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Introduction

l Divide-and-conquer paradigm is used in both 
classical algorithms & parallel computing.

l We conisder a formal model for a divide-and-
conquer process that resembles an FSA.

l Given a symmetric FSA (i.e., one unaffected 
by permutations of input) we show there 
exists a divide-and-conquer automaton to 
simulate it, such that the size of the state 
space used doesn't increase.



Overview

l Divide-and-conquer: example and definition
l Ladner and Fischer's divide-and-conquer 

simulation of a sequential FSA
l Motivation for new result
l Main lemma
l Construction/proof sketch
l Areas for future investigation



Definition: (Symmetric) Finite-
State Automaton

l Input alphabet �, output alphabet �, state 
space �, all finite. Initial state �� in �.

l Transition function ��:� � for each � in �.
l Post-processing function 	:� �

l generalizes set of accepting states

l On input string 
��…
 start in state ��, then 
apply �
 to current state, then ��, etc.

l Output value is 	(�) where � is final state.
l "Symmetric": permute input same output.



Divide-and-Conquer Example

… … … …

4 4
5 3

4+4=8 5+3=88+8=16



Elements of a Divide-and-
Conquer Automaton (DCA)

l Inputs partitioned arbitrarily into 2 parts.
l Recurse until trivial case (e.g., one input).
l Intermediate results combined with a 

deterministic 2-input function.
l Post-processing function 	 maps the final 

intermediate result to the output alphabet 
(analogue to set of accepting states).

l If all sets finite, and output is independent of 
how the division was performed, this is a 
Divide-and-Conquer Automaton (DCA).



[Ladner & Fischer '77]
Functional Composition Idea

l Allows us to simulate any FSA with a DCA.
l Output of FSA on input 
��…
�is

	(�
(…���(���(�
�(��)))…))
= 	(�
 �� �� �
(��))

l Composition ( is associative; we can hence 
use D & C to compute composition of �����������'s.

l In post-processing, �
 �
 	(�
 �
(��)).
l # intermediate states: #{ � | � : � �} = |�||�|.



[Ladner & Fischer '77]
Illustration

l For string � = 
���…
�define ��� = �
 �� �� �


��= 
�…���…



�…� ��…

…


 l Look up �
, 
store as table …�
(��)�
(��)�
(��)

…������

�


��
�…� ���…


���=���…
���
�…�l Compute composition



Motivation (1/2)

l Symmetric Network Computation, 2006 with 
Santosh Vempala. 
l Want FSA-based network computation in non-

regular graphs with global symmetry and local 
symmetry.

l Each node is a copy of the same symmetric
FSA; reads neighbours' states as inputs to 
compute next state during a transition.
l asynchronous, probabilistic
l Can elect leader, do biconnectivity. Firing squad?
l Demo



Motivation (2/2)

l Look at one node
l We showed: {symmetric functions 

computable by FSAs} = {symmetric functions 
computable by DCAs} = {ultimately periodic 
symmetric functions}.
l E.g., determine if at least 10 neighbours, or if 

number of purple neighbours is odd.

l cf. Ladner & Fischer: {functions computable 
by FSAs} = {functions computable by DCAs}.



Statement of New Result

l Until now all FSA-to-DCA conversions entail 
an exponential increase in the state space 
size (i.e., from |�| to |�||�|).

l New contribution: a way to convert a 
symmetric FSA to a DCA without any 
increase in size of state space.



Main Lemma (1/3)

l State � of FSA inaccessible if no string � has
��(��) = ��.

l States �, �' are indistinguishable if for all S,
	(��(�)) = 	(��(�')).

l If an FSA has no inaccessible states and no 
indistinguishable pairs, it is irredundant.
l Given an FSA, straightforward to construct an 

equivalent FSA that is irredundant. E.g., delete 
states unreachable from ���in transition graph.

l Merge indistinguishable pairs similarly.



Main Lemma (2/3)

l Main lemma: irredundant symmetric FSAs 
have commuting transition functions.
l Symmetry is a black-box property; add to it the 

innocent-looking "white-box" property of 
irredundancy and we get a "white-box" result 
(commuting transition functions).

l We then obtain a simple D&C construction 
with a reasonably short proof of correctness.



Main Lemma (3/3)

In a symmetric irredundant FSA, ��������'s commute.
l Say input symbols �,�' have ��(��'(�))≠��'(��(�))
l By distinguishability some string � has

	(��(��(��'(�)))) ≠ 	(��(��'(��(�)))).
l By accessibility some string � has � =��(��).
l �	(��(��(��'(��(��))))) ≠ 	(��(��'(��(��(��))))).
l But this says that outputs on inputs  ��'���and 
���'� differ, contradicting symmetry. �



Construction, Proof Idea (1/2)

l Given: symmetric irredundant FSA.
l For each state � fix a representative string
�[�] that brings FSA to state � from ��,

��[�](��)=�
l Given any other string � with ��(��)=�, � and 
�[�] are interchangeable at start of input.

l Using commutativity of �'s, we obtain
�� = ��[�]

i.e., interchangeable anywhere in input.



Construction, Proof Idea (2/2)

Definition of the DCA to simulate the FSA
l DCA intermediate state space = FSA state 

space; its size could only have decreased when 
redundancy was removed.

l Base case: map input character � to ��(��).
l Combining: map pair (�, �') to ��[�'](�).
l Post-processing: use same 	 as FSA did.

l Correct & independent of how dividing performed due 
to interchangeability.



Areas for Future Investigation

l Ladner-Fischer result extends to stochastic or 
nondeterministic automata. Seems for sure 
"main lemma" fails and no "small" DCA exist 
but we yet lack a convincing counterexample.

l Suppose FSA has implicit transition function: 
�-bit binary states/inputs, transition function 
is a poly-time Turing machine. Our 
transformation takes ���(�) time to ensure 
irredundancy, can one do better?

l Thanks for listening!
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