Extensions to existing solutions to the FSSP

Jean-Baptiste. Yunes@liafa.jussieu.fr
LIAFA/CNRS - Université Paris 7 Denis Diderot

The Problem (Firing Squad Synchronization Problem)

- * Given a firing squad, how to make all soldiers fire at the same time?
- Difficulty: any screamed order by general need different times to reach different soldiers
- Difficulty: soldiers cannot count but up to a very low limit

The Problem

as a Cellular Automata Problem

* Find a CA such that given any line of n cells, and starting from a configuration such as:

Gqqqqqqqqqqstion: time 0

the evolution leads to:

FFFFFFFFF
firing configuration: time I(n)

and avoids configuration such as:

A Solution

- * Minsky/McCarthy (1967) strategy: divide & conquer
- * 15 states
- * T(n)=3n
- it is not the minimal possible time

Variants

- * There exists numerous variants of the problem:
- e higher dimensions, generalized graphs;
- e fault-tolerant;
- living graphs: growing, shrinking;
- communication: limited bandwidth, delays;
- arbitrary position of the general;
- etc.

Minimality

* for arbitrary n, at least 2n-2 steps to synchronize a line of n soldiers:

T(n)22n-2

- intuitively: necessary time to get acknowledgment from the other end
- * minimal-time solutions exists: Goto 1962, Waksman 1966, Balzer 1967, Mazoyer 1986, Gerken 1987...

Minimality

* Balzer 1967 idea:

mirrored Minsky

- * 8 states
- * T(n)=2n-2
- hard: infinitely many signals

Minimality

world record

* Mazoyer 1986 idea:

break the symmetry

- * 6 states
- * T(n)=2n-2
- hard: very high degree of optimization
- open: 5 states solution?

No 4 states by exhaustion

Non Minimal Time

- * It has been long believed that:

 minimal state > minimal time
- recent results: NO!
- Settle & Simon 2002 tricky transf. of Mazoyer
- Umeo 2006 6-states, T(n)=3n, W(n)=0(n²)
- ¥ Yunès 2007 6-states, T(n)≈3n, W(n)≈0(n.log(n))

Umeo's solution

* Surprisingly, Umeo was able to modify his solution such that it synchronizes lines whatever be the position of the officer

Umeo's 6-states

- * Idea: use unused transitions rules of its original solution
- another state used to initiate the process

Question

* What kind of functionality can we add to existing solutions, extending the automaton?

amazing results

One more state

- * What can be done adding only ONE state to the transition function?
- There exists an universal simple transformation that is able:

given an s-states solution to the original problem produce an s+1-states solution in which any state can be used to initiate the process anywhere on the line (and also solve the A-MG-FSSP)

A generic extension: s > s + 1

No more state

- * Is it possible to extend the functionality of existing solutions adding only new transitions to the transition function?
- YES! We consider two cases: position of the general and state used for the general.

Position independency

* Is it possible to extend the transition function of any existing solution in order to synchronize whatever is the position of the general?

YES!

Extension of Balzer's solution

Extension of Gerken's solution

Extension of Mazoyer's solution

Order independency

- * Is it possible to extend the transition function of any existing solution in order to synchronize whatever be the state used to initiate the process?
- NO ABSOLUTELY IMPOSSIBLE!!!
- YES!

Extension of Balzer's solution

Extension of Umeo's solution

Extension of Mazoyer's solution

to sum up

- New 6 states solutions, T(n)≈3n, T(n)≈4n
- * Is there something general behind this?
- Such transformations were done on every kind of known (to me) solution
- * What does this means? Does this correspond to some property of the problem? of the model? of the implementations? what?
- * Do we need to reformulate the problem?