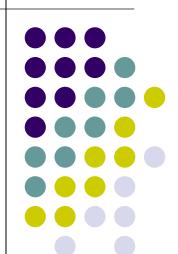
Efficient Divide-and-Conquer Simulations Of Symmetric FSAs

David Pritchard,
University of Waterloo
Aug. 29 '07
Automata @ Toronto, ON



Introduction

- Divide-and-conquer paradigm is used in both classical algorithms & parallel computing.
- We conisder a formal model for a divide-andconquer process that resembles an FSA.
- Given a symmetric FSA (i.e., one unaffected by permutations of input) we show there exists a *divide-and-conquer automaton* to simulate it, such that the size of the state space used doesn't increase.

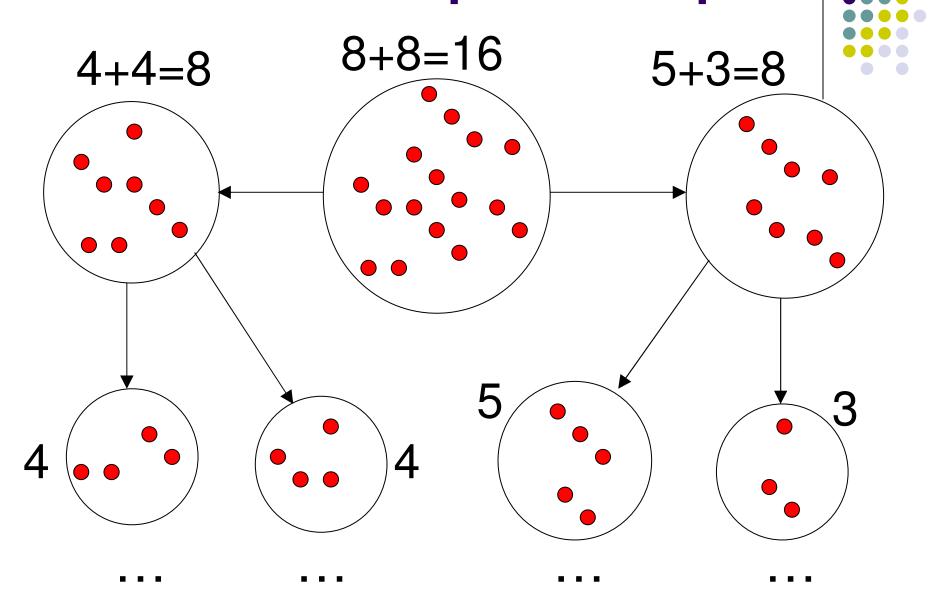
Overview

- Divide-and-conquer: example and definition
- Ladner and Fischer's divide-and-conquer simulation of a sequential FSA
- 1 Motivation for new result
- 1 Main lemma
- 1 Construction/proof sketch
- Areas for future investigation

Definition: (Symmetric) Finite-State Automaton

- Input alphabet X, output alphabet O, state space Q, all finite. Initial state q_0 in Q.
- 1 Transition function $f_{\sigma}:Q\to Q$ for each σ in Σ .
- 1 Post-processing function $\Pi:Q \to O$
 - generalizes set of accepting states
- On input string $\alpha\beta\gamma...\omega$ start in state $q_{\rm o}$, then apply f_{α} to current state, then f_{β} , etc.
- 1 Output value is $\Pi(q)$ where q is final state.
- □ "Symmetric": permute input ⇒ same output.

Divide-and-Conquer Example



Elements of a Divide-and-Conquer Automaton (DCA)

- Inputs partitioned arbitrarily into 2 parts.
- Recurse until trivial case (e.g., one input).
- Intermediate results combined with a deterministic 2-input function.
- Post-processing function Π maps the final intermediate result to the output alphabet (analogue to set of accepting states).
- If all sets finite, and output is independent of how the division was performed, this is a <u>Divide-and-Conquer Automaton</u> (DCA).

[Ladner & Fischer '77] Functional Composition Idea

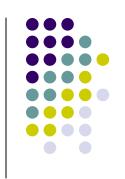
- 1 Allows us to simulate any FSA with a DCA.
- 1 Output of FSA on input $\alpha\beta\gamma...\omega$ is

$$\Pi(f_{\omega}(\dots f_{\gamma}(f_{\beta}(f_{\alpha}(q_{o})))\dots))$$

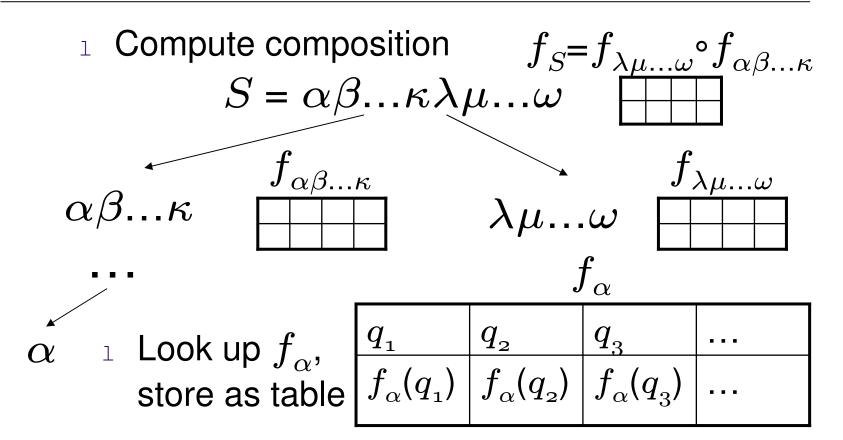
$$= \Pi(f_{\omega}^{\circ \dots \circ} f_{\gamma}^{\circ} f_{\beta}^{\circ} f_{\alpha}(q_{o}))$$

- Composition (\circ) is associative; we can hence use D & C to compute composition of f's.
- 1 In post-processing, $f_{\omega} \circ \cdots \circ f_{\alpha} \mapsto \Pi(f_{\omega} \circ \cdots \circ f_{\alpha}(q_{o}))$.
- 1 # intermediate states: #{ $f \mid f : Q \rightarrow Q$ } = $|Q|^{|Q|}$.

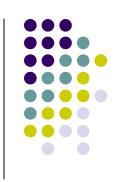
[Ladner & Fischer '77] Illustration



1 For string $S=\alpha\beta\gamma...\omega$ define $f_S=f_\omega^{\circ\cdots\circ}f_\gamma^{\circ}f_\beta^{\circ}f_\alpha^{\circ}$



Motivation (1/2)



- Symmetric Network Computation, 2006 with Santosh Vempala.
 - Want FSA-based network computation in nonregular graphs with global symmetry and local symmetry.
- Each node is a copy of the same symmetric FSA; reads neighbours' states as inputs to compute next state during a transition.
 - asynchronous, probabilistic
 - Can elect leader, do biconnectivity. Firing squad?
 - Demo

Motivation (2/2)

- Look at one node
- We showed: {symmetric functions computable by FSAs} = {symmetric functions computable by DCAs} = {ultimately periodic symmetric functions}.
 - E.g., determine if at least 10 neighbours, or if number of purple neighbours is odd.
- cf. Ladner & Fischer: {functions computable by FSAs} = {functions computable by DCAs}.

Statement of New Result

- Until now all FSA-to-DCA conversions entail an exponential increase in the state space size (i.e., from |Q| to $|Q|^{|Q|}$).
- New contribution: a way to convert a symmetric FSA to a DCA without any increase in size of state space.

Main Lemma (1/3)



- State q of FSA <u>inaccessible</u> if no string S has $f_S(q_0) = q$.
- States q, q' are indistinguishable if for all S, $\Pi(f_S(q)) = \Pi(f_S(q')).$
- If an FSA has no inaccessible states and no indistinguishable pairs, it is <u>irredundant</u>.
 - Given an FSA, straightforward to construct an equivalent FSA that is irredundant. E.g., delete states unreachable from q_0 in transition graph.
 - Merge indistinguishable pairs similarly.

Main Lemma (2/3)

- Main lemma: irredundant symmetric FSAs have commuting transition functions.
 - Symmetry is a black-box property; add to it the innocent-looking "white-box" property of irredundancy and we get a "white-box" result (commuting transition functions).
- We then obtain a simple D&C construction with a reasonably short proof of correctness.

Main Lemma (3/3)

In a symmetric irredundant FSA, f_{σ} 's commute.

- 1 Say input symbols σ, σ' have $f_{\sigma}(f_{\sigma'}(q)) \neq f_{\sigma'}(f_{\sigma}(q))$
- 1 By distinguishability some string S has

$$\Pi(f_S(f_{\sigma'}(q)))) \neq \Pi(f_S(f_{\sigma'}(f_{\sigma}(q)))).$$

- By accessibility some string T has $q = f_T(q_0)$.
- 1 ** $\Pi(f_S(f_{\sigma}(f_{T}(q_0))))) \neq \Pi(f_S(f_{\sigma'}(f_{\sigma}(f_{T}(q_0))))).$
- But this says that outputs on inputs $T\sigma'\sigma S$ and $T\sigma\sigma'S$ differ, contradicting symmetry.

Construction, Proof Idea (1/2)

- Given: symmetric irredundant FSA.
- For each state q fix a <u>representative string</u> r[q] that brings FSA to state q from q_0 ,

$$f_{r[q]}(q_0)=q$$

- Given any other string S with $f_S(q_0)=q$, S and r[q] are interchangeable at start of input.
- 1 Using commutativity of f's, we obtain

$$f_S = f_{r[q]}$$

i.e., interchangeable anywhere in input.

Definition of the DCA to simulate the FSA

- DCA intermediate state space = FSA state space; its size could only have decreased when redundancy was removed.
- Base case: map input character σ to $f_{\sigma}(q_{\rm o})$.
- Lagrangian Combining: map pair $(q,\,q')$ to $f_{r[q']}(q)$.
- 1 Post-processing: use same Π as FSA did.
 - Correct & independent of how dividing performed due to interchangeability.

Areas for Future Investigation

- Ladner-Fischer result extends to stochastic or nondeterministic automata. Seems for sure "main lemma" fails and no "small" DCA exist but we yet lack a convincing counterexample.
- Suppose FSA has implicit transition function: k-bit binary states/inputs, transition function is a poly-time Turing machine. Our transformation takes exp(k) time to ensure irredundancy, can one do better?
- 1 Thanks for listening!

References

- Preprint: http://arxiv.org/abs/0708.0580
- R. E. Ladner and M. J. Fischer. Parallel prefix computation. J. ACM, 27(4):831–838, 1980. Preliminary version appeared in Proc. 6th International Conf. Parallel Processing, pages 218–223, 1977.
- D. Pritchard and S. Vempala. Symmetric network computation. In Proc. 18th SPAA, pages 261–270, 2006.
 - Model demo: http://www.math.uwaterloo.ca/~dagpritc/fssga.html