How to achieve universality in a CA using the same local function but different neighborhoods

Th. Worsch¹ H. Nishio²

¹University of Karlsruhe, Germany

²Kyoto, Japan

Automata 2007

Outline

Introduction

How to simulate a finite number of arbitrary CA with one local function

How to achieve universality

Discussion of the embeddings used

Outline

Introduction

How to simulate a finite number of arbitrary CA with one local function

How to achieve universality

Discussion of the embeddings used

The basic picture

The basic picture

Basic notation

- ▶ R : set of all cells
- Q: finite set of states for each cell
- $ightharpoonup c: R \rightarrow Q$ global configuration
 - ightharpoonup c(j) is the state of cell j in configuration c
 - Q^R set of all global configurations
- ▶ $f: Q^n \to Q$: local function
- $ightharpoonup
 u: \{0,\ldots,n-1\}
 ightarrow R: neighborhood$
 - ▶ neighbors of cell j are $j + \nu(0)$, $j + \nu(1)$, . . . , $j + \nu(n-1)$
- ▶ f induces the global function $\mathcal{A}: Q^R \to Q^R$ via: $\forall c \ \forall j$

$$A(c)(j) = f(c(j + \nu(0)), c(j + \nu(1)), \dots, c(j + \nu(n-1)))$$

Example: Rule 110 with different neighborhoods

$$\nu = (-1,0,1)$$

Example: Rule 110 with different neighborhoods

$$\nu = (-1, 0, \frac{2}{2})$$

Observation

Fact

Each non-constant local function induces an infinite number of different global functions by changing the positions of neighbors.

Question

"How different" can those different global functions be/look like?

Answer

```
in general not known (to us) ...
... but if one selects the right local functions ...
```

Outline

Introduction

How to simulate a finite number of arbitrary CA with one local function

How to achieve universality

Discussion of the embeddings used

Given $m \text{ CA } A_i = (R, Q_A, \nu_A, f_i)$ for $0 \le i < m$

- ▶ the *same* set of states, "A-configurations"
- \blacktriangleright w.l.o.g. the same ν_A
- different local functions

Given $m \text{ CA } A_i = (R, Q_A, \nu_A, f_i)$ for $0 \le i < m$

- ▶ the same set of states, "A-configurations"
- \blacktriangleright w.l.o.g. the same ν_A
- different local functions

find $m \text{ CA } \mathcal{B}_i = (R, Q_B, \nu_i, f_B) \text{ for } 0 \leq i < m$

- ▶ the *same* set of states, "\$\mathcal{B}\$-configurations"
- ▶ the same local function
- different ν_i

and

Given $m \text{ CA } A_i = (R, Q_A, \nu_A, f_i)$ for $0 \le i < m$

- ▶ the *same* set of states, "A-configurations"
- \blacktriangleright w.l.o.g. the same ν_A
- different local functions

find
$$m \text{ CA } \mathcal{B}_i = (R, Q_B, \nu_i, f_B) \text{ for } 0 \leq i < m$$

- ▶ the *same* set of states, "\$\mathcal{B}\$-configurations"
- ▶ the same local function
- different ν_i

and

provide one embedding $E: Q_A^R \to Q_B^R$ (and only one) independent of the A_i to be simulated

```
Given m \text{ CA } A_i = (R, Q_A, \nu_A, f_i) for 0 \le i < m
```

- ▶ the same set of states, "A-configurations"
- \blacktriangleright w.l.o.g. the same ν_A
- different local functions

find
$$m \text{ CA } \mathcal{B}_i = (R, Q_B, \nu_i, f_B) \text{ for } 0 \leq i < m$$

- ▶ the *same* set of states, "\$\mathcal{B}\$-configurations"
- ▶ the *same* local function
- different ν_i

and

provide one embedding $E:Q_A^R \to Q_B^R$ (and only one) independent of the \mathcal{A}_i to be simulated

such that \mathcal{B}_i simulates \mathcal{A}_i in an obvious sense.

Simulation: embedding, e.g. for m = 3

embed A-configuration

$$\cdots \boxed{q_{-5}} \boxed{q_{-4}} \boxed{q_{-3}} \boxed{q_{-2}} \boxed{q_{-1}} \boxed{q_0} \boxed{q_1} \boxed{q_2} \boxed{q_3} \boxed{q_4} \boxed{q_5} \cdots$$

into \mathcal{B} -configuration

Simulation: embedding, e.g. for m = 3

embed A-configuration

$$\cdots \boxed{q_{-5}} \boxed{q_{-4}} \boxed{q_{-3}} \boxed{q_{-2}} \boxed{q_{-1}} \boxed{q_0} \boxed{q_1} \boxed{q_2} \boxed{q_3} \boxed{q_4} \boxed{q_5} \cdots$$

into \mathcal{B} -configuration

formally:

- ► $Q_B = Q_A \times \{0, 1, ..., m-1\}$
- ▶ $E: Q_A^R o Q_B^R$ where $E(c)(j) = (c(j), j \mod m)$

• for A_i assume

2	1	0	j
1	0	-1	$\nu_A(j)$
	0	-1	$\nu_A(j)$

for \mathcal{B}_i use

j	0	1	2	3
$\nu_0(j)$	-1	0	1	6
$\nu_1(j)$	-1	0	1	5
$\nu_2(j)$	-1	0	1	4

• for A_i assume

j	0	1	2
$\overline{\nu_A(j)}$	-1	0	1

for \mathcal{B}_i use

j	0	1	2	3
$\nu_0(j)$	-1	0	1	6
$\nu_1(j)$	-1	0	1	5
$\nu_2(j)$	-1	0	1	4

lacktriangle example: use u_1 for simulation of f_1

$$f_{1-0}(q_{-3}, q_{-2}, q_{-1})$$

• for A_i assume

j	0	1	2
$\nu_A(j)$	0	-1	1

for \mathcal{B}_i use

j	0	1	2	3
$\nu_0(j)$	0	-1	1	6
$\nu_1(j)$	0	-1	1	5
$\nu_2(j)$	0	-1	1	4

• for example when using ν_1 :

$$\boxed{\frac{q'_{-1}}{2}} = f_{2-1}(q_{-2}, q_{-1}, q_0)$$

• for A_i assume

j	0	1	2
$\nu_A(j)$	0	-1	1

for \mathcal{B}_i use

j	0	1	2	3
$\nu_0(j)$	0	-1	1	6
$\nu_1(j)$	0	-1	1	5
$\nu_2(j)$	0	-1	1	4

• for example when using ν_1 :

$$g_0' = f_{0-2}(q_{-1}, q_0, q_1)$$

Outline

Introduction

How to simulate a finite number of arbitrary CA with one local function

How to achieve universality

Discussion of the embeddings used

Universality can be considered from different points of view:

- "... for each computable function ..."
- ▶ "... for each CA ..." (of a sufficiently large class)

Universality can be considered from different points of view:

- "... for each computable function ..."
- "... for each CA ..." (of a sufficiently large class)

Here we only

- show the trick which allows to do "all" of the above.
- ▶ The rest is tedious routine work.

Starting point

Consider all CA A_i with

- ▶ some fixed Q_A ,
- ▶ arbitrary local functions $f_i: Q_A^{n_i} \to Q_A$ and
- ▶ arbitrary neighborhoods ν_i of size n_i (matching f_i).

Each computable function can be computed by such a CA for some reasonable definition of initial and final configurations.

Observe, that in contrast to the previous section one must allow for different neighborhoods.

Devise

- one set Q_B of states,
- ightharpoonup a simple embedding $E:Q_A^R o Q_B^R$ of configurations and
- one local function f_B of fixed arity b,

such that

- ▶ for each A_i
- \blacktriangleright there is a computable neighborhood ν_i of size b such that
- ▶ the CA $\mathcal{B}_j = (R, Q_B, \nu_j, f_B)$
- ▶ for each A-configuration c_A
- lacktriangle when started with the embedded configuration $c_B=E(c_A)$
- **>** simulates each step of each cell of A_i for c_A .

Embedding of configurations

\mathcal{A} -configuration

corresponding \mathcal{B} -configuration

Embedding of configurations

\mathcal{A} -configuration

corresponding \mathcal{B} -configuration

The trick

- ▶ Neighborhood $N_r = \{-r, -1, 0, 1, r\}$, where $r \ge 2$.
- ▶ Call the neighbor at position *r* the "remote" neighbor.

The trick

- ▶ Neighborhood $N_r = \{-r, -1, 0, 1, r\}$, where $r \ge 2$.
- ▶ Call the neighbor at position *r* the "remote" neighbor.
- ▶ Use the marker to compute the distance of the remote neighbor
- and represent it as a binary number.
- ▶ Use this representation as that of the CA A_i (if any) to be simulated.

		-3	-2	-1	0					5	
t = 0	• • •										
					•						
				0							
t = 1	• • •			0	1						
					•	>					
				1]
t = 2	• • •			0	1						
					•		>				
				0]
t = 3				1	1						
					•			>			
			1	1]
t = 4			0	0	1						
					•				>		
			1	0							
t = 5			0	1	1						
					•					<	

		-3	-2	-1	0					5	
t = 0											
	L				•						
	<u> </u>			0							
t = 1	•••			0	1						
	L				•	>]
t=2 .	_			1							
				0	1						
	L				•		>				
				0							
t = 3	•••-			1	1						
	<u> </u>				•			>			,
_	_		1	1							
t = 4	•••-		0	0	1						
	L				•				>		
_			1	0							
t = 5			0	1	1						
					•					<	

		-3	-2	-1	0			5	
			1	0					
t = 5			0	1	1]
					•			_	ĺ

			-3	-2	-1	0					5	
				1	0]
t = 5				0	1	1]
						•					<	
				0	1							1
t = 6	[1	0	0]
						•				<		
			1	0	1]
t = 7			0	0	0	0						1
						•			<			
			1	0	1]
t = 8			0	0	0	0						1
						•		<				
		$\overline{}$	1	0	1]
t = 9			0	0	0	0						
						•	<					1
			1	0	1]
t = 10			0	0	0	0						
ι — 10						0						 1
	_				ш			لـــــا				 J

		-3	-2	_1	0					5	
t = 5			1	0							
			0	1	1						
					•					<	
<i>t</i> = 6			0	1							1
	· · · · [1	0	0						
					•				<		
t = 7	Γ	1	0	1							1
	· · · · [0	0	0	0						ļ
					•			<			
t = 8	Γ	1	0	1							1
		0	0	0	0]
					•		<				
t=9	Γ	1	0	1							1
		0	0	0	0						
					•	<					
t = 10	Г	1	0	1							1
		0	0	0	0						
					0						

Outline

Introduction

How to simulate a finite number of arbitrary CA with one local function

How to achieve universality

Discussion of the embeddings used

A step aside:

simulation of irreversible CA by reversible CA for infinite configurations

► Theorem (Hertling): This is impossible.

► Theorem (Durand-Lose): This is possible.

Both are right

A step aside:

simulation of irreversible CA by reversible CA for infinite configurations

- ► Theorem (Hertling): This is impossible.
- ► Theorem (Durand-Lose): This is possible.

Both are right for their respective notions of simulation:

- ► Hertling requires the embedding of configurations to commute with shifts . . .
- Durand-Lose uses one marker bit.

What about our embeddings?

First: Does not commute with the shift, but at least preserves spatial periodicity.

Second: Even destroys spatial periodicity.

Conjecture

If one wants to simulate an infinite number of A_i using only different neighborhoods, one *must* use an embedding which destroys spatial periodicity of configurations.

Proof

Just to be sure, let me sleep a few more nights about this.

Conclusion

- ► There is a set of states and a local function for CA such that by choosing the appropriate neighborhood any CA (with Q_A) can be simulated (no matter which local function and neighborhood the latter uses).
- ▶ The above technique can be generalized to higher dimensions.
- In both cases the embeddings do not commute with the shift, in the second case even spatial periodicity is broken.
- ▶ So, this was a first step . . .

Thank you very much for your attention!