mathfrak{b}(\mathbf{A})=\mathfrak{d}\left(\mathbf{A}^{\perp}\right)$.

Note that $\|\mathbf{A}\|$ is the smallest size of the "dominating" family in A_{+}and $\left\|\mathbf{A}^{\perp}\right\|$ is the smallest size of the "unbounded" family in A

Definition (Blass)

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$, where A is a binary relation between A_{-}and A_{+}.
Let

$$
\mathfrak{d}(\mathbf{A})=\left\{Z \subseteq A_{+}: \forall x \in A_{-} \exists z \in Z A(x, z)\right\} .
$$

$$
\mathfrak{b}(\mathbf{A})=\left\{Z \subseteq A_{-}: \forall y \in A_{+} \exists z \in Z \neg A(z, y)\right\}
$$

$$
\|\mathbf{A}\|=\min \{|Z|: Z \in \mathfrak{o}(\mathbf{A})\} .
$$

Define $\mathbf{A}^{\perp}=\left(A_{+}, A_{-}, A^{\perp}\right)$, where $A^{\perp}=\{(z, x): \neg A(x, z)\}$. Note that $\mathfrak{b}(\mathbf{A})=\mathfrak{d}\left(\mathbf{A}^{\perp}\right)$.

Note that $\|\mathbf{A}\|$ is the smallest size of the "dominating" family in A_{+}and $\left\|\mathbf{A}^{\perp}\right\|$ is the smallest size of the "unbounded" family in A^{-}

Definition (Blass)

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$, where A is a binary relation between A_{-}and A_{+}.
Let

$$
\begin{aligned}
& \mathfrak{d}(\mathbf{A})=\left\{Z \subseteq A_{+}: \forall x \in A_{-} \exists z \in Z A(x, z)\right\} . \\
& \mathfrak{b}(\mathbf{A})=\left\{Z \subseteq A_{-}: \forall y \in A_{+} \exists z \in Z \neg A(z, y)\right\} .
\end{aligned}
$$

$$
\|\mathbf{A}\|=\min \{|Z|: Z \in \mathfrak{o}(\mathbf{A})\} .
$$

Define $\mathbf{A}^{\perp}=\left(A_{+}, A_{-}, A^{\perp}\right)$, where $A^{\perp}=\{(z, x): \neg A(x, z)\}$. Note that $\mathfrak{b}(\mathbf{A})=\mathfrak{d}\left(\mathbf{A}^{\perp}\right)$.

Note that $\|\mathbf{A}\|$ is the smallest size of the "dominating" family in A_{+}and $\left\|\mathbf{A}^{\perp}\right\|$ is the smallest size of the "unbounded" family in A^{-}

Definition (Blass)

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$, where A is a binary relation between A_{-}and A_{+}.
Let

$$
\begin{aligned}
& \mathfrak{d}(\mathbf{A})=\left\{Z \subseteq A_{+}: \forall x \in A_{-} \exists z \in Z A(x, z)\right\} . \\
& \mathfrak{b}(\mathbf{A})=\left\{Z \subseteq A_{-}: \forall y \in A_{+} \exists z \in Z \neg A(z, y)\right\} .
\end{aligned}
$$

$$
\|\mathbf{A}\|=\min \{|Z|: Z \in \mathfrak{d}(\mathbf{A})\}
$$

Define $\mathbf{A}^{\perp}=\left(A_{+}, A_{-}, A^{\perp}\right)$, where $A^{\perp}=\{(z, x): \neg A(x, z)\}$. Note that $\mathfrak{b}(\mathbf{A})$

Note that $\|\mathbf{A}\|$ is the smallest size of the "dominating" family in A_{+}and $\left\|\mathbf{A}^{\perp}\right\|$ is the smallest size of the "unbounded" family in A^{-}

Definition (Blass)

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$, where A is a binary relation between A_{-}and A_{+}.
Let

$$
\begin{aligned}
& \mathfrak{d}(\mathbf{A})=\left\{Z \subseteq A_{+}: \forall x \in A_{-} \exists z \in Z A(x, z)\right\} . \\
& \mathfrak{b}(\mathbf{A})=\left\{Z \subseteq A_{-}: \forall y \in A_{+} \exists z \in Z \neg A(z, y)\right\} .
\end{aligned}
$$

$$
\|\mathbf{A}\|=\min \{|Z|: Z \in \mathfrak{d}(\mathbf{A})\} .
$$

Define $\mathbf{A}^{\perp}=\left(A_{+}, A_{-}, A^{\perp}\right)$, where $A^{\perp}=\{(z, x): \neg A(x, z)\}$.

Note that $\|\mathbf{A}\|$ is the smallest size of the "dominating" family in

 A_{+}and $\left\|\mathbf{A}^{\perp}\right\|$ is the smallest size of the "unbounded" family in A
Definition (Blass)

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$, where A is a binary relation between A_{-}and A_{+}.
Let

$$
\begin{aligned}
& \mathfrak{d}(\mathbf{A})=\left\{Z \subseteq A_{+}: \forall x \in A_{-} \exists z \in Z A(x, z)\right\} . \\
& \mathfrak{b}(\mathbf{A})=\left\{Z \subseteq A_{-}: \forall y \in A_{+} \exists z \in Z \neg A(z, y)\right\} .
\end{aligned}
$$

$$
\|\mathbf{A}\|=\min \{|Z|: Z \in \mathfrak{d}(\mathbf{A})\} .
$$

Define $\mathbf{A}^{\perp}=\left(A_{+}, A_{-}, A^{\perp}\right)$, where $A^{\perp}=\{(z, x): \neg A(x, z)\}$. Note that $\mathfrak{b}(\mathbf{A})=\mathfrak{d}\left(\mathbf{A}^{\perp}\right)$.

Note that $\|\mathbf{A}\|$ is the smallest size of the "dominating" family in A_{+}and $\left\|\mathbf{A}^{\perp}\right\|$ is the smallest size of the "unbounded" family in A

Definition (Blass)

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$, where A is a binary relation between A_{-}and A_{+}.
Let

$$
\begin{gathered}
\mathfrak{d}(\mathbf{A})=\left\{Z \subseteq A_{+}: \forall x \in A_{-} \exists z \in Z A(x, z)\right\} \\
\mathfrak{b}(\mathbf{A})=\left\{Z \subseteq A_{-}: \forall y \in A_{+} \exists z \in Z \neg A(z, y)\right\} . \\
\|\mathbf{A}\|=\min \{|Z|: Z \in \mathfrak{d}(\mathbf{A})\} .
\end{gathered}
$$

Define $\mathbf{A}^{\perp}=\left(A_{+}, A_{-}, A^{\perp}\right)$, where $A^{\perp}=\{(z, x): \neg A(x, z)\}$. Note that $\mathfrak{b}(\mathbf{A})=\mathfrak{d}\left(\mathbf{A}^{\perp}\right)$.

Note that $\|\mathbf{A}\|$ is the smallest size of the "dominating" family in A_{+}and $\left\|\mathbf{A}^{\perp}\right\|$ is the smallest size of the "unbounded" family in A_{-}.

For an ideal \mathcal{J} of subsets of \mathbf{R} we have:

- $\operatorname{cof}(\mathcal{J})=\|(\mathcal{J}, \mathcal{J}, \subseteq)\|$,
- $\operatorname{add}(\mathcal{J})=\left\|(\mathcal{J}, \mathcal{J}, \subseteq)^{\perp}\right\|=\|(\mathcal{J}, \mathcal{J}, \nsupseteq)\|$,
- $\operatorname{cov}(\mathcal{J})=\|(\mathbf{R}, \mathcal{J}, \in)\|$,
- $\operatorname{non}(\mathcal{J})=\left\|(\mathbf{R}, \mathcal{J}, \in)^{\perp}\right\|=\|(\mathcal{J}, \mathbf{R}, \not \supset)\|$.

Let

For an ideal \mathcal{J} of subsets of \mathbf{R} we have:

- $\operatorname{cof}(\mathcal{J})=\|(\mathcal{J}, \mathcal{J}, \subseteq)\|$,
- $\operatorname{add}(\mathcal{J})=\left\|(\mathcal{J}, \mathcal{J}, \subseteq)^{\perp}\right\|=\|(\mathcal{J}, \mathcal{J}, \nsupseteq)\|$,
- $\operatorname{cov}(\mathcal{J})=\|(\mathbf{R}, \mathcal{J}, \in)\|$,
- $\operatorname{non}(\mathcal{J})=\left\|(\mathbf{R}, \mathcal{J}, \in)^{\perp}\right\|=\|(\mathcal{J}, \mathbf{R}, \not \supset)\|$.

For $f, g \in \omega^{\omega}$ we define $f \leq^{\star} g$ if $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.

For an ideal \mathcal{J} of subsets of \mathbf{R} we have:

- $\operatorname{cof}(\mathcal{J})=\|(\mathcal{J}, \mathcal{J}, \subseteq)\|$,
- $\operatorname{add}(\mathcal{J})=\left\|(\mathcal{J}, \mathcal{J}, \subseteq)^{\perp}\right\|=\|(\mathcal{J}, \mathcal{J}, \nsupseteq)\|$,
- $\operatorname{cov}(\mathcal{J})=\|(\mathbf{R}, \mathcal{J}, \in)\|$,
- $\operatorname{non}(\mathcal{J})=\left\|(\mathbf{R}, \mathcal{J}, \in)^{\perp}\right\|=\|(\mathcal{J}, \mathbf{R}, \not \supset)\|$.

For $f, g \in \omega^{\omega}$ we define $f \leq^{\star} g$ if $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.
Let

- $\mathfrak{d}=\left\|\left(\omega^{\omega}, \omega^{\omega}, \leq^{\star}\right)\right\|$,
- $\mathfrak{b}=\left\|\left(\omega^{\omega}, \omega^{\omega}, \leq^{\star}\right)^{\perp}\right\|=\left\|\left(\omega^{\omega}, \omega^{\omega}, \not ¥^{\star}\right)\right\|$.

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$ is given.
$X \subset \mathbf{R}$ is big if there is $f: X \longrightarrow A_{+}$such that
$f[X] \in \mathfrak{o}(\mathbf{A})=\left\{Z \subseteq A_{+}: \forall x \in A_{-} \exists z \in Z A(x, z)\right\}$.
The following observation is obvious:
In $\mathbf{Z F C}+\|\mathbf{A}\|=\aleph_{1}$ we have
X is big $\Longleftrightarrow X$ is uncountable.
To make it interesting we will require that f is Borel/continuous or otherwise definable.

Definition

Suppose that $A=\left(A_{-}, A_{+}, A\right)$ is given.
A Borel Conjecture for $\mathbf{A}(B C(\mathbf{A}))$ is the statement:
$X \subset \mathbf{R}$ is uncountable \Longleftrightarrow there exists a Borel/continuous
$f: X \longrightarrow A_{+}$such that $f[X] \in \mathfrak{o}(\mathbf{A})$

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$ is given. $X \subset \mathbf{R}$ is big if there is $f: X \longrightarrow A_{+}$such that $f[X] \in \mathfrak{d}(\mathbf{A})=\left\{Z \subseteq A_{+}: \forall x \in A_{-} \exists z \in Z A(x, z)\right\}$. The following observation is obvious:
$\ln \mathrm{ZFC}+\|\mathbf{A}\|=\aleph_{1}$ we have X is big $\Longleftrightarrow X$ is uncountable.

To make it interesting we will require that f is Borel/continuous or otherwise definable.

Definition

Suppose that $A=\left(A_{-}, A_{+}, A\right)$ is given.
A Borel Conjecture for $\mathrm{A}(\mathrm{BC}(\mathbf{A}))$ is the statement:
$X \subset \mathbf{R}$ is uncountable \Longleftrightarrow there exists a Borel/continuous $f: X \longrightarrow A_{+}$such that $f[X] \in \mathfrak{o}(\mathbf{A})$

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$ is given.
$X \subset \mathbf{R}$ is big if there is $f: X \longrightarrow A_{+}$such that $f[X] \in \mathfrak{d}(\mathbf{A})=\left\{Z \subseteq A_{+}: \forall x \in A_{-} \exists z \in Z A(x, z)\right\}$.
The following observation is obvious:
In $\mathbf{Z F C}+\|\mathbf{A}\|=\aleph_{1}$ we have
X is big $\Longleftrightarrow X$ is uncountable.

To make it interesting we will require that f is Borel/continuous or otherwise definable.

Definition

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$ is given.
A Borel Conjecture for $\mathbf{A}(B C(\mathbf{A}))$ is the statement:
$X \subset R$ is uncountable \Longleftrightarrow there exists a Borel/continuous such that $f[X] \in \mathfrak{d}(\mathbf{A})$

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$ is given.
$X \subset \mathbf{R}$ is big if there is $f: X \longrightarrow A_{+}$such that
$f[X] \in \mathfrak{d}(\mathbf{A})=\left\{Z \subseteq A_{+}: \forall x \in A_{-} \exists z \in Z A(x, z)\right\}$.
The following observation is obvious:
In ZFC $+\|\mathbf{A}\|=\aleph_{1}$ we have

$$
X \text { is big } \Longleftrightarrow X \text { is uncountable. }
$$

To make it interesting we will require that f is Borel/continuous or otherwise definable.

Definition
Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$ is given. A Borel Conjecture for $\mathbf{A}(B C(\mathbf{A}))$ is the statement: $X \subset R$ is uncountable \Longleftrightarrow there exists a Borel/continuous

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$ is given.
$X \subset \mathbf{R}$ is big if there is $f: X \longrightarrow A_{+}$such that
$f[X] \in \mathfrak{d}(\mathbf{A})=\left\{Z \subseteq A_{+}: \forall x \in A_{-} \exists z \in Z A(x, z)\right\}$.
The following observation is obvious:
In $\mathbf{Z F C}+\|\mathbf{A}\|=\aleph_{1}$ we have

$$
X \text { is big } \Longleftrightarrow X \text { is uncountable. }
$$

To make it interesting we will require that f is Borel/continuous or otherwise definable.

Definition

Suppose that $\mathbf{A}=\left(A_{-}, A_{+}, A\right)$ is given.
A Borel Conjecture for $\mathbf{A}(B C(\mathbf{A}))$ is the statement:
$X \subset \mathbf{R}$ is uncountable \Longleftrightarrow there exists a Borel/continuous
$f: X \longrightarrow A_{+}$such that $f[X] \in \mathfrak{o}(\mathbf{A})$

Let \mathcal{M} and \mathcal{N} be the ideals of meager and Lebesgue measure zero subsets of \mathbf{R}.
The following diagram show that status of Borel Conjecture for the cardinal characteristics from the Cichon's diagram.

Green means that Borel Conjecture is consistent, red that it is not and yellow that the question is open.

Let \mathcal{M} and \mathcal{N} be the ideals of meager and Lebesgue measure zero subsets of \mathbf{R}.
The following diagram show that status of Borel Conjecture for the cardinal characteristics from the Cichon's diagram.

Green means that Borel Conjecture is consistent, red that it is not and yellow that the question is open.

$\mathrm{BC}(\operatorname{cov}(\mathcal{M}))$ is Borel Conjecture (Laver)

$\mathrm{BC}(\operatorname{cov}(\mathcal{M}))$ is Borel Conjecture (Laver)
BC(non $(\mathcal{N}))$ (Bartoszynski-Shelah)

$\mathrm{BC}(\operatorname{cov}(\mathcal{M}))$ is Borel Conjecture (Laver) BC(non $(\mathcal{N}))$ (Bartoszynski-Shelah) $B C(\operatorname{cov}(\mathcal{N}))$ is Dual Borel Conjecture (Carlson)

$\mathrm{BC}(\operatorname{cov}(\mathcal{M}))$ is Borel Conjecture (Laver)
BC(non(N)) (Bartoszynski-Shelah) $\mathrm{BC}(\operatorname{cov}(\mathcal{N}))$ is Dual Borel Conjecture (Carlson) $B C(\mathfrak{b})$ (Miller)

Theorem (Pawlikowski)

Borel Conjecture for $(\mathcal{M}, \mathcal{M}, \subset)$ is false.
If $\operatorname{cof}(\mathcal{M})>\aleph_{1}$ then no \aleph_{1} set is in $\mathfrak{o}((\mathcal{M}, \mathcal{M}, \subset)$. If $\operatorname{cof}(\mathcal{M})=\aleph_{1}$ then there is a Lusin set. No Borel image of a Lusin set is a dominating family (in ω^{ω}) and so it is also not in o $((\mathcal{M}, \mathcal{M}, \subset)$

Theorem (Pawlikowski)

Borel Conjecture for $(\mathcal{M}, \mathcal{M}, \subset)$ is false.
If $\operatorname{cof}(\mathcal{M})>\aleph_{1}$ then no \aleph_{1} set is in $\mathfrak{d}((\mathcal{M}, \mathcal{M}, \subset)$.
$\operatorname{cof}(\mathcal{M})=\aleph_{1}$ then there is a Lusin set. No Borel image of a Lusin set is a dominating family (in ω^{ω}) and so it is also not in $\mathfrak{d}((\mathcal{M}, \mathcal{M}, \subset)$

Theorem (Pawlikowski)

Borel Conjecture for $(\mathcal{M}, \mathcal{M}, \subset)$ is false.
If $\operatorname{cof}(\mathcal{M})>\aleph_{1}$ then no \aleph_{1} set is in $\mathfrak{d}((\mathcal{M}, \mathcal{M}, \subset)$. If $\operatorname{cof}(\mathcal{M})=\aleph_{1}$ then there is a Lusin set. No Borel image of a Lusin

Theorem (Pawlikowski)

Borel Conjecture for $(\mathcal{M}, \mathcal{M}, \subset)$ is false.
If $\operatorname{cof}(\mathcal{M})>\aleph_{1}$ then no \aleph_{1} set is in $\mathfrak{d}((\mathcal{M}, \mathcal{M}, \subset)$. If $\operatorname{cof}(\mathcal{M})=\aleph_{1}$ then there is a Lusin set. No Borel image of a Lusin set is a dominating family (in ω^{ω}) and so it is also not in $\mathfrak{d}((\mathcal{M}, \mathcal{M}, \subset)$.

Theorem (Miller)

Borel Conjecture for \mathfrak{b}, that is $\mathrm{BC}\left(\left(\omega^{\omega}, \omega^{\omega}, \leq^{\star}\right)\right)$, is consistent with ZFC. Specifically, it s consistent that whenever X is uncountable set of reals then there exists a Borel mapping of X onto an unbounded family in ω^{ω}.

This holds in a model where every uncountable set has a subset which is a G_{δ} but not F_{σ}

Conjecture (Hurewicz)

Suppose that $X \subset \mathbf{R}$. The following conditions are equivalent
 -bounded,

Theorem (Just, Miler, Scheepers, Szeptycki)

Hurewicz Conjecture is false. In fact there is a set $X \subset \mathbb{R}$ of size \mathfrak{b}
whose every continuous image into ω^{ω} is bounded

Theorem (Miller)

Borel Conjecture for \mathfrak{b}, that is $\mathrm{BC}\left(\left(\omega^{\omega}, \omega^{\omega}, \leq^{\star}\right)\right)$, is consistent with ZFC. Specifically, it s consistent that whenever X is uncountable set of reals then there exists a Borel mapping of X onto an unbounded family in ω^{ω}.

This holds in a model where every uncountable set has a subset which is a G_{δ} but not F_{σ}.

\square
Hurewicz Conjecture is false. In fact there is a set $X \subset \mathbf{R}$ of size \mathfrak{b}
whose every continuous image into ω^{ω} is bounded

Theorem (Miller)

Borel Conjecture for \mathfrak{b}, that is $\mathrm{BC}\left(\left(\omega^{\omega}, \omega^{\omega}, \leq^{\star}\right)\right)$, is consistent with ZFC. Specifically, it s consistent that whenever X is uncountable set of reals then there exists a Borel mapping of X onto an unbounded family in ω^{ω}.

This holds in a model where every uncountable set has a subset which is a G_{δ} but not F_{σ}.

Conjecture (Hurewicz)

Suppose that $X \subset \mathbf{R}$. The following conditions are equivalent:
(1) For every continuous function $F: X \longrightarrow \omega^{\omega}, F[X]$ is \leq^{\star}-bounded,
(2) X is σ-compact.

[^0]
Theorem (Miller)

Borel Conjecture for \mathfrak{b}, that is $\mathrm{BC}\left(\left(\omega^{\omega}, \omega^{\omega}, \leq^{\star}\right)\right)$, is consistent with ZFC. Specifically, it s consistent that whenever X is uncountable set of reals then there exists a Borel mapping of X onto an unbounded family in ω^{ω}.

This holds in a model where every uncountable set has a subset which is a G_{δ} but not F_{σ}.

Conjecture (Hurewicz)

Suppose that $X \subset \mathbf{R}$. The following conditions are equivalent:
(1) For every continuous function $F: X \longrightarrow \omega^{\omega}, F[X]$ is \leq^{\star}-bounded,
(2) X is σ-compact.

Theorem (Just, Miller, Scheepers, Szeptycki)

Hurewicz Conjecture is false. In fact there is a set $X \subset \mathbf{R}$ of size \mathfrak{b} whose every continuous image into ω^{ω} is bounded.

Definition（Borel）

A metric space X has strong measure zero if for every sequence of positive reals $\left\{\varepsilon_{n}: n \in \omega\right\}$ there exists a sequence $\left\{X_{n}: n \in \omega\right\}$ such that each set X_{n} has diameter $<\varepsilon_{n}$ and $X \subseteq \bigcup_{n \in \omega} X_{n}$ ． Let $\mathcal{S N}$ be the collection of all strong measure zero sets．

Theorem（Laver）
 Borel Conjecture is consistent with ZFC．In particular BC implies BC（ $\operatorname{cov}(\mathcal{M}))$

Theorem

The following are equivalent for $X \subset 2$
（2）$X \in \mathcal{M}^{\star}$ ，that is for every $F \in \mathcal{M}, X+F \neq 2^{\omega}$（Galvin， Mycielski，Solovay），
© $X+E \in \mathcal{N}$ for every closed measure zero set $E \subset 2^{\omega}$ （Pawlikowski）．

Definition (Borel)

A metric space X has strong measure zero if for every sequence of positive reals $\left\{\varepsilon_{n}: n \in \omega\right\}$ there exists a sequence $\left\{X_{n}: n \in \omega\right\}$ such that each set X_{n} has diameter $<\varepsilon_{n}$ and $X \subseteq \bigcup_{n \in \omega} X_{n}$. Let $\mathcal{S N}$ be the collection of all strong measure zero sets.

Theorem (Laver)

Borel Conjecture is consistent with ZFC. In particular BC implies $B C(\operatorname{cov}(\mathcal{M}))$.

```
Theorem
The following are equivalent for }X\subset
(1) }X\in\mathcal{SN
(2) }X\in\mp@subsup{\mathcal{M}}{}{\star}\mathrm{ , that is for every }F\in\mathcal{M},X+F\not=\mp@subsup{2}{}{\omega}\mathrm{ (Galvin,
Mycielski,Solovay),
0}X+E\in\mathcal{N}\mathrm{ for every closed measure zero set E }\subset\mp@subsup{2}{}{\omega
(Pawlikowski)
```


Definition (Borel)

A metric space X has strong measure zero if for every sequence of positive reals $\left\{\varepsilon_{n}: n \in \omega\right\}$ there exists a sequence $\left\{X_{n}: n \in \omega\right\}$ such that each set X_{n} has diameter $<\varepsilon_{n}$ and $X \subseteq \bigcup_{n \in \omega} X_{n}$. Let $\mathcal{S N}$ be the collection of all strong measure zero sets.

Theorem (Laver)

Borel Conjecture is consistent with ZFC. In particular BC implies $B C(\operatorname{cov}(\mathcal{M}))$.

Theorem

The following are equivalent for $X \subset 2^{\omega}$:
(1) $X \in \mathcal{S N}$,
(3) $X+E \in \mathcal{N}$ for every closed measure zero set $E \subset 2^{\omega}$

Definition (Borel)

A metric space X has strong measure zero if for every sequence of positive reals $\left\{\varepsilon_{n}: n \in \omega\right\}$ there exists a sequence $\left\{X_{n}: n \in \omega\right\}$ such that each set X_{n} has diameter $<\varepsilon_{n}$ and $X \subseteq \bigcup_{n \in \omega} X_{n}$. Let $\mathcal{S N}$ be the collection of all strong measure zero sets.

Theorem (Laver)

Borel Conjecture is consistent with ZFC. In particular BC implies $B C(\operatorname{cov}(\mathcal{M}))$.

Theorem

The following are equivalent for $X \subset 2^{\omega}$:
(1) $X \in \mathcal{S N}$,
(2) $X \in \mathcal{M}^{\star}$, that is for every $F \in \mathcal{M}, X+F \neq 2^{\omega}$ (Galvin, Mycielski, Solovay),
(3) $X+E \in \mathcal{N}$ for every closed measure zero set $E \subset 2^{\omega}$ (Pawlikowski)

Definition (Borel)

A metric space X has strong measure zero if for every sequence of positive reals $\left\{\varepsilon_{n}: n \in \omega\right\}$ there exists a sequence $\left\{X_{n}: n \in \omega\right\}$ such that each set X_{n} has diameter $<\varepsilon_{n}$ and $X \subseteq \bigcup_{n \in \omega} X_{n}$. Let $\mathcal{S N}$ be the collection of all strong measure zero sets.

Theorem (Laver)

Borel Conjecture is consistent with ZFC. In particular BC implies $B C(\operatorname{cov}(\mathcal{M}))$.

Theorem

The following are equivalent for $X \subset 2^{\omega}$:
(1) $X \in \mathcal{S N}$,
(2) $X \in \mathcal{M}^{\star}$, that is for every $F \in \mathcal{M}, X+F \neq 2^{\omega}$ (Galvin, Mycielski, Solovay),
(3) $X+E \in \mathcal{N}$ for every closed measure zero set $E \subset 2^{\omega}$ (Pawlikowski).

These properties make sense in the general context of an abelian Polish group.

Theorem (Miler, Steprans)

consistent that $\kappa_{2} \omega<\kappa_{Z \omega}$

Theorem (Elekes)

Suppose that \mathbf{G} is locally compact Polish group and \mathcal{E} is the ideal of compact null subsets of \mathbf{G}. Then
$\lambda_{G}=\min \{|X|: X \subset G \& \exists E \in \mathcal{E} X+E=\mathbf{G}\}$ does not depend
on \mathbf{G}.
There are also several generally non-equivalent statements capturing the idea of strong measure zero (property C, C', Rothberger property)

These properties make sense in the general context of an abelian Polish group.

Theorem (Miller, Steprans)
 Let $\kappa_{G}=\min \{|X|: X \subset \mathbf{G} \& \exists F \in \mathcal{M} X+F=\mathbf{G}\}$. It is consistent that $\kappa_{2 \omega}<\kappa_{Z^{\omega}}$.

Theorem (Elekes)

Suppose that \mathbf{G} is locally compact Polish group and \mathcal{E} is the ideal
of compact null subsets of G . Then
$\lambda_{G}=\min \{|X|: X \subset \mathbf{G} \& \exists E \in \mathcal{E} X+E=\mathbf{G}\}$ does not depend
on \mathbf{G}.
There are also several generally non-equivalent statements capturing the idea of strong measure zero (property C, C', Rothberger property)

These properties make sense in the general context of an abelian Polish group.

Theorem (Miller, Steprans)

Let $\kappa_{G}=\min \{|X|: X \subset \mathbf{G} \& \exists F \in \mathcal{M} X+F=\mathbf{G}\}$. It is consistent that $\kappa_{2} \omega<\kappa_{Z^{\omega}}$.

Theorem (Elekes)

Suppose that \mathbf{G} is locally compact Polish group and \mathcal{E} is the ideal of compact null subsets of \mathbf{G}. Then
$\lambda_{G}=\min \{|X|: X \subset \mathbf{G} \& \exists E \in \mathcal{E} X+E=\mathbf{G}\}$ does not depend on \mathbf{G}.

There are also several generally non-equivalent statements capturing the idea of strong measure zero (property C, C^{\prime}, Rothberger property)

These properties make sense in the general context of an abelian Polish group.

Theorem (Miller, Steprans)

Let $\kappa_{G}=\min \{|X|: X \subset \mathbf{G} \& \exists F \in \mathcal{M} X+F=\mathbf{G}\}$. It is consistent that $\kappa_{2} \omega<\kappa_{Z^{\omega}}$.

Theorem (Elekes)

Suppose that \mathbf{G} is locally compact Polish group and \mathcal{E} is the ideal of compact null subsets of \mathbf{G}. Then
$\lambda_{G}=\min \{|X|: X \subset \mathbf{G} \& \exists E \in \mathcal{E} X+E=\mathbf{G}\}$ does not depend on \mathbf{G}.

There are also several generally non-equivalent statements capturing the idea of strong measure zero (property C, C', Rothberger property).

Lemma

Let \mathbf{m} be Laver real over \mathbf{V}. Let $\left\{s_{n}: n \in \omega\right\} \in \mathbf{V}[\mathbf{m}]$ be such that for all $n \in \omega, s_{n} \in 2^{[\mathbf{m}(n), \mathbf{m}(n+1))}$.
Then in $\mathbf{V}[\mathbf{m}], \mid\left\{x \in \mathbf{V} \cap 2^{\omega}: \exists{ }^{\infty} n s_{n} \subset x \mid \leq \aleph_{0}\right.$.

Lemma

Let \mathbf{m} be Laver real over \mathbf{V}. Let $\left\{s_{n}: n \in \omega\right\} \in \mathbf{V}[\mathbf{m}]$ be such that for all $n \in \omega, s_{n} \in 2^{[\mathbf{m}(n), \mathbf{m}(n+1))}$.
Then in $\mathbf{V}[\mathbf{m}], \mid\left\{x \in \mathbf{V} \cap 2^{\omega}: \exists^{\infty} n s_{n} \subset x \mid \leq \aleph_{0}\right.$.
Thus, if $X \subset 2^{\omega}$ is uncountable then in $\mathbf{V}[\mathbf{m}] \vDash X \notin \mathcal{S N}$.

Question
Is is consistent with ZFC that every uncountable set of reals can be Borel mapped onto a non-meager set?

Theorem (Bartoszynski,Shelah)
 It is consistent with ZFC that every uncountable set of reals can be mapped onto a non-null set by a uniformly continuous function

Lemma

There exists a proper forcing notion \mathbb{P} which adds an uniformly continuous function $F: 2^{\omega} \longrightarrow 2^{\omega}$ such that if $X \subseteq \mathbf{V} \cap 2^{\omega}, X \in \mathbf{V}$ and $X \notin \mathcal{S N}$ then in $\mathbf{V}^{\mathbb{P}}, F[X]+\mathbb{Q}=2^{\omega}$

Question

Is is consistent with ZFC that every uncountable set of reals can be Borel mapped onto a non-meager set?

Theorem (Bartoszynski,Shelah)
 It is consistent with ZFC that every uncountable set of reals can be mapped onto a non-null set by a uniformly continuous function.

Lemma

There exists a proper forcing notion \mathbb{P} which adds an uniformly continuous function F and $X \notin \mathcal{S N}$ then in $\mathbf{V}^{\mathbb{B}}$ $F[X]+\mathbb{Q}=2^{\omega}$

Question

Is is consistent with ZFC that every uncountable set of reals can be Borel mapped onto a non-meager set?

Theorem (Bartoszynski,Shelah)

It is consistent with ZFC that every uncountable set of reals can be mapped onto a non-null set by a uniformly continuous function.

Lemma

There exists a proper forcing notion \mathbb{P} which adds an uniformly continuous function $F: 2^{\omega} \longrightarrow 2^{\omega}$ such that if $X \subseteq \mathbf{V} \cap 2^{\omega}, X \in \mathbf{V}$ and $X \notin \mathcal{S N}$ then in $\mathbf{V}^{\mathbb{P}}, F[X]+\mathbb{Q}=2^{\omega}$.

Question

Is is consistent with ZFC that every uncountable set of reals can be Borel mapped onto a non-meager set?

Theorem (Bartoszynski,Shelah)

It is consistent with ZFC that every uncountable set of reals can be mapped onto a non-null set by a uniformly continuous function.

Lemma

There exists a proper forcing notion \mathbb{P} which adds an uniformly continuous function $F: 2^{\omega} \longrightarrow 2^{\omega}$ such that if $X \subseteq \mathbf{V} \cap 2^{\omega}, X \in \mathbf{V}$ and $X \notin \mathcal{S N}$ then in $\mathbf{V}^{\mathbb{P}}, F[X]+\mathbb{Q}=2^{\omega}$.

Definition

We say that a set of reals X is strongly meager $(X \in \mathcal{S M})$ if $X \in \mathcal{N}^{\star}$, that is for every $G \in \mathcal{N}, X+G \neq 2^{\omega}$.
Dual Borel Conjecture DBC says that $\mathcal{N}^{\star}=[\mathbf{R}]^{\leq \aleph_{0}}$.

Theorem (Carlson)

Dual Borel Conjecture is consistent with ZFC. In particular DBC implies $\mathrm{BC}(\operatorname{cov}(\mathcal{N}))$.

Definition

We say that a sequence of clopen subsets of $2^{\omega},\left\{C_{n}: n \in \omega\right\}$ is big over N, if
(1) C_{n} 's have pairwise disjoint supports,
(2) $\mu\left(C_{n}\right) \leq 2^{-n}$ for $n \in \omega$,
(3) for every infinite set $X \subseteq 2^{\omega}, X \in N$, there exists infinitely many n such that $X+C_{n}=2^{\omega}$

Definition

We say that a set of reals X is strongly meager $(X \in \mathcal{S M})$ if $X \in \mathcal{N}^{\star}$, that is for every $G \in \mathcal{N}, X+G \neq 2^{\omega}$.
Dual Borel Conjecture DBC says that $\mathcal{N}^{\star}=[\mathbf{R}]^{\leq \aleph_{0}}$.

Theorem (Carlson)

Dual Borel Conjecture is consistent with ZFC. In particular DBC implies $\mathrm{BC}(\operatorname{cov}(\mathcal{N}))$.

Definition

We say that a sequence of clopen subsets of $2^{\omega},\left\{C_{n}: n \in \omega\right\}$ is big over N, if
(1) C_{n} 's have pairwise disjoint supports,
(2) $\mu\left(C_{n}\right) \leq 2^{-n}$ for $n \in \omega$,
(3) for every infinite set $X \subseteq 2^{\omega}, X \in N$, there exists infinitely many n such that $X+C_{n}=2^{\omega}$.

The following are used in all constructions of the models for DBC - one needs a forcing notion \mathbb{P} which satisfies a strong form of ccc and adds a big sequence.

The following are used in all constructions of the models for DBC - one needs a forcing notion \mathbb{P} which satisfies a strong form of ccc and adds a big sequence.
The following is the key observation.

Theorem (Lorenz)

For every $\varepsilon>0$ and a sufficiently large finite set $I \subset \omega$ there exists $N_{\varepsilon} \in \omega$ (not depending on I) such that if $X \subseteq 2^{\prime},|X| \geq N_{\varepsilon}$ then there exists a set $C \subseteq 2^{\prime}, \frac{|C|}{2^{|l|}} \leq \varepsilon$ and $C+X=2^{\prime}$.

Towards Borel Conjecture+ Dual Borel Conjecture consider a smaller goal: to construct a model for DBC without adding Cohen reals.
 The key fact is the following strengthening of the Lorenz Theorem.

Theorem (Bartoszynski, Shelah)

Towards Borel Conjecture+ Dual Borel Conjecture consider a

 smaller goal: to construct a model for DBC without adding Cohen reals.The key fact is the following strengthening of the Lorenz Theorem.

Towards Borel Conjecture+ Dual Borel Conjecture consider a smaller goal: to construct a model for DBC without adding Cohen reals.
The key fact is the following strengthening of the Lorenz Theorem.

Theorem (Bartoszynski, Shelah)

For every $\varepsilon, \delta>0$ and a sufficiently large finite set I $\subseteq \omega$ there exists $N_{\varepsilon, \delta} \in \omega$ (not depending on I) and a family \mathcal{A}_{I} consisting of sets $C \subseteq 2^{\prime}, \frac{|C|}{2^{|l|}} \leq \varepsilon$ such that if $X \subseteq 2^{\prime},|X| \geq N_{\varepsilon, \delta}$ then

$$
\frac{\left|\left\{C \in \mathcal{A}_{l}: C+X=2^{\prime}\right\}\right|}{\left|\mathcal{A}_{l}\right|} \geq 1-\delta
$$

This allows us to construct a forcing notion which preserves non-null sets and adds a big sequence.

This allows us to construct a forcing notion which preserves non-null sets and adds a big sequence.
Next using \diamond for a given uncountable set of reals we can find a subforcing \mathbb{P}_{X} such that
(1) \mathbb{P}_{X} is ccc ,
(2) $\mathbf{V}^{\mathbb{P}_{x}} \models \mathbf{V} \cap 2^{\omega} \notin \mathcal{N} \cup \mathcal{M}$
(3) $\mathbf{V}^{\mathbb{P}_{x}}=X \notin \mathcal{S} \mathcal{M}$.

We will build the required forcing as a increasing chain of approximations $\left\{\mathbb{P}_{\alpha}: \alpha<\omega_{1}\right\}$ and put $\mathbb{P}_{X}=\bigcup_{\alpha<\omega_{1}} \mathbb{P}_{\alpha}$. In order to guarantee that \mathbb{P}_{X} satisfies ccc we will use an oracle that will tell us that whenever \mathcal{A} is a maximal antichain in \mathbb{P} then \mathcal{A} is frozen at some stage α.

This allows us to construct a forcing notion which preserves non-null sets and adds a big sequence.
Next using \diamond for a given uncountable set of reals we can find a subforcing \mathbb{P}_{X} such that
(1) \mathbb{P}_{X} is ccc,
(2) $\mathbf{V}^{\mathbb{P}_{x}} \models \mathbf{V} \cap 2^{\omega} \notin \mathcal{N} \cup \mathcal{M}$
(3) $\mathbf{V}^{\mathbb{P}_{x}} \neq X \notin \mathcal{S} \mathcal{M}$.

We will build the required forcing as a increasing chain of approximations $\left\{\mathbb{P}_{\alpha}: \alpha<\omega_{1}\right\}$ and put $\mathbb{P}_{X}=\bigcup_{\alpha<\omega_{1}} \mathbb{P}_{\alpha}$. In order to guarantee that \mathbb{P}_{X} satisfies ccc we will use an oracle that will tell us that whenever \mathcal{A} is a maximal antichain in \mathbb{P} then \mathcal{A} is frozen at some stage α.

Thus we will have two disjoint stationary sets S_{0} and S_{1} and a sequence of countable models $\left\{M_{\alpha}: \alpha \in S_{0} \cup S_{1}\right\}$ which witness \diamond on S_{0} and S_{1}.
We will be making two types of commitment by requiring that for stationary many α :
(1) If $\mathcal{A} \in M_{\alpha}$ is a maximal antichain in \mathbb{P}_{α} then \mathcal{A} is a maximal antichain $\mathbb{P}\}$,
(2) $\vdash_{\mathbb{P}} x_{\alpha}$ is random over $\left.M_{\alpha}[\dot{G}]\right\}$ for a fixed set $Y=\left\{x_{\alpha}: \alpha \in S\right\}$ such that x_{α} is random over M_{α}.

The forcing \mathbb{P} will be constructed from $\omega_{1} \times \omega_{2}$ countable pieces. The ω_{2} axis will correspond to the ω_{2}-iteration while the ω_{1} axis will correspond to the single task of making a given \aleph_{1}-set not strongly meager. In general, $\mathbb{P}_{\alpha+1}$ will be of the form $\mathbb{P}_{\alpha} \star \mathbb{P}_{X}$.

New type of iteration:
instead of preservation theorems we have commitments.
The task at the limit step will be to extend the construction rather than to prove a preservation theorem.

[^0]: Theorem (Just, Miller, Scheepers, Szeptycki)
 Hurewicz Conjecture is false. In fact there is a set $X \subset \mathbf{R}$ of size \mathfrak{b} whose every continuous image into ω^{ω} is bounded

