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Basic notation

R : set of all cells

v

v

Q@ : finite set of states for each cell

v

c: R — @ global configuration

> c(j) is the state of cell j in configuration ¢
» QF set of all global configurations

f: Q" — Q : local function
v:{0,...,n—1} — R : neighborhood

» neighbors of cell j are j +v(0), j+v(1), ..., j+v(n—1)
f induces the global function A : QF — QF via: Vc Vj

A(e)) = (c( +v(0), c( +v(1)), -, c( +v(n —1)))

vy

v



Example: Rule 110 with different neighborhoods

vV =




Rule 110 with different neighborhoods

Example

v=(-1,0,2)




Observation

Fact

Each non-constant local function induces an infinite number of
different global functions by changing the positions of neighbors.

Question
“How different” can those different global functions be/look like?

Answer

in general not known (to us) ...
... but if one selects the right local functions ...
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Goal

Given m CA A; = (R, Qa,va,fi) for 0 <i<m
> the same set of states, “.A-configurations”
» w.l.o.g. the same vy
» different local functions

find m CA B; = (R, Qg,vj,fg) for 0 <i<m
» the same set of states, “B-configurations”

» the same local function
» different v;

and

provide one embedding £ : Qf — QF (and only one)
independent of the A; to be simulated

such that B; simulates A; in an obvious sense.



Simulation: embedding, e.g. for m =3

embed A-configuration
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Simulation: embedding, e.g. for m =3

embed A-configuration

S o [ [ [ Y A E A A

into B-configuration

©19-5||9-4|{9-3||9-2||9-1|| 9o || 91 || 92 || 93 || 94 || 95 |-

formally:
> Qe = Qa x{0,1,..., m—1}
> E:QF — QF where E(c)(j) = (c(j),j mod m)

1 2 0 1 2 0 1 2 0 1 2 |-
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Simulation: an example for von Neumann neighborhood

» for A; assume for B; use
J 0 1 2 J 0 1 2 3
vaj) -1 0 1 w(lG) -1 0 1 6
lll(j) -1 0 1 5
wm(G) -1 0 1 4

» example: use v7 for simulation of £
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Simulation: an example for von Neumann neighborhood

» for A; assume for B; use
J 0o 1 2 J 0o 1 2 3
vaj) 0 -1 1 w(lG 0 -1 1 6
mn@G) 0 -1 1 5
w(G) 0 -1 1 4

» for example when using v7:
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Simulation: an example for von Neumann neighborhood

» for A; assume for B; use
i 0 1 i 0 1 2 3
va) 0 -1 1 w(@) 0 -1 1 6
m(G) 0 -1 1 5
w(G) 0 -1 1 4

» for example when using vy:

"|d-5|9-4|9-3|g-2|g-1| Go | 91 | 92 | g3 || 94 | G5 | -
12301201 )2)|0(1]2
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Goal

Universality can be considered from different points of view:

» “... for each computable function ...

» “... for each CA ..." (of a sufficiently large class)

Here we only

» show the trick
which allows to do “all” of the above.

» The rest is tedious routine work.



Starting point

Consider all CA A; with
» some fixed Qa,
» arbitrary local functions f; : Qf\" — Q4 and

» arbitrary neighborhoods v; of size n; (matching f).

Each computable function can be computed by such a CA for
some reasonable definition of initial and final configurations.

Observe, that in contrast to the previous section one must allow
for different neighborhoods.



Goal

Devise
> one set (g of states,
> a simple embedding E : Qf — QF of configurations and
» one local function fg of fixed arity b,
such that
» for each A;
there is a computable neighborhood v; of size b such that
the CA Bj= (R, QB, vj, fg)
for each A-configuration cp

when started with the embedded configuration cg = E(ca)

vV v v v Y

simulates each step of each cell of A; for ca.
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The trick

» Neighborhood N, = {—r,—1,0,1,r}, where r > 2.

» Call the neighbor at position r the “remote” neighbor.

» Use the marker e to compute the distance of the remote
neighbor

» and represent it as a binary number.

> Use this representation as that of the CA A; (if any)
to be simulated.
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A step aside:
simulation of irreversible CA by reversible CA
for infinite configurations

» Theorem (Hertling): This is impossible.

» Theorem (Durand-Lose): This is possible.
Both are right for their respective notions of simulation:

» Hertling requires the embedding of configurations to commute
with shifts ...

» Durand-Lose uses one marker bit.



What about our embeddings?

First: Does not commute with the shift, but at least
preserves spatial periodicity.

Second: Even destroys spatial periodicity.



Conjecture

If one wants to simulate an infinite number of A; using only
different neighborhoods, one must use an embedding which
destroys spatial periodicity of configurations.

Proof

Just to be sure, let me sleep a few more nights about this.



Conclusion

» There is a set of states and a local function for CA
such that by choosing the appropriate neighborhood
any CA (with Qa) can be simulated
(no matter which local function and neighborhood the latter
uses).

» The above technique can be generalized to higher dimensions.

» In both cases the embeddings do not commute with the shift,
in the second case even spatial periodicity is broken.

» So, this was a first step ...



Thank you very much for your attention!
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