Efficient Divide-and-
Conquer Simulations Of
Symmetric FSAs

David Pritchard,
University of Waterloo
Aug. 29 '07

Automata @ Toronto, ON

Introduction

1 Divide-and-conquer paradigm is used in both
classical algorithms & parallel computing.

1 We conisder a formal model for a divide-and-
conquer process that resembles an FSA.

1 Given a symmetric FSA (i.e., one unaffected
by permutations of input) we show there
exists a divide-and-conquer automaton to
simulate it, such that the size of the state
space used doesn't increase.

Overview

1 Divide-and-conquer: example and definition

1 Ladner and Fischer's divide-and-conquer
simulation of a sequential FSA

1 Motivation for new result

1 Main lemma

1 Construction/proof sketch

1 Areas for future investigation

Definition: (Symmetric) Finite-
State Automaton

1 Input alphabet X, output alphabet O, state
space @, all finite. Initial state g_ in Q.

1 Transition function f_:Q - Q for each o in 2.

1 Post-processing function 11:Q) - O
generalizes set of accepting states

1 On input string aB~...w start in state q_, then
apply f, to current state, then f, etc.

1 Output value is I1(q) where q is final state.
1 "Symmetric": permute input = same output.

Divide-and-Conquer Example

4+4=8

8+8=16

5+3=8

Elements of a Divide-and-
Conquer Automaton (DCA)

1 Inputs partitioned arbitrarily into 2 parts.
1 Recurse until trivial case (e.g., one input).

1 Intermediate results combined with a
deterministic 2-input function.

1 Post-processing function I7 maps the final
intermediate result to the output alphabet
(analogue to set of accepting states).

1 If all sets finite, and output is independent of
how the division was performed, this is a
Divide-and-Conquer Automaton (DCA).

[Ladner & Fischer '77]
Functional Composition Idea

1 Allows us to simulate any FSA with a DCA.
1 Output of FSA on input a3~...w is

T(f (oo oo Fal@)))
= II(f.of,2 fe fala,)

1 Composition (°) is associative; we can hence
use D & C to compute composition of f's.

1 In post-processing, f,f, = II(f,>*f.(a,)).
1 #intermediate states: #{ f| f: Q - Q} = |Q|'<!.

[Ladner & Fischer '77]
[llustration

1 Forstring S = aBy...w define fg=f o of °fsef,

1 Compute composition fs=Fan. . Sas...n

S=af...kA\l...w

./f\

af...k f)\,u,...w
afb...Kk Ad...w

e
o 1 Lookup f_,

store as table | fold:) | fald2) fa(qg)

Motivation (1/2)

1 Symmetric Network Computation, 2006 with
Santosh Vempala.

Want FSA-based network computation in non-
regular graphs with global symmetry and local
symmetry.

1 Each node is a copy of the same symmetric
FSA; reads neighbours' states as inputs to
compute next state during a transition.

asynchronous, probabilistic
Can elect leader, do biconnectivity. Firing squad?
Demo

Motivation (2/2)

1 Look at one node

1 We showed: {symmetric functions
computable by FSAs} = {symmetric functions
computable by DCAs} = {ultimately periodic
symmetric functions;.

E.g., determine if at least 10 neighbours, or if
number of purple neighbours is odd.

1 cf. Ladner & Fischer: {functions computable
by FSAs} = {functions computable by DCAS]}.

Statement of New Result

1 Until now all FSA-to-DCA conversions entail
an exponential increase in the state space
size (i.e., from |Q| to |Q]!@N.

1 New contribution: a way to convert a
symmetric FSA to a DCA without any
Increase in size of state space.

Main Lemma (1/3)

1 State g of FSA inaccessible if no string S has

1 States q, ¢' are indistinguishable if for all S,

II(f4(q)) = 1I(fs(q)).
1 If an FSA has no inaccessible states and no
indistinguishable pairs, it is irredundant.

Given an FSA, straightforward to construct an
equivalent FSA that is irredundant. E.g., delete
states unreachable from q_ in transition graph.

Merge indistinguishable pairs similarly.

Main Lemma 2/3)

1 Main lemma: irredundant symmetric FSAs
have commuting transition functions.

Symmetry is a black-box property; add to it the
innocent-looking "white-box" property of
iIrredundancy and we get a "white-box" result
(commuting transition functions).

1 We then obtain a simple D&C construction
with a reasonably short proof of correctness.

Main Lemma 3/3)

In a symmetric irredundant FSA, f_'s commute.
1 Say input symbols o,0' have f_(f.(q)=f.(f.(q))
1 By distinguishability some string S has

LHI(fs(f(fr(a) = L(fs(fo(fo(Q))))-
1 By accessibility some string T'has q =f{q,)-

L& LI(fo(fo(fo(Fra0))))) = L(fs(folfo(fl0)))))-

1 But this says that outputs on inputs T¢'cS and
Too'S differ, contradicting symmetry. O

Construction, Proof Idea (1/2)

1 Given: symmetric irredundant FSA.
1 For each state q fix a representative string
r[q] that brings FSA to state q from q_,

fr[q](qo) =q
1 Given any other string S with f.(g,)=q, S and
r[q] are interchangeable at start of input.

1 Using commutativity of f's, we obtain

fs= Juq

l.e., Interchangeable anywhere in input.

Construction, Proof Idea (2/2)

Definition of the DCA to simulate the FSA

1 DCA intermediate state space = FSA state
space; its size could only have decreased when
redundancy was removed.

1 Base case: map input character o to f_(q,)-
1 Combining: map pair (g, ¢') to f,1,1(q)-
1 Post-processing: use same I as FSA did.

Correct & independent of how dividing performed due
to interchangeability.

Areas for Future Investigation

1 Ladner-Fischer result extends to stochastic or
nondeterministic automata. Seems for sure
"main lemma" fails and no "small" DCA exist
but we yet lack a convincing counterexample.

1 Suppose FSA has implicit transition function:
k-bit binary states/inputs, transition function
is a poly-time Turing machine. Our
transformation takes exp(k) time to ensure
irredundancy, can one do better?

1 Thanks for listening!

References

1 Preprint:

1 R. E. Ladner and M. J. Fischer. Parallel prefix
computation. J. ACM, 27(4):831-838, 1980.
Preliminary version appeared in Proc. 61"
International Conf. Parallel Processing, pages 218—
223, 1977.

1 D. Pritchard and S. Vempala. Symmetric network
computation. In Proc. 18th SPAA, pages 261-270,
2006.

Model demo:
http://www.math.uwaterloo.ca/~dagpritc/fssga.nhtml

