Classification and Complexity

Automata 2007

Klaus Sutner
Carnegie Mellon University
wWW.cs.cmu.edu/~sutner

Classification

The Classification Problem

Come up with a taxonomy of CA that organizes them in a coherent, comprehensive way.

- dimension
- finiteness
- classes of configurations
- grid topology

Definitional level, underlying configuration space; not really part of the classification.

The Global Map

Fix configuration space and consider the global map.

- reversibility
- degree of irreversibility
- openness
- surjectivity
- local structures in diagram

Require only boundedly many applications of the global map.

Wolfram's Classes

Aka iterating the global map.

- W1: Evolution leads to homogeneous fixed points.
- W2: Evolution leads to periodic configurations.
- W3: Evolution leads to chaotic, aperiodic patterns.
- W4: Evolution produces persistent, complex patterns of localized structures.

Require unboundedly many applications of the global map.
Appeal to visual characteristics of the orbits.

In Pictures

Automatic Classification

. . . is very hard, here are a few good news items.

- Amoroso and Patt 1972: decidability of reversibility and surjectivity.
- 1991: efficient quadratic time algorithm, automata theory.
- J. Kari 1990: undecidable in dimensions 2 and higher.

Surjectivity is injectivity on finite configurations, so these are local properties of phase space.

Bad News

Stronger classifications along the lines of Wolfram's Classes are quite hopeless.

Theorem. It is Π_{2}-complete to test if all orbits end in fixed points.

Theorem. It is Σ_{3}-complete to test if all orbits are decidable.

Theorem. It is Σ_{4}-complete to test if a $C A$ is computationally universal.

The Core Problem

For infinite grids the Reachability Problem

$$
x \xrightarrow{*} y
$$

is undecidable. Likewise, the closely related Confluence Problem (leading to the same limit cycle) is undecidable

$$
\exists z(x \xrightarrow{*} z \wedge y \xrightarrow{*} z)
$$

Theorem. The Reachability Problem and the Confluence Problem simultaneously can have arbitrary recursively enumerable degree of complexity.

A Caveat

All these results use classical computability theory and consider only

$$
\mathcal{C}_{\text {fin }}=\text { all configurations with finite support }
$$

Can be extended to other types of configurations with finitary descriptions such as backgrounds, but fails to deal with uncountable spaces.

Perhaps another model of computation would be appropriate.
Type-2 Turing machines are nice, but then equality is undecidable.

Model Checking

Entscheidungsproblem

The Entscheidungsproblem for the 21. Century: shift to computer science.

- Hilbert's Entscheidungsproblem
- Gödel incompleteness
- Presburger arithmetic
- Tarski's quantifier elimination for the reals
- Collin's cylindrical algebra decomposition
- Matiyasevic's undecidability of Diophantine equations

Model Checking

Starting in the 1980's in computer science.

Basic idea: fix some suitable logic and a collection of structures.

Think of a formula φ in the logic as a specification.

The structures could be anything: hardware, software, protocol, . . .

Goal: Verify that the structure conforms to the specification.

The Catch

Slightly different from classical problem:

- structures usually not fixed, and
- focus on efficient algorithms.

$$
\mathfrak{A} \models \varphi
$$

Enormously important in (commercial) applications.
Algorithmically often very challenging; \mathfrak{A} is often huge and the logic is complicated.

CA as Structures

Discrete dynamical systems, minimalist description. For any local map ρ let

$$
\mathfrak{A}_{\rho}=\langle\mathcal{C}, \rightarrow\rangle
$$

where, say, $\mathcal{C}=\Sigma^{\mathbb{Z}}$ is the space of configurations of the system.

- The definitional properties are summarized in \mathcal{C}.
- The global map is given by \rightarrow, the "next configuration" relation.

Pedestrian Logic

Boundedly many applications of the global map: standard first order logic.

Some Formulae

$$
\begin{aligned}
& \forall x \exists y(y \rightarrow x) \\
& \forall x, y, z(x \rightarrow z \wedge y \rightarrow z \Rightarrow x=y) \\
& \forall x \exists y, z(y \rightarrow x \wedge z \rightarrow x \wedge \forall u(u \rightarrow x \Rightarrow u=y \vee u=z))
\end{aligned}
$$

But these require stronger logic (MSO, $\operatorname{TrCL}, \ldots$. .):

$$
\begin{aligned}
& \forall x(x \xrightarrow{*} \mathbf{0}) \\
& \forall x \exists z(x \xrightarrow{*} z \wedge z \rightarrow z)
\end{aligned}
$$

Model Checking CA

So how do we decide, say, injectivity:

$$
\mathfrak{A}_{\rho} \models \forall x, y, z(x \rightarrow z \wedge y \rightarrow z \Rightarrow x=y)
$$

We need to deal with

- predicates $x \rightarrow y$ and $x=y$,
- boolean connectives \wedge, \vee, \neg and \Rightarrow,
- quantifiers \forall and \exists.

Automata

Express $x \rightarrow y$ in terms of finite state machines on infinite words, ditto for equality.

Consider bi-infinite words over Σ^{2} :

\ldots	x_{-3}	x_{-2}	x_{-1}	x_{0}	x_{1}	x_{2}	x_{3}	\ldots
\ldots	y_{-3}	y_{-2}	y_{-1}	y_{0}	y_{1}	y_{2}	y_{3}	\ldots

Automata for bi-infinite words:

- a standard semiautomaton $\langle Q, \Gamma, \delta\rangle$,
- an acceptance condition: there is a bi-infinite path in the automaton labeled by the word (a white lie).

Example: $\mathrm{CA}(2,2,6)$

The canonical automaton $\mathcal{A}_{\rho}(x, y)$ for the local map $\rho(\boldsymbol{x})=x_{0} \oplus x_{1}$.

Pleasant Surprise

Existential quantifiers are easy: for $\exists x \varphi$ just remove the x-track (project on the other tracks.

Universal quantifiers can be rewritten as $\neg \exists x \neg \varphi$

Boolean Connectives

Only need to deal with \vee and \neg.

For \vee use a simple disjoint union of the two automata.
Actually, \wedge is easy too: product machine construction.

But \neg causes problems: we need to complement the automaton. Complementation is usually based on determinization. Alas, the simple semiautomata we have so far do not permit determinization.

Non-Equal

How can one test if $x \neq y$?

But now p must be initial (touched infinitely often in the past) and q must be initial (touched infinitely often in the future).

ζ-Automata

Called ζ-automata; essentially two-way Büchi automata.

- Büchi automata operate on one-way infinite words Γ^{ω}, we have two-way infinite words Γ^{∞}. Two-way infinite words have no intrinsic coordinates.
- Complementation of ω-automata requires determinization which requires Muller or Rabin automata; the algorithm is a rather intricate and has exponential complexity.
- Complementation of ζ-automata is correspondingly worse.

Logic to Automata

At any rate, for any formula φ we obtain an automaton \mathcal{A}_{φ} such that

$$
\mathcal{L}\left(\mathcal{A}_{\varphi}\right)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \Sigma^{\infty} \mid \mathfrak{A}_{\rho} \models \varphi\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right\}
$$

The basic decision problems for these automata are decidable (Emptiness, Universality, Inclusion, Equality).

Decidability

Theorem.

Model checking is decidable for plain FOL $\mathcal{L}(\rightarrow,=)$.

But note that the complexity is not elementary: nested complementation is a fiasco efficiency-wise.

$$
\text { Büchi } \longrightarrow \text { Rabin : } \quad 2^{O(n \log n)}
$$

Thus one should not expect practical algorithms except for very simple formulae.

The Real Challenge

Is That All?

Can one push the result?

- change the logic
- consider special CAs
- consider special configuration
- like, whatever?

Adding Regular Predicates

Since we are using ζ-automata for the decision algorithm one can add unary predicates ranging over ζ-regular languages.

Example:

$$
\begin{array}{ll}
{ }^{\omega} 0 \Sigma^{\star} 0^{\omega} & \text { finite configurations } \\
{ }^{\omega} u \Sigma^{\star} v^{\omega} & \text { backgrounds }
\end{array}
$$

Application: Since a CA is surjective iff it is injective on finite configurations one obtains a quadratic algorithm for injectivity testing.

Adding Nondeterminism

The method works for nondeterministic cellular automata (in fact any kind of ζ-transducer).

Of course, at the low end this may require one more determinization step and thus ruin complexity.

Finite Spaces

Consider finite configurations spaces:

$$
\mathfrak{A}_{\rho}^{n}=\left\langle\mathcal{C}_{n}, \rightarrow,=\right\rangle
$$

where \mathcal{C}_{n} is the space of configurations of size n.

So we are looking at nice, finite functional digraphs.

Phase Space

Phase Space

\square

■

Dire Warning

Nota bene: The grid size n is a free parameter.

The Spectrum

Ideally, given any sentence φ, we would like to understand its spectrum:

$$
\operatorname{spec}(\varphi)=\left\{n \in \mathbb{N} \mid \mathfrak{A}_{\rho}^{n} \models \varphi\right\}
$$

So $\operatorname{spec}(\varphi)=\mathbb{N}$ means "always true", $\operatorname{spec}(\varphi)=\emptyset$ means "always false".

Regular Spectra

ECA 90: $\operatorname{spec}($ injective $)=\emptyset$.

ECA 154: spec(injective) $=$ odd .

ECA 150: $\operatorname{spec}($ injective $)=\mathbb{N}-3 \mathbb{N}$.

Theorem.
Spectra are regular: the language $\left\{0^{n} \mid n \in \operatorname{spec}(\varphi)\right\}$ is regular.
Moreover, a corresponding finite automaton can be constructed effectively.

Frivolous Picture

The Usual Spoiler

Theorem.

It is Π_{1}-complete to test if all configurations on finite grids evolve to a fixed point.

$$
\forall x \exists z(x \xrightarrow{*} z \wedge z \rightarrow z)
$$

So dealing with stronger logics is going to be difficult.

Questions

A Typical Question

- fix rule ECA 150
- consider finite grids, cyclic boundary
- logic

$$
\mathcal{L}(\rightarrow, \stackrel{*}{\rightarrow},=)
$$

Is this decidable (can we compute the spectrum of a formula)?

More Questions

- What is the complexity of model checking for CA with FOL, at least for simple classes of formulae?
- Is there any interesting logic \mathcal{L} other than FOL with decidable model checking?
- How about subclasses of CA, in particular linear CA?
- How about simple CA on finite grids? Say additive rules?
- When is the spectrum computable?

Even More Questions

The theory of a structure is the collection of all true sentences over that structure.

- Is $\operatorname{Th}\left(\mathfrak{A}_{\rho}\right)$ a useful measure of the complexity?
- In particular for logics stronger than just $\mathcal{L}(\rightarrow,=)$?
- Is the theory of Wolfram Class III the same as Class IV?

