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 Transition graphs and automorphisms
« Symmetries of CAs

« Symmetries and automorphisms are in
one-to-one correspondence

* Numbers of syms/auts vs dynamics
(Wolfram classes or similar) of CAs

— “Eyeballing” ECAs
— Correlation with Langton’s A parameter



Transition graphs

« A graphical
representation of 9
configuration space

* Nodes represent 0
configurations

« Edges represent
transitions between

configurations \@



Topology of transition graphs

* Every node has out-degree 1
» “Circles of trees”




Example: rule 110, lattice size 10
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Example: rule 110, lattice size 11
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Example: rule 30, lattice size 10
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Example: rule 76, lattice size 10
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Observation

* There seems to be a lot of symmetry In
these graphs...



Automorphisms

* An automorphism is an isomorphism of a
graph onto itself

» Edge-preserving permutation of the nodes
» “Symmetry” of the graph
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« Symmetries of CAs



Definition

« A symmetry of a CA Is a bijection which
commutes with the global update rule



Symmetry: Example 1
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Symmetry: Example 2
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Symmetry: Example 3
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Theorem

» For a given CA, the following are
equivalent:
— «is an automorphism of the CA’s transition

graph
— «ais a symmetry of the CA

» S0 “symmetry” in the transition graph
corresponds to symmetries of the CA, and
vVice versa
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« Symmetries and automorphisms are in
one-to-one correspondence
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* Numbers of syms/auts vs dynamics
(complexity classes) of CAs



Counting automorphisms

- “Simple” combinatorics...
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Results for ECAs
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Linear

« Some linear rules exhibit different
behaviour for N odd/even

(e.g. Wolfram, Martin and Odlyzko, 1984)
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Chaotic
(Wolfram’s Class 3)
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Periodic (short transients)
~ (Wolfram’s Class 2)




Eventually periodic (long transients)
(Wolfram’s Class 2)




Rule 110
(Wolfram’s Class 4)
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Automorphisms and Langton’s A
ECAs
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Automorphisms and Langton’'s A

» Langton himself admits that A is “only
roughly correlated” with dynamics of ECAs

* Try a class of CA where the correlation is
a little better...
— State set {0,1}
— Neighbourhood radius 3

— Start with “rule 0”

— Change random Os in the rule table into 1s
until the desired A value is reached
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Conclusion

* We can study the “symmetry” inherent in a
CA by studying automorphisms on the
transition graph

* There seems to be a correlation between
the total number of symmetries and the
qualitative dynamics (“Wolfram class”) of
the CA



