
Efficient Divide-and-
Conquer Simulations Of

Symmetric FSAs

David Pritchard,
University of Waterloo

Aug. 29 '07
Automata @ Toronto, ON

Introduction

l Divide-and-conquer paradigm is used in both
classical algorithms & parallel computing.

l We conisder a formal model for a divide-and-
conquer process that resembles an FSA.

l Given a symmetric FSA (i.e., one unaffected
by permutations of input) we show there
exists a divide-and-conquer automaton to
simulate it, such that the size of the state
space used doesn't increase.

Overview

l Divide-and-conquer: example and definition
l Ladner and Fischer's divide-and-conquer

simulation of a sequential FSA
l Motivation for new result
l Main lemma
l Construction/proof sketch
l Areas for future investigation

Definition: (Symmetric) Finite-
State Automaton

l Input alphabet �, output alphabet �, state
space �, all finite. Initial state �� in �.

l Transition function ��:� � for each � in �.
l Post-processing function 	:� �

l generalizes set of accepting states

l On input string
��…
 start in state ��, then
apply �
 to current state, then ��, etc.

l Output value is 	(�) where � is final state.
l "Symmetric": permute input same output.

Divide-and-Conquer Example

… … … …

4 4
5 3

4+4=8 5+3=88+8=16

Elements of a Divide-and-
Conquer Automaton (DCA)

l Inputs partitioned arbitrarily into 2 parts.
l Recurse until trivial case (e.g., one input).
l Intermediate results combined with a

deterministic 2-input function.
l Post-processing function 	 maps the final

intermediate result to the output alphabet
(analogue to set of accepting states).

l If all sets finite, and output is independent of
how the division was performed, this is a
Divide-and-Conquer Automaton (DCA).

[Ladner & Fischer '77]
Functional Composition Idea

l Allows us to simulate any FSA with a DCA.
l Output of FSA on input
��…
�is

	(�
(…���(���(�
�(��)))…))
= 	(�
 �� �� �
(��))

l Composition (is associative; we can hence
use D & C to compute composition of �����������'s.

l In post-processing, �
 �
 	(�
 �
(��)).
l # intermediate states: #{ � | � : � �} = |�||�|.

[Ladner & Fischer '77]
Illustration

l For string � =
���…
�define ��� = �
 �� �� �

��=
�…���…

�…� ��…

…

 l Look up �
,
store as table …�
(��)�
(��)�
(��)

…������

�

��
�…� ���…

���=���…
���
�…�l Compute composition

Motivation (1/2)

l Symmetric Network Computation, 2006 with
Santosh Vempala.
l Want FSA-based network computation in non-

regular graphs with global symmetry and local
symmetry.

l Each node is a copy of the same symmetric
FSA; reads neighbours' states as inputs to
compute next state during a transition.
l asynchronous, probabilistic
l Can elect leader, do biconnectivity. Firing squad?
l Demo

Motivation (2/2)

l Look at one node
l We showed: {symmetric functions

computable by FSAs} = {symmetric functions
computable by DCAs} = {ultimately periodic
symmetric functions}.
l E.g., determine if at least 10 neighbours, or if

number of purple neighbours is odd.

l cf. Ladner & Fischer: {functions computable
by FSAs} = {functions computable by DCAs}.

Statement of New Result

l Until now all FSA-to-DCA conversions entail
an exponential increase in the state space
size (i.e., from |�| to |�||�|).

l New contribution: a way to convert a
symmetric FSA to a DCA without any
increase in size of state space.

Main Lemma (1/3)

l State � of FSA inaccessible if no string � has
��(��) = ��.

l States �, �' are indistinguishable if for all S,
	(��(�)) = 	(��(�')).

l If an FSA has no inaccessible states and no
indistinguishable pairs, it is irredundant.
l Given an FSA, straightforward to construct an

equivalent FSA that is irredundant. E.g., delete
states unreachable from ���in transition graph.

l Merge indistinguishable pairs similarly.

Main Lemma (2/3)

l Main lemma: irredundant symmetric FSAs
have commuting transition functions.
l Symmetry is a black-box property; add to it the

innocent-looking "white-box" property of
irredundancy and we get a "white-box" result
(commuting transition functions).

l We then obtain a simple D&C construction
with a reasonably short proof of correctness.

Main Lemma (3/3)

In a symmetric irredundant FSA, ��������'s commute.
l Say input symbols �,�' have ��(��'(�))≠��'(��(�))
l By distinguishability some string � has

	(��(��(��'(�)))) ≠ 	(��(��'(��(�)))).
l By accessibility some string � has � =��(��).
l �	(��(��(��'(��(��))))) ≠ 	(��(��'(��(��(��))))).
l But this says that outputs on inputs ��'���and
���'� differ, contradicting symmetry. �

Construction, Proof Idea (1/2)

l Given: symmetric irredundant FSA.
l For each state � fix a representative string
�[�] that brings FSA to state � from ��,

��[�](��)=�
l Given any other string � with ��(��)=�, � and
�[�] are interchangeable at start of input.

l Using commutativity of �'s, we obtain
�� = ��[�]

i.e., interchangeable anywhere in input.

Construction, Proof Idea (2/2)

Definition of the DCA to simulate the FSA
l DCA intermediate state space = FSA state

space; its size could only have decreased when
redundancy was removed.

l Base case: map input character � to ��(��).
l Combining: map pair (�, �') to ��[�'](�).
l Post-processing: use same 	 as FSA did.

l Correct & independent of how dividing performed due
to interchangeability.

Areas for Future Investigation

l Ladner-Fischer result extends to stochastic or
nondeterministic automata. Seems for sure
"main lemma" fails and no "small" DCA exist
but we yet lack a convincing counterexample.

l Suppose FSA has implicit transition function:
�-bit binary states/inputs, transition function
is a poly-time Turing machine. Our
transformation takes ���(�) time to ensure
irredundancy, can one do better?

l Thanks for listening!

References

l Preprint: http://arxiv.org/abs/0708.0580
l R. E. Ladner and M. J. Fischer. Parallel prefix

computation. J. ACM, 27(4):831–838, 1980.
Preliminary version appeared in Proc. 6th

International Conf. Parallel Processing, pages 218–
223, 1977.

l D. Pritchard and S. Vempala. Symmetric network
computation. In Proc. 18th SPAA, pages 261–270,
2006.
l Model demo:

http://www.math.uwaterloo.ca/~dagpritc/fssga.html

