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Magnetic Resonance Elastography (1)

Problem: Finding material parameters of biological materials in vivo
and map them in an anatomically meaningful image that provides
useful clinical information (elastogram).
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Problem: Finding material parameters of biological materials in vivo
and map them in an anatomically meaningful image that provides
useful clinical information (elastogram).

Applications: Diagnostic tool in finding tumors and other diseases
(tumors tend to be harder than the surrounding normal tissue)
(elastography = ’palpation by imaging’), trauma and surgical
simulations.

In particular: any mathematical model capable to predict the response
of the brain to internal (hydrocephalus) or external (trauma) forces
requires accurate stiffness and attenuation values of the brain.

Imaging modalities:
• ultrasound (sonoelastography or sonoelasticity).
• MRI (magnetic resonance elastography).
• optics (optical elastography).
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Magnetic Resonance Elastography (2)
• We can employ different tissue excitations:

• the tissue is compressed (static elastography) (Ophir et al. 1991, Cespedes

et al. 1993, Krouskop et al. 1998).
• a time harmonic excitation made on the boundary creates a

time harmonic wave in the tissue (dynamic elastography)
(Muthupillai et al. 1995, Lorenzen et al. 2003, Sinkus et al. 2000, Plewes et al. 2000, McKnight et al. 2002,

Dresner et al. 2001).
• a time dependent pulse on the boundary creates a propagating

wave in the tissue (transient elastography) (Catheline et al. 1999,Sandrin et al.

2003).
• the use of the acoustic radiation force by focusing an ultrasound

beam at a chosen location (remote elastography).
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• We can employ different tissue excitations:

• the tissue is compressed (static elastography) (Ophir et al. 1991, Cespedes

et al. 1993, Krouskop et al. 1998).
• a time harmonic excitation made on the boundary creates a

time harmonic wave in the tissue (dynamic elastography)
(Muthupillai et al. 1995, Lorenzen et al. 2003, Sinkus et al. 2000, Plewes et al. 2000, McKnight et al. 2002,

Dresner et al. 2001).
• a time dependent pulse on the boundary creates a propagating

wave in the tissue (transient elastography) (Catheline et al. 1999,Sandrin et al.

2003).
• the use of the acoustic radiation force by focusing an ultrasound

beam at a chosen location (remote elastography).

• Image different parameters of tissue motion: strain, stress, velocity,
amplitude, phase, vibration, etc.

• Present work: dynamic MR elastography, elastogram of the shear
wave speed.
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Magnetic Resonance Elastography (3)

Dynamic MR Elastography:

• MR images are recorded while a vibrating plate placed on the skin
propagates mechanical shear waves of a known frequency in the
tissue.

• From the images of the motion we estimate the wavelength of the
shear wave.

• The MRI signal contains both amplitude and phase information. In
the linear regime, the phase-difference field is directly proportional
to the displacement field.
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Magnetic Resonance Elastography (3)

Dynamic MR Elastography:

• MR images are recorded while a vibrating plate placed on the skin
propagates mechanical shear waves of a known frequency in the
tissue.

• From the images of the motion we estimate the wavelength of the
shear wave.

• The MRI signal contains both amplitude and phase information. In
the linear regime, the phase-difference field is directly proportional
to the displacement field.

• Once the displacement field is known, we need a constitutive
model for the biological tissues from which to extract the material
parameters (the shear modulus).
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Magnetic Resonance Elastography (4)

Constitutive Assumptions: Biological tissues are locally homogeneous,
isotropic, almost incompressible, linear viscoelastic materials of
density ≈ 1 g/cm3 (Burelew et al., 1980).

• Navier equations for displacements in the frequency domain are:

(Λ(ω) + M(ω))∇
(

∇ · ~U(~x, ω)
)

+ M(ω)∇2~U(~x, ω) = −ω2~U(~x, ω)
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isotropic, almost incompressible, linear viscoelastic materials of
density ≈ 1 g/cm3 (Burelew et al., 1980).

• Navier equations for displacements in the frequency domain are:

(Λ(ω) + M(ω))∇
(

∇ · ~U(~x, ω)
)

+ M(ω)∇2~U(~x, ω) = −ω2~U(~x, ω)

• For biological tissues, Λ >> M (Λ = O(109) Pa, M = O(102
÷ 107) Pa),

M varies strongly with tissue pathology.

• Two reduced forms of Navier equations:
• DI equation: M∇2 ~U = −ω2 ~U

• Curl-DI equation: M∇2(∇× ~U) = −ω2(∇× ~U)

• M can be found using the method of algebraic inversion of
differential equations AIDE (Oliphant et al., 2001).
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Magnetic Resonance Elastography (5)

Problem: longitudinal wave effects (DI equation) and higher order
numerical differentiation (Curl-DI equation) can affect the AIDE
stiffness values.
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Magnetic Resonance Elastography (5)

Problem: longitudinal wave effects (DI equation) and higher order
numerical differentiation (Curl-DI equation) can affect the AIDE
stiffness values.

• Use:
• Potential theory to lower the order of numerical differentiation.
• The curl operator to eliminate the longitudinal effects.

• Motivation comes from the Helmholtz decomposition method:
• Allows the breakup of a vector wave field into its longitudinal

and shear components.
• One can then process only the shear component of the

displacement field.
• Mathematical proof is based on the concept of a potential

vector field.
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Magnetic Resonance Elastography (6)
• Replace the displacement field by its corresponding potential field:

~V (~x) = −
1

4π

∫ ∫ ∫

1

|~x − ~y|
~U(~y)d~y (2D case)
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Magnetic Resonance Elastography (6)
• Replace the displacement field by its corresponding potential field:

~V (~x) = −
1

4π

∫ ∫ ∫

1

|~x − ~y|
~U(~y)d~y (2D case)

• The potential field satisfies the Navier equations and thus:
• PDI equation (analogous to DI equation):

M∇2~U = −ω2~U ⇒ M ~U = −ω2~V

no derivatives

• Curl-PDI equation (analogous to Curl-DI equation):

M∇2(∇× ~U) = −ω2(∇× ~U) ⇒ M(∇× ~U) = −ω2(∇× ~V )

only first order derivatives
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Magnetic Resonance Elastography (7)

Results: We compare DI and Curl-PDI.
• The elastogram is made of the square of the shear wave speed

values, c2

s
, where:

cs(f) =

√

2(Re(M)2 + Im(M)2)

Re(M) +
√

Re(M)2 + Im(M)2
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Magnetic Resonance Elastography (8)

Discussion:
• By using the potential of the displacement field we reduced the

order of numerical differentiation:
• the curl operator can be used;
• more stable results (has the effect of a regularization method

for the inverse problem of elastography).
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Discussion:
• By using the potential of the displacement field we reduced the

order of numerical differentiation:
• the curl operator can be used;
• more stable results (has the effect of a regularization method

for the inverse problem of elastography).

• The anisotropy of the tissues generates quasi-longitudinal and
quasi-shear waves. ⇒ Helmholtz decomposition fails ⇒ How to
generalize Helmholtz method using multiscaling (fractional order)
spatial derivatives?

• Use an appropriate constitutive model (material with
microstructure, peridynamic model, non-linear material). How to
model and measure residual stresses (present in the
hydrocephalic brain, for example)?

THANK YOU!
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