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» Recent research by Egnor et al. [2001] and others suggest
that CSF pulsations may be an important factor in the
pathogenesis of hydrocephalus.
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Overview

» Recent research by Egnor et al. [2001] and others suggest
that CSF pulsations may be an important factor in the
pathogenesis of hydrocephalus.

» The goal is to determine if these pulsations are mechanically
relevant to the development of hydrocephalus.

» My tools include a one-compartment CSF model and a
poroelastic thick-walled cylinder brain parenchyma model.

» The poroelastic model provides a time- and space-dependent
analysis of the pulsations which demonstrate the mechanical
effects the pulsations have on the parenchyma.



The One-Compartment CSF Model

This is an extension of the one-compartment model described in
Sivaloganathan et al. [1998].
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By the principle of conservation of mass, assuming CSF to be
incompressible, the governing equation can be written as:

rate of volume \ [ rate of CSF [ rate of CSF (1)
change in time )/  \ formation absorption /°



Since intracranial volume depends on pressure,

V(t) = V(P(1)),

and in mathematics we write,

rate of volume \ _ dV _ dVdP _ C(P)ﬁ
changeintime /  dt dP dt dt’
where C(P) is the compliance function.
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The One-Compartment CSF Model

The rate of CSF formation is assumed to be in the following form:
rate of CSF \ [ constant rate of n pulsatile rate of
formation ~ U CSF formation CSF formation

= l;e) + asin?(wt), (3)

where a is the displacement of CSF due to blood flow and w is the
angular frequency of the heart beat.



The One-Compartment CSF Model

The rate of CSF formation is assumed to be in the following form:
rate of CSF \ [ constant rate of n pulsatile rate of
formation ~ U CSF formation CSF formation

= l;e) + asin?(wt), (3)

where a is the displacement of CSF due to blood flow and w is the
angular frequency of the heart beat.

Finally, experimental evidence has shown that

rate of CSF 1
< absorption ) - E(P(t) — Pss), (4)

where R, is the resistance to CSF flow and P is the sagittal sinus
pressure.



The One-Compartment CSF Model

Putting all of this together gives a differential equation describing
the pressure in the CSF model:

dp + i(P(t) — Ps) = /)Se) + aSinz(Wt)~ (5)

C(P)E 2

| will consider two cases:

1. the simple case, when compliance is constant: C(P) = Cy,
and

2. when compliance fits the experimental data: C(P) = 5.



Case 1. CSF Model with Constant Compliance

The differential equation

P L Py — 1) asin?
G P —|—Ra(P(t) Pss) = It™ 4 asin®(wt), (6)

together with the initial condition P(t = 0) = Py, has the solution

e aR,4w3 T2 _t
P(t) = (PORQ/,S ) _p, — 0 >

. A— 7’0
2(1 + 4w?73)

1 R
+ [ R + P + SaRs - e
24/1+ 4w?7

aR,

1
+ " sin? (wt -5 tan1(2wTo)> » (7)

\/1+ 4w?7d

where 79 = (R, is the characteristic time.



Case 1. CSF Model with Constant Compliance

Looking at the oscillating term, (remember 79 = GoR5)

R 1
M sin? <wt - 2tan1(2w7'0)> )

1/1+4w27'§

> if R, R << 2w then the resulting phase shift is 7,
> if m = 2w then the resulting phase shift is g, and
> if ﬁ >> 2w then the resulting phase shift is 0,

i.e. the CSF pulsations are synchronous with the forcing.



Typical values of the
parameters for a normal adult
are [Shapiro et al. 1979]:

» P, =122 mm Hg

» R, =2.8 mm Hg/ml/min
» (o =0.85 ml/mm Hg.
Also chosen were

> I,Se) = 0.35 ml/min,

» w = 1407 rad/min, and
» a=2ml/min.
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Case 1. Simulations

Typical values of the press uing Dt o S 1975
parameters for a normal adult
are [Shapiro et al. 1979]:
» P, =122 mm Hg
» R, =2.8 mm Hg/ml/min pressre fmm ] 160
» Cp =0.85 ml/mm Hg.

16.1+

1594

Also chosen were
» /(¥ = 0.35 ml/min,

» w = 1407 rad/min, and ¢ 1 3 3 3

Time [sec]

» a =2 ml/min.

Using these values, the model
predicts pressure pulsations
that would not be visible on
typical ICP measurements.



Case 1. Simulations

Using I;e) = 0.35 ml/min,
Pss = 10 mm Hg, and
w = 1407 rad/min, and
requiring that the:
» pressure pulsations have
peak-to-peak amplitude of
5 mm Hg,
» mean CSF pressure is
13.5 mm Hg, and
» the phase shift is zero
(i.e. synchrony exists)



Case 1. Simulations

Using I;e) = 0.35 ml/min, ey o i At Foeing
Pss = 10 mm Hg, and
w = 1407 rad/min, and
requiring that the:

18+
16

144

» pressure pulsations have Pressue [mm Hg]
peak-to-peak amplitude of 2
5 mm Hg,

» mean CSF pressure is
13.5 mm Hg, and

» the phase shift is zero | Timefs
(i.e. synchrony exists)

results in a waveform consistent with experiments and values of:
» R, =2.86 mm Hg/ml/min
» Cp=3.98-10"% ml/mm Hg, and
» a=1.75 ml/min.



Case 1. Simulations

Time changes in the amplitude of the pulsatile CSF formation
rate (a), the base CSF formation rate (I,Se)), and the resistance to

CSF absorption (R,) may help explain the appearance of plateau or
B waves observed in patients with hydrocephalus.

Example of Production Rate Amplitude I ing to Cause App:
of a B-wave
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Case 2. CSF Model with Experimental Compliance

In 1978, Marmarou et al. determined that the pressure-volume
relationship is exponential, implying that compliance is of the form

1
C=-—
kP’
where 10 is known as the pressure-volume index (PV/).
Pressure-Volume Curve Compliance Function
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Case 2. CSF Model with Experimental Compliance

The governing differential equation now becomes

1 dP 1

F(t)a + E(P(t) — Ps) = /,Se) + asin?(wt), (8)

which is a Riccati equation with solution

Poek(l;e)+%+%)tfﬁasin(2wt)

(t) 1+k%§ ot ek(/;e)—&-%-l-%)s—ﬁasin(&us)ds ©)




Case 2. Simulations

Using parameter values of

R, = 2.8 mm Hg/ml/min [Shapiro 1979]
I,Se) = 0.35 ml/min

k = 23925 mI~1 [Shapiro 1979]

a = 1.75 ml/min

v
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Pressure With Pulsations (a=1.75)
209

the compliance of the
compartment is approximately
0.8 ml/mm Hg

which is too large to allow 1o

pulsations with a peak-to-peak pressue b e \p
amplitude of 5 mm Hg.

T T T 1
0 5 10 15 20
Time [min]



Case 2. Simulations

To decrease compliance, the pressure-volume index must decrease.

Choosing PVI = 0.002 ml gives k = 1151.3 mI~!

which corresponds to a compliance of approximately

C =6.4-107° ml/mm Hg. Setting a = 1.75 ml/min results in a
presure profile with peak-to-peak amplitude of about 5 mm Hg.

Pressure With Pulsations (a=1.75)
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» Using experimentally determined parameter values, the model

does not predict experimentally observed pressure pulsations.
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Conclusions from the One-Compartment Model

» Using experimentally determined parameter values, the model
does not predict experimentally observed pressure pulsations.

» Using much smaller values of compliance, the model
accurately predicts experimentally observed pressure
pulsations.
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(i.e. compare the pressure at the foramen magnum to that of
the subarachnoid space.)



Conclusions from the One-Compartment Model

» Using experimentally determined parameter values, the model
does not predict experimentally observed pressure pulsations.

» Using much smaller values of compliance, the model
accurately predicts experimentally observed pressure
pulsations.

» The model assumes that pressure is equal everywhere in the
compartment which is not true in the cranium,
(i.e. compare the pressure at the foramen magnum to that of
the subarachnoid space.)

» Thus, we need to develop a distributed model, like the
poroelastic model, which allows pressure to vary in space as
well as in time.



Following Kenyon [1976] and Tenti et al. [1999], the model
geometry is a thick walled porous cylinder:

Brain Parenchyma

Ventricle

Skull
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A Poroelastic Model

Applying periodic forcing to the boundaries to simulate the effect
of CSF pulsations on the brain parenchyma results in CSF
oscillating in and out of the parenchyma near the boundaries.

Pressure Profiles 1 millimeter in from Ventricle
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Using the poroelastic model,

» determine if the mechanical effects of the CSF pulsations on
the parenchyma are significant.

«O» «Fr « =)

« =

DA



Future Directions

Using the poroelastic model,

» determine if the mechanical effects of the CSF pulsations on
the parenchyma are significant.

» determine the difference between the CSF pulsations when the
cranium is closed compared to when it is open (i.e. under
surgical conditions).



Future Directions

Using the poroelastic model,

» determine if the mechanical effects of the CSF pulsations on
the parenchyma are significant.

» determine the difference between the CSF pulsations when the
cranium is closed compared to when it is open (i.e. under
surgical conditions).

» extend these ideas to syringomyelia.
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