

Edward Powley

Department of Computer Science

University of York, UK

ed@cs.york.ac.uk

Outline

- Transition graphs and automorphisms
- Symmetries of CAs
- Symmetries and automorphisms are in one-to-one correspondence
- Numbers of syms/auts vs dynamics (Wolfram classes or similar) of CAs
 - "Eyeballing" ECAs
 - Correlation with Langton's λ parameter

Transition graphs

- A graphical representation of configuration space
- Nodes represent configurations
- Edges represent transitions between configurations

Topology of transition graphs

- Every node has out-degree 1
- "Circles of trees"

Example: rule 110, lattice size 10

Example: rule 110, lattice size 11

Example: rule 30, lattice size 10

Example: rule 76, lattice size 10

Observation

• There seems to be a lot of symmetry in these graphs...

Automorphisms

- An automorphism is an isomorphism of a graph onto itself
- Edge-preserving permutation of the nodes
- "Symmetry" of the graph

Outline

- Transition graphs and automorphisms
- Symmetries of CAs
- Symmetries and automorphisms are in one-to-one correspondence
- Numbers of syms/auts vs dynamics (complexity classes) of CAs
 - ECAs
 - Correlation with Langton's λ parameter

Definition

 A symmetry of a CA is a bijection which commutes with the global update rule

Symmetry: Example 1

Symmetry: Example 2

Symmetry: Example 3

Theorem

- For a given CA, the following are equivalent:
 - $-\alpha$ is an automorphism of the CA's transition graph
 - $-\alpha$ is a symmetry of the CA
- So "symmetry" in the transition graph corresponds to symmetries of the CA, and vice versa

Outline

- Transition graphs and automorphisms
- Symmetries of CAs
- Symmetries and automorphisms are in one-to-one correspondence
- Numbers of syms/auts vs dynamics (complexity classes) of CAs
 - ECAs
 - Correlation with Langton's λ parameter

Outline

- Transition graphs and automorphisms
- Symmetries of CAs
- Symmetries and automorphisms are in one-to-one correspondence
- Numbers of syms/auts vs dynamics (complexity classes) of CAs
 - ECAs
 - Correlation with Langton's λ parameter

Counting automorphisms

"Simple" combinatorics...

$$egin{aligned} A_{ ext{all}}(G) &= \prod_{I \in \{H_j\}/\cong} |I|! \ A_{ ext{circ}}(H \in I)^{|I|} \ A_{ ext{circ}}(H) &= rac{k}{p} \prod_{i=1}^{p} A_{ ext{tree}}(r_i)^{rac{k}{p}} \ A_{ ext{tree}}(r) &= \prod_{I \in C/\cong} |I|! \ A_{ ext{tree}}(c \in I)^{|I|} \end{aligned}$$

Results for ECAs

Linear

- Some linear rules exhibit different behaviour for N odd/even
 - (e.g. Wolfram, Martin and Odlyzko, 1984)

Chaotic (Wolfram's Class 3)

Periodic (short transients) (Wolfram's Class 2)

Eventually periodic (long transients) (Wolfram's Class 2)

Rule 110 (Wolfram's Class 4)

Automorphisms and Langton's λ: ECAs

Automorphisms and Langton's λ

- Langton himself admits that λ is "only roughly correlated" with dynamics of ECAs
- Try a class of CA where the correlation is a little better...
 - State set {0,1}
 - Neighbourhood radius 3
 - Start with "rule 0"
 - Change random 0s in the rule table into 1s until the desired λ value is reached

Automorphisms and Langton's λ

Conclusion

- We can study the "symmetry" inherent in a CA by studying automorphisms on the transition graph
- There seems to be a correlation between the total number of symmetries and the qualitative dynamics ("Wolfram class") of the CA