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Sequential Dynamical Systems (SDS) – Definitions

I An SDS is a triple consisting of:

A graph Y with vertex set v[Y ] = {1, 2, . . . , n}.
For each vertex i a state xi ∈ K (e.g. F2 = {0, 1}) and a Y -local function Fi : Kn −→ Kn

Fi (x = (x1, x2, . . . , xn)) = (x1, . . . , xi−1, fi (x[i ])| {z }
vertex function

, xi+1, . . . , xn) .

A word w of length k over v[Y ].

I The SDS map of (Y ,FY = (Fi )
n
1,w) is

[FY ,w ] = Fw(k) ◦ Fw(k−1) ◦ · · · ◦ Fw(1) .

I Comments.



Sequential Dynamical Systems – Background
Equivalences on Dynamics

Cycle Equivalence
Summary

Definitions & Terminology
Examples

Sequential Dynamical Systems (SDS) – Definitions

I An SDS is a triple consisting of:

A graph Y with vertex set v[Y ] = {1, 2, . . . , n}.
For each vertex i a state xi ∈ K (e.g. F2 = {0, 1}) and a Y -local function Fi : Kn −→ Kn

Fi (x = (x1, x2, . . . , xn)) = (x1, . . . , xi−1, fi (x[i ])| {z }
vertex function

, xi+1, . . . , xn) .

A word w of length k over v[Y ].

I The SDS map of (Y ,FY = (Fi )
n
1,w) is

[FY ,w ] = Fw(k) ◦ Fw(k−1) ◦ · · · ◦ Fw(1) .

I Comments.



Sequential Dynamical Systems – Background
Equivalences on Dynamics

Cycle Equivalence
Summary

Definitions & Terminology
Examples

Sequential Dynamical Systems (SDS) – Definitions

I An SDS is a triple consisting of:

A graph Y with vertex set v[Y ] = {1, 2, . . . , n}.
For each vertex i a state xi ∈ K (e.g. F2 = {0, 1}) and a Y -local function Fi : Kn −→ Kn

Fi (x = (x1, x2, . . . , xn)) = (x1, . . . , xi−1, fi (x[i ])| {z }
vertex function

, xi+1, . . . , xn) .

A word w of length k over v[Y ].

I The SDS map of (Y ,FY = (Fi )
n
1,w) is

[FY ,w ] = Fw(k) ◦ Fw(k−1) ◦ · · · ◦ Fw(1) .

I Comments.



Sequential Dynamical Systems – Background
Equivalences on Dynamics

Cycle Equivalence
Summary

Definitions & Terminology
Examples

SDS – A Basic Example

Circle graph on 4 vertices, Y = Circ4.

Permutation update order π = (1, 2, 3, 4).

Vertex functions given by
nor3(x , y , z) = (1 + x)(1 + y)(1 + z).

Thus F1(x1, x2, x3, x4) =

nor3(x1, x2, x4), x2, x3, x4).

I We have for example

(x1, x2, x3, x4) = (0, 0, 0, 0)
F17→ (1, 0, 0, 0) and

(1, 0, 0, 0)
F27→ (1, 0, 0, 0)

F37→ (1, 0, 1, 0)
F47→ (1, 0, 1, 0),

and thus:

[FY , π](0, 0, 0, 0) = (1, 0, 1, 0)
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SDS – Dynamics and Phase Space

I The phase space of an SDS map [FY ,w ] is the finite, directed graph Γ[FY ,w ] given
by:

v(Γ[FY ,w ]) = {x = (x1, x2, . . . , xn) ∈ Kn},
e(Γ[FY ,w ]) = {(x , [FY ,w ](x)) | x ∈ Kn} .

Example: Γ[NorCirc4
, (1, 3, 2, 4)]
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Equivalence Types:

I Can compare two (SDS) phase spaces at many levels:

Functional Equivalence: phase spaces are identical

Dynamical Equivalence: phase spaces are isomorphic

Cycle Equivalence: phase spaces have isomorphic cycles

I In the remainder:

Review of results on functional and dynamical equivalence for SDS.

Results from initial work on cycle equivalence for SDS and relations to Coxeter theory.
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Functional Equivalence I

I Given two permutation update orders π and σ. When are
the SDS maps identical, i.e.

[FY , π] = [FY , σ] ?
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I An answer is given by the update graph U(Y ).

Definition
The update graph of Y has vertex set SY (all permutations
of v[Y ]). Two permutations are connected if they differ by
exactly one flip of two consecutive elements i and j such
that {i , j} 6∈ e[Y ].

(1234) (2341) (3412) (4123)

(4321) (3214) (2143) (1432)

(1243) (1423) (3241) (3421)

(2134) (2314) (4132) (4312)

(1324) (3124) (2413) (4213)

(1342) (3142) (2431) (4231)

U(Circ
4
)

Proposition

(i) The permutations in a (connected) component of U(Y ) induce identical SDS maps.
(ii) There is a bijection fY : SY / ∼Y−→ Acyc(Y ).
(iii) The upper bound a(Y ) = |Acyc(Y )| is always realized for Nor-SDS.
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Dynamical Equivalence I

Two maps φ, ψ : Kn −→ Kn are dynamically equivalent if
there is a bijection h : Kn −→ Kn such that

φ ◦ h = h ◦ ψ.

I.e. the phase spaces are isomorphic as directed graphs.

Theorem
Theorem: Let (fv )v be an Aut(Y )-invariant sequence of
symmetric vertex functions and let γ ∈ Aut(Y ). Then, with
permutation action on n-tuples, we have:

[FY , γπ] ◦ γ = γ ◦ [FY , π] .
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Dynamical Equivalence II

I Can also have equivalence as a result of vertex functions (or both function and update order):

[NandY , π] ◦ invn = invn ◦ [NorY , π]

Proposition

An upper bound for the number of dynamically nonequivalent SDS that can be created through
rescheduling is:

∆(Y ) =
1

|Aut(Y )|
X

γ∈Aut(Y )

a(〈γ〉 \ Y ),

where 〈γ〉 \ Y is the orbit graph of Y under 〈γ〉.

Example: Let Y be the three-dimensional cube, let f be a
fixed function, and consider the induced SDS. Then there are
8! = 40320 permutation update orders, there are at most 1862
functional equivalence classes, and at most ∆(Y ) = 54 dynami-
cal equivalence classes (when f is outer-symmetric). Both bounds
are sharp (realized by f = nor4).

000

100

110

010

111

101

001

011



Sequential Dynamical Systems – Background
Equivalences on Dynamics

Cycle Equivalence
Summary

Functional Equivalence
Dynamical Equivalence

Dynamical Equivalence II

I Can also have equivalence as a result of vertex functions (or both function and update order):

[NandY , π] ◦ invn = invn ◦ [NorY , π]

Proposition

An upper bound for the number of dynamically nonequivalent SDS that can be created through
rescheduling is:

∆(Y ) =
1

|Aut(Y )|
X

γ∈Aut(Y )

a(〈γ〉 \ Y ),

where 〈γ〉 \ Y is the orbit graph of Y under 〈γ〉.

Example: Let Y be the three-dimensional cube, let f be a
fixed function, and consider the induced SDS. Then there are
8! = 40320 permutation update orders, there are at most 1862
functional equivalence classes, and at most ∆(Y ) = 54 dynami-
cal equivalence classes (when f is outer-symmetric). Both bounds
are sharp (realized by f = nor4).

000

100

110

010

111

101

001

011



Sequential Dynamical Systems – Background
Equivalences on Dynamics

Cycle Equivalence
Summary

Functional Equivalence
Dynamical Equivalence

Dynamical Equivalence II

I Can also have equivalence as a result of vertex functions (or both function and update order):

[NandY , π] ◦ invn = invn ◦ [NorY , π]

Proposition

An upper bound for the number of dynamically nonequivalent SDS that can be created through
rescheduling is:

∆(Y ) =
1

|Aut(Y )|
X

γ∈Aut(Y )

a(〈γ〉 \ Y ),

where 〈γ〉 \ Y is the orbit graph of Y under 〈γ〉.

Example: Let Y be the three-dimensional cube, let f be a
fixed function, and consider the induced SDS. Then there are
8! = 40320 permutation update orders, there are at most 1862
functional equivalence classes, and at most ∆(Y ) = 54 dynami-
cal equivalence classes (when f is outer-symmetric). Both bounds
are sharp (realized by f = nor4).

000

100

110

010

111

101

001

011



Sequential Dynamical Systems – Background
Equivalences on Dynamics

Cycle Equivalence
Summary

Functional Equivalence
Dynamical Equivalence

Equivalence: Examples

I [NorCirc4
, π] for given update orders:
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There are ∆(Circ4) = 3 dynamically inequivalent phase spaces and δ(Circ4) = 2 cycle
inequivalent phase spaces.
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Cycle Equivalence under Shifts

Set σ = (n, n − 1, . . . , 2, 1),

τ = (1, n)(2, n − 1) · · · (d n
2
e, b n

2
c+ 1)

σs(w) = σs · w = (ws+1,ws+2, . . . ,wn,w1, . . . ,ws), and

ρ(w) = τ · w = (wn,wn−1, . . . ,w2,w1).

Theorem

For any w ∈ SY , the SDS maps [FY ,w ] and [FY ,σs(w)] are cycle equivalent.

Proposition

Over K = F2 the SDS maps [FY ,w ] and [FY ,ρ(w)] are cycle equivalent.

Remark: Holds for any graph and any choice of functions over a finite state space K .
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Proof.

Set Pk = Per[FY ,σk (w)]. The diagram

Pk−1

[FY , σk−1(w)] //

Fw(k)

��

Pk−1

Fw(k)

��
Pk

[FY , σk (w)]
// Pk

commutes for all 1 ≤ k ≤ m = |w |, and Fw(k)(Pk−1) ⊂ Pk .

The restriction map
Fw(k) : Pk−1 −→ Fw(k)(Pk−1) is an injection, thus |Pk−1| ≤ |Pk | and

|Per[FY ,w ]| ≤ |Per[FY ,σ1(w)]| ≤ · · · ≤ |Per[FY ,σm−1(w)]| ≤ |Per[FY ,w ]| .

All inequalities are equalities, and since the graph and state space are finite all the restriction
maps Fw(k) are bijections.

Proposition

Let K = F2 and P = Per[FY ,w ] ⊂ Fn
2. Then ([FY ,w ]|P)−1 = [FY ,ρ(w)]|P .
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maps Fw(k) are bijections.

Proposition

Let K = F2 and P = Per[FY ,w ] ⊂ Fn
2. Then ([FY ,w ]|P)−1 = [FY ,ρ(w)]|P .
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Enumeration of Cycle Equivalence Classes

Let C(Y ) and D(Y ) be the undirected graphs defined by

v[C(Y )] = {[π]Y | π ∈ SY }, e[C(Y )] =
˘
{[π]Y , [σ1(π)]Y }|π ∈ SY

¯
,

v[D(Y )] = {[π]Y | π ∈ SY }, e[D(Y )] =
˘
{[π]Y , [ρ(π)]Y } |π ∈ SY

¯
∪ e[C(Y )] .

I κ(Y ) and δ(Y ): number of (connected) components in C(Y ) and D(Y ), respectively. Note:
C(Y ) < D(Y ) and δ(Y ) ≤ κ(Y ).

The bijection fY : SY/∼Y−→ Acyc(Y ) allows one to interpret [π]Y as an acyclic orientation
Oπ

Y .

Mapping π to σ1(π) corresponds to converting π1 from a source to a sink in Oπ
Y – a click

operation.

The components in C(Y ) are the click equivalence classes in Acyc(Y ).

(Extended) Click-equivalence of acyclic orientations is an equivalence relation.

I Can therefore analyze cycle equivalence and enumeration over Acyc(Y ).
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Enumeration of Cycle Equivalence

Proposition

Let Y be a tree. Then κ(Y ) = 1.

Corollary

All permutation SDS maps [Fy , π] for fixed FY are cycle equivalent when Y is a tree.

Corollary

All permutation SDS over trees induced by parity functions are dynamically equivalent.
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Enumeration of Cycle Equivalence

Proposition

If Circn is a tree pruning of a graph Y then κ(Y ) = n − 1 and δ(Y ) = bn/2c.

Proof.

Part I: By Shi in the context enumeration of conjugacy classes of Coxeter elements. Part II
follows from ρ being an involution.
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Enumeration: Special Graph Classes

Proposition

Let Z = Y ⊕ v (vertex join). Then κ(Z) = 2δ(Z) = a(Y ).

Proof.

Show that each (κ) equivalence class contains a unique acyclic orientation v −→ Y .

Corollary

κ(Wheeln) = 2n − 2, δ(Wheeln) = 2n−1 − 1, κ(Kn) = (n − 1)!.

Proposition

If Y has an odd cycle then δ(Y ) = 1
2
κ(Y ).
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Further Research and Open Questions

I Questions/topic:

More properties/structure of C(Y ) and D(Y ).

Are the bounds κ(Y ) and δ(Y ) sharp? Will Nor-SDS suffice to prove sharpness?

Connection to Coxeter theory and Coxeter elements barely explored. What more?

Computational and algorithmic questions: What is the complexity of deciding if two SDS
are cycle equivalent?

I Results from e.g:

C. M. Reidys: Acyclic Orientations of Random Graphs, Adv. Appl. Math., 21(2):181–192,
1998.

H. S. Mortveit and C. M. Reidys: Discrete, sequential dynamical systems, Discrete
Mathematics, 226:281–295, 2001.

J. Y. Shi: Conjugacy Relation on Coxeter Elements, Adv. Math., 161:1–19, 2001.

M. Macauley and H. S. Mortveit: Cycle Equivalence of Graph Dynamical Systems.
Preprint.
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SDS – Collaborators & Information

Joint work with: Matt Macauley

Collaborators: Christian M. Reidys, Chris L. Barrett, Reinhard Laubenbacher, Bodo Pareigis,
Anders Å. Hansson, Madhav Marathe, Jon McCammond.

SDS course web page with link to papers:

Web: http://www.math.vt.edu/people/hmortvei/class home/4984 15748.html

NDSSL:

Web: http://ndssl.vbi.vt.edu

http://www.math.vt.edu/people/hmortvei/class_home/4984_15748.html
http://ndssl.vbi.vt.edu
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