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Introduction to systems theory

Systems external description :

input u −→ System :≡ black box −→ output y

u and y are connected by : y = h ∗ u

Systems internal description :

input u −→ System ≡ State equation −→ output y
{

u −→ z with ż = f(t, z, u)

z −→ y with y = h(t, z)

In the case of distributed parameter systems (DPS), f and h as
well as all components (state, inputs, outputs, coefficients, etc) are
dependent on time and space variables.
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Introduction to systems theory

Usual steps in Distributed Systems Theory :

Modelling −→ Analysis −→ Control

It is related to a set of interdisciplinary activities :
Control theory, applied mathematics, engineering,
physics, etc.

Its applications ranging from life sciences to industrial
processes.
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In DPS, we may have :

ω

Domain 

Region 

Pointwise actuator

Source

Zone sensor

Measurments

Control

Ω

Conventional models for DPS : Partial differential or
integro-differential equations, continuous or discrete version

Proposed models: Cellular Automata can be considered as a
possible alternative for modelling and analysing DPS.
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Discrete-time DPS statement by means of CA formalism

Cellular Automata models (CA)

A CA is classically defined by a quadruple A = (L,S, N, f)
where

L is a d-dimensional lattice of cells c which are
arranged depending on space dimension and cell
shape. In the infinite case, L = Z

d.

S denotes a discrete state set. It’s a finite commutative
ring given by S = {0, 1, · · · , k − 1} in which the usual
operations use modular arithmetics.

N is a mapping which defines the cell’s neighborhood.
It’s usually given by:
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Discrete-time DPS statement by means of CA formalism

N : L −→ Ln

c −→ N(c) = {c′ ∈ L | ‖c′ − c‖i ≤ r}
where ‖c‖i, i ∈ {1,∞} indicate the sum and the maximum
respectively, of the absolute value of the components of
cell c.

f is a transition function which can be defined by :

f : Sn −→ S
st(N(c)) −→ st+1(c) = f(st(N(c))

where st(c) designates the c cell state at time t and
st(N(c)) = {st(c

′), c′ ∈ N(c)} is the neighborhood state.
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Discrete-time DPS statement by means of CA formalism

The new state equation

A (DPS) is generally defined by a triple of operators (A, B, C)

corresponding to the system dynamics, the control and
observation operators respectively.

. – p.7/39



Discrete-time DPS statement by means of CA formalism

The new state equation

A (DPS) is generally defined by a triple of operators (A, B, C)

corresponding to the system dynamics, the control and
observation operators respectively.

Consider the case L = Z
d, (d ≥ 1) and introduce a metric over

X = SZ
d

as : dδ(x, y) =
∑

c∈Zd

δ(x(c), y(c))

2||c||∞
where δ : S × S → {0, 1}

is defined by : δ(i, j) =







0 if i = j

1 if i 6= j
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The new state equation

A (DPS) is generally defined by a triple of operators (A, B, C)

corresponding to the system dynamics, the control and
observation operators respectively.

Consider the case L = Z
d, (d ≥ 1) and introduce a metric over

X = SZ
d

as : dδ(x, y) =
∑

c∈Zd

δ(x(c), y(c))

2||c||∞
where δ : S × S → {0, 1}

is defined by : δ(i, j) =







0 if i = j

1 if i 6= j

The set X = SL equipped with the distance dδ is a compact metric

space and the global dynamics F :
X → X

s → F (s)
is continuous

according to the topology induced by dδ. . – p.7/39



Discrete-time DPS statement by means of CA formalism

Result : In the context of DPS,

the compact configurations set X defines the state space of the
autonomous CA.

the sequence of continuous global maps F i defined as the ith

iteration under F , plays the same role than the semi-group, usually
denoted by (Φt) generated by the operator A.

In a similar way to linear discrete-time DPS, the evolution of an
autonomous CA starting from a given initial configuration s0 can be
defined in terms of the global dynamics by the state equation :







st+1 = Fst

s0 ∈ X
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Discrete-time DPS statement by means of CA formalism

whose solution given by : st = F t(s0), t ∈ I

has the same form than the solution of discrete-time DPS
in the autonomous case, given by

x(t) = Φt(x0), t ≥ 0

where (Φt)t≥0 is the semi-group generated by an operator
defining the system dynamics A :

Ax = lim
t→0+

Φt(x) − x

t

where this limit exists.
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Discrete-time DPS statement by means of CA formalism

Control in cellular automata

The CA model will be completed by control and measurement
functions. For the control aspects, it is done via inputs (actuators)
which have a spatial structure (number, spatial location and
distribution).
Let us consider for a 1-D CA :
• IT = {0, 1, · · · , T} is a discrete time horizon.
• Lp is a sub-domain which defines the region of the lattice L where
the CA is excited. It contains p cells which may be connected or not.

p

u u u u u u

L
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Discrete-time DPS statement by means of CA formalism

The study of CA in terms of DPS needs the introduction of some
specific spaces and operators related to the control and
observation.

The Control space is defined by

U = ℓ2(Lp, R)

where ℓ2(Lp, R) = {u : Lp −→ R |
∑

c∈Lp

u2(c) < ∞}.

The inner product in ℓ2 is defined by :

< u1, u2 >ℓ2=
∑

c∈Lp

u1(c)u2(c)

with the associated norm ||u||ℓ2 =
√

< u, u >ℓ2
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Discrete-time DPS statement by means of CA formalism

The control operator G which defines the way how the control
excites the CA through the cells of Lp, is given by :

G : U −→ SZ
d

u −→ Gu

The CA is then considered as a controlled system denoted by Ac

defined by the local transition function :

st+1(c) = fc(st(N(c)), ut(c)χLp
)

The corresponding state equation is:







st = F(st−1, ut−1) , t ∈ IT

s0 ∈ X
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Discrete-time DPS statement by means of CA formalism

where F is defined according to the global dynamics F and the global
control operator G.

The observation problem can be considered by duality where an
observation space and a global observation operator have to be
defined.

This leads to a complete description of CA in terms of inputs and
outputs where the state equation is augmented with

θt = Hst , t ∈ Im

and then defines the so-called distributed CA (DCA).

The obtained CA statement is very close to the usual discrete-time
distributed parameter systems formulation augmented by the
output function.
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A simple example: Langton’s Ant

The rules are as follows: An ant sits on a bit of graph paper where all
the squares are initially empty. It moves into a neighbouring square
and does one of two things, based on the colour of the square;

If the square is white, it turns to the left and colours the square
black.

If the square is black, it turns to the right and colours the square
white.

The interesting thing is that after a fixed number of steps, the ant builds
a highway and goes very quickly to infinity.
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A simple example

With a control applied on cells ci,j such that |i − j| = 2 :

After 6000 iterations After 9000 iterations After 11000 iterations
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A simple example

With a control applied on cells ci,j such that |i − j| = 2 :

After 6000 iterations After 9000 iterations After 11000 iterations

After 10000 iterations After 30000 iterations After 45000 iterations

Important result : The ant stays much longer in a bounded area with
the control.
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Application to Regional Controllability

The general analysis concept of controllability allows a
better knowledge of the system and its evolution. It is
related to the possibility of finding convenient controls
to achieve given objectives.
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Application to Regional Controllability

The general analysis concept of controllability allows a
better knowledge of the system and its evolution. It is
related to the possibility of finding convenient controls
to achieve given objectives.

For the Regional controllability, the objective have to be
achieved only on a sub-region of the whole domain.
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Pointwise actuators

Ω

ω

Ω

ω

Zone actuator

System (S) at t = 0

Pointwise actuators

Zone actuator

System (S) at t = T
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Application to Regional Controllability

For the statement by means of CA formalism :

a DCA defined on a discrete lattice L with state set S
and described by the state equation above given.

ω ⊂ L
sω the restriction to ω of the CA configuration s.

Sω = {s : ω → S}
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For the statement by means of CA formalism :

a DCA defined on a discrete lattice L with state set S
and described by the state equation above given.

ω ⊂ L
sω the restriction to ω of the CA configuration s.

Sω = {s : ω → S}
The DCA is said to be regionally controllable if for a given
sd ∈ Sω there exists a control u = (u0, · · · , uT−1) with ui ∈ U
such that

sT = sd on ω

where sT is the final configuration at time T and U is the
control space.
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Application to Regional Controllability

A weak regional controllability is achieved if for sd ∈ Sω and
ε > 0, there exists a control u = (u0, u1, · · · , uT−1) such that

dδ(sT , sd) ≤ ε on ω

where dδ is the distance defined on X.
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Application to Regional Controllability

A weak regional controllability is achieved if for sd ∈ Sω and
ε > 0, there exists a control u = (u0, u1, · · · , uT−1) such that

dδ(sT , sd) ≤ ε on ω

where dδ is the distance defined on X.

The main characterization is based on :

The target region ω and its geometry

The space location of the region ω

The actuators exciting the system, number, location, etc.
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Application to Regional Controllability

A characterization result

Let K be the operator defined by

K : U IT −→ SL

u −→ sT

where sT is the configuration of the CA at time T .
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Application to Regional Controllability

A characterization result

Let K be the operator defined by

K : U IT −→ SL

u −→ sT

where sT is the configuration of the CA at time T .

The problem of regional controllability consists in finding a
control u ∈ U IT such that χωK(u) = sd where χω from
SL −→ Sω defines the restriction mapping.

⇔ Im(χωK) = Sω

. – p.19/39



Application to Regional Controllability

We obtain the following necessary and sufficient condition
for exact regional controllability :

Proposition:
The DCA is exactly regionally controllable if and only if

Kerχω + ImK = SL

where Kerχω = {s ∈ SL | sω = 0} denotes the kernel of χω

and 0 indicates the null configuration. The operation + in
the rank condition is interpreted as follows :
∀ s ∈ SL , ∃ s1 ∈ Kerχω and s2 ∈ ImK such that

s = s1 + s2

. – p.20/39



Application to Regional Controllability

Proof :

(1) Kerχω + ImK = SL ⇒ Im(χωK) = Sω.
The inclusion Im(χωK) ⊆ Sω is immediate.

Let s ∈ Sω and consider s′ ∈ SL given by : s′ =







s on ω

0 on ωc

Due to relation (1), we can write s′ = s1 + s2 where :
• s1 ∈ kerχω ⇒ s1|ω = 0

• s2 ∈ ImK ⇒ ∃u ∈ UIT such that K(u) = s2 ⇒ χωK(u) = s2|ω
= s2|ω + s1|ω = s′|ω = s ⇒ s ∈ Im(χωK) and then Sω ⊆ Im(χωK).
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Application to Regional Controllability

(⇐)
Kerχω + ImK ⊂ SL is obvious since kerχω ⊂ SL and ImK ⊂ SL.

Kerχω + ImK ⊃ SL. Let us introduce the quotient space
SL

Kerχω

and

the canonical projection π of SL onto
SL

Kerχω

and consider χω defined

by the commutative diagram :

SL χω−→ Sω

π ↓ ↓ I

SL

Kerχω

χω−→ Sω

Kerχω

Let s ∈ SL ⇒ χω(s) ∈ Sω = Im(χωK) ⇒ ∃u ∈ UIT such that
χω(s) = χω(K(u)) ⇒ s − K(u) ∈ Kerχω ⇒ s = s1 + s2 with
s1 = s − K(u) and s2 = K(u) ∈ ImK.
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Application to Regional Controllability

Case of additive cellular automata

For additive CA, the global dynamics F satisfies

F (s1 + s2) = F (s1) + F (s2) ; s1, s2 ∈ SL
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Application to Regional Controllability

Case of additive cellular automata

For additive CA, the global dynamics F satisfies

F (s1 + s2) = F (s1) + F (s2) ; s1, s2 ∈ SL

The state equation can be expressed in terms of F and
the global control operator G by:

{

st = F (st−1) + G(ut−1) , t ∈ IT

s0 ∈ X

where F and G are linear bounded operators with state
space X = SL and input-value space U = ℓ2(Lp, R).
Moreover, F is the generator of a discrete-time semi-group
{F t}t≥0 ⊂ L(X) (linear bounded operators). . – p.23/39



Application to Regional Controllability

With the above hypothesis, we can express the solution st for t ≥ 0 in
the following compact form :

st = F t(s0) +

t−1
∑

τ=0

F t−τ−1G(uτ )

which is similar to the linear continuous case where the system is
given by







ż(t) = Az(t) + Bu(t), t ∈]0, T [

z(0) = z0 ∈ D(A)

and its solution

z(t, u) = Φ(t)z0 +
∫ t

0
Φ(t − τ)Bu(τ)dτ

where (Φ(t))t≥0 is a strongly continuous semi-group generated by the

operator A.
. – p.24/39



Application to Regional Controllability: Additive case

In 1-D CA, the state transition may be expressed in
terms of a characteristic matrix M of order (NL × NL)
given by :

st+1 = Mst

where NL = |L| and st is represented by a NL-vector.
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Application to Regional Controllability: Additive case

In 1-D CA, the state transition may be expressed in
terms of a characteristic matrix M of order (NL × NL)
given by :

st+1 = Mst

where NL = |L| and st is represented by a NL-vector.

With the general form of additive transition functions :

st+1(ci) =
∑

−r≤j≤+r

ajst(ci+j) mod k

The matrix M is then constructed as follows :

Mij =

{

aj−i if j ∈ [i − r, i + r]

0 elsewhere
. – p.25/39



Application to Regional Controllability

Let ω be a subregion of L which has nω cells and s0, sT |ω are the
two vectors representing the CA configurations at time t = 0 and T

respectively.
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Let ω be a subregion of L which has nω cells and s0, sT |ω are the
two vectors representing the CA configurations at time t = 0 and T

respectively.

Suppose that the system is excited only on one cell cip
. The control

action at time t is equivalent to adding to st, the following vector

Vt = (0, · · · , ut, 0, · · · , 0)

where ut is at the position ip and can take values in S as the
S-valued control variables.
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Application to Regional Controllability

Let ω be a subregion of L which has nω cells and s0, sT |ω are the
two vectors representing the CA configurations at time t = 0 and T

respectively.

Suppose that the system is excited only on one cell cip
. The control

action at time t is equivalent to adding to st, the following vector

Vt = (0, · · · , ut, 0, · · · , 0)

where ut is at the position ip and can take values in S as the
S-valued control variables.

Let M be the transition matrix corresponding to the additive CA.
We can easily show that the CA state is given at time T by :

sT = MT s0 +
T−1
∑

i=0

MT−iVi
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Application to Regional Controllability: Additive case

Let sd be a desired state on ω. The problem of regional controllability in
terms of characteristic matrix, consists in finding a vector Vt,
t = 0, · · · , T − 1, such that sT |ω = sd or

(
T−1
∑

i=0

MT−iVi)|ω = (sd − MT s0)|ω
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Application to Regional Controllability: Additive case

Let sd be a desired state on ω. The problem of regional controllability in
terms of characteristic matrix, consists in finding a vector Vt,
t = 0, · · · , T − 1, such that sT |ω = sd or

(
T−1
∑

i=0

MT−iVi)|ω = (sd − MT s0)|ω

This problem can be formulated as a system of nω equations with T

unknowns (u0, u1, · · · , uT−1) :















MT
α,ip

k0 +M
T−1
α,ip

k1 + · · · +Mα,ip)kT−1 = sd(α) − (MT s0)α

MT
α+1,ip

k0 +M
T−1
α+1,ip

k1 + · · · +Mα+1,ip kT−1 = sd(α + 1) − (MT s0)α+1

.

.

.

MT
β,ip

k0 +M
T−1
β,ip

k1 + · · · +Mβ,ip
kT−1 = sd(β) − (MT s0)β

where β = α + nω − 1, sd(i) = sd(c − i). . – p.27/39



Application to Regional Controllability: Additive case

The system’s solution which is not unique, gives the control
(V0, V1, · · · , VT−1) which steers the CA to the state sd at time T on ω.
This will be illustrated through the following numerical example.
With nL = 100, S = {0, 1, 2}, N(ci) = {ci−1, ci, ci+1} with an additive
rule defined by :

st+1(ci) = st(ci−1) + 2st(ci+1) mod 3

Let s0 be an arbitrary initial configuration and suppose that the control
is active only in the cells c23. We will determine the appropriate action
which is able to steer the system from the initial configuration s0 to a
desired configuration sd, on the region ω = {c21, · · · , c25} at time T = 5

where sd is defined by :

sd(ci) = 0 , 21 ≤ i ≤ 25

. – p.28/39



Application to Regional Controllability: Additive case

The regional controllability problem is equivalent to find u0, u1, · · · , u4

solutions of the system :8>>>>>>><>>>>>>>:

M5
21,23u0 + M4

21,23u1 + M3
21,23u2 + M2

21,23u3 + M21,23u4 = sd(21) − (M5s0)21

M5
22,23u0 + M4

22,23u1 + M3
22,23u2 + M2

22,23u3 + M22,23u4 = sd(22) − (M5s0)22

M5
23,23u0 + M4

23,23u1 + M3
23,23u2 + M2

23,23u3 + M23,23u4 = sd(23) − (M5s0)23

M5
24,23u0 + M4

24,23u1 + M3
24,23u2 + M2

24,23u3 + M24,23u4 = sd(24) − (M5s0)24

M5
25,23u0 + M4

25,23u1 + M3
25,23u2 + M2

25,23u3 + M25,23u4 = sd(25) − (M5s0)25

where M is a sparse transition matrix given by :

M =

0BBBBBBBBBBBB�
3 5 0 0 . . . . . 4

4 3 5 0 . . . . . 0

0 4 3 5 0 . . . . 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

5 0 0 . . . . 0 4 3

1CCCCCCCCCCCCA
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Application to Regional Controllability: Additive case

Using the congruence modulo 3, a solution of this problem is given by :

(u0, u1, u2, u3, u4) = (2, 0, 1, 2, 0)

t=0

t=1

t=2

t=3

t=4

t=5

. – p.30/39



Application to Regional Controllability

Particular 2-D Additive case

Let us consider a square lattice L = {ci,j , i, j = 1, · · · , NL}, a discrete
set S = {0, 1, · · · , k − 1} and the following transition rule :

st+1(ci,j) =
∑

c′∈Ṅ(ci,j)

st(c
′) mod k

where N(c) is the von Neumann neighbourhood of radius r and
Ṅ = N − {c}. The corresponding transition matrix M is constructed as
follows :

Mi,j =







1 if cj,k ∈ N(ci,j) for every k = 1, · · · , NL

0 elsewhere
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Application to Regional Controllability

We can easily give the following relation between st+1 and st by means
of the transition matrix M :

st+1 = Mst + stM

By stacking the columns of the matrix st in a vector and using the
Kronecker product, i.e. using

σt := V ec(st) ∈ S(nL)2 and M := (I ⊗ M) + (M∗ ⊗ I) ∈ S(nL)2×(nL)2

The equation can be made to read :

σt+1 = Mσt

which leads to the final state in terms of M and σ0 : σT = MT σ0

. – p.32/39



Application to Regional Controllability

If the control is active only on cip,ip
, its effect may be expressed by :

Wt =

ith
p0BBBBBBBBBBB�

0 · · · 0 · · · 0

.

.

.
.
.
.

0 · · · ut · · · 0

.

.

.
.
.
.

0 · · · 0 · · · 0

1CCCCCCCCCCCA ith
p

A similar result as for the 1-D case is then obtained.

Wt := V ec(Wt) ∈ S(nL)2

and the CA state at time T is

σT = MT σ0 +

T−1
∑

i=0

MT−iWi
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Regional Controllability in a 2-D example

t=0 t=3 t=6

t=9 t=12 t=16

ω
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Some real applications

Modelling and control of irrigation channels
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Some real applications

Modelling and control of irrigation channels

A Lattice Boltzmann approach is used instead of the usual Saint-Venant equation

The system is controlled through two gates whose opening allow an inlet and outlet discharge of water Qin

and Qout.

The water level in the pool reaches a given height profile h(x, t) which has to be maintained between two
desired levels hmin and hmax.

Parameter identification has been done using experimental data provided by the micro-canal of Valence
(ESISAR).
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Some real applications

Modelling and control of the population dynamics of the insect vectors,
responsible of Chagas disease in a village of the Yucatan peninsula.
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Some real applications

Modelling and control of the population dynamics of the insect vectors,
responsible of Chagas disease in a village of the Yucatan peninsula.
The proposed CA model gives the following evolution :

5th day 90th day 180th day

370th day 455th day 545th day
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Some real applications

The variations in abundance and proportion of adults at the village
scale did reproduce the patterns observed in several villages of
Yucatan.
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Some real applications

The boundary condition is fixed to Nf and represented by the
lattice border during the infestation period.
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Some real applications

The boundary condition is fixed to Nf and represented by the
lattice border during the infestation period.

It acts as a boundary actuator which is active only during the
infestation period.

The new epidemiological modelling approach aims to evaluate and
improve the efficiency of current insecticide spraying strategies as
well as to design alternative control strategies.

A rigorous analysis of the possibility to control the periodic spread
of non-domiciliated vectors by an optimal spatial strategy is under
consideration.

This will be performed within the framework of control theory. It will
be a kind of boundary control which will act on the border of the
village in order to prevent the invasion and then the insects spread.
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Concluding remarks

DPS analysis can be considered by means of CA
models
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Concluding remarks

DPS analysis can be considered by means of CA
models

Simulation of DPS and control implementation can be
overcome

The control problems which are related to optimization
techniques will use learning algorithms rather than
classical ones which can’t be applied in the context of
CA.

The so-called intelligent control which uses artificial
intelligence computing approaches : neural networks,
machine learning, evolutionary computation, etc, would
be considered.
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