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Sequential Dynamical Systems — Background
Definitions & Terminology
Examples

Sequential Dynamical Systems (SDS) — Definitions
n[4]=(3,4,5.8)

3
1
\ 4 F (XX X5 Xg)

» An SDS is a triple consisting of: N
8

2
7
m A graph Y with vertex set v[Y] ={1,2,...,n}. 6

m For each vertex i a state x; € K (e.g. Fo ={0,1}) and a Y-local function Fj: K" — K"

Fi(x = (x1,x2, ..., xn)) = (X1, ..., xi—1, fi(x[i]), Xig1, - - -, Xn) -
——

vertex function

m A word w of length k over v[Y].
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Examples

Sequential Dynamical Systems (SDS) — Definitions
n[4]=(3,4,5.8)

3
1
\ 4 F (XX X5 Xg)

» An SDS is a triple consisting of: N
8

2
7
m A graph Y with vertex set v[Y] ={1,2,...,n}. 6

m For each vertex i a state x; € K (e.g. Fo ={0,1}) and a Y-local function Fj: K" — K"

Fi(x = (x1,x2, ..., xn)) = (X1, ..., xi—1, fi(x[i]), Xig1, - - -, Xn) -
——

vertex function

m A word w of length k over v[Y].

» The SDS map of (Y,Fy = (F;)7,w) is

[Fy,w] = Fuuy o Fuk-1y° - 0 Fuqy -
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Sequential Dynamical Systems — Background
Definitions & Terminology
Examples

Sequential Dynamical Systems (SDS) — Definitions
n[4]=(3,4,5.8)

3
1
\ 4 F (XX X5 Xg)

» An SDS is a triple consisting of: N
8

2
7
m A graph Y with vertex set v[Y] ={1,2,...,n}. 6

m For each vertex i a state x; € K (e.g. Fo ={0,1}) and a Y-local function Fj: K" — K"

Fi(x = (x1,x2, ..., xn)) = (X1, ..., xi—1, fi(x[i]), Xig1, - - -, Xn) -
——

vertex function

m A word w of length k over v[Y].

» The SDS map of (Y,Fy = (F;)7,w) is

[Fy,w] = Fuuy o Fuk-1y° - 0 Fuqy -

» Comments.
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Sequential Dynamical Systems — Background
Definitions & Terminology
Examples

SDS — A Basic Example

m Circle graph on 4 vertices, Y = Circs.
m Permutation update order w = (1,2, 3,4).

m Vertex functions given by
norz(x,y,z) = (1 +x)(1 +y)(1 + 2).

Thus Fl(Xl,XQ,X3,X4) =

nors(xi, X2, Xa), X2, X3, X4).
» We have for example
(x1, %2, %3, ) = (0,0,0,0) 2 (1,0,0,0) and
(1,0,0,0) /3 (1,0,0,0) =% (1,0,1,0) /% (1,0,1,0),

and thus:

[Fy,n](0,0,0,0) = (1,0,1,0)
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Sequential Dynamical Systems — Background

SDS — A Basic Example

m Circle graph on 4 vertices, Y = Circs.
m Permutation update order w = (1,2, 3,4).

m Vertex functions given by
norz(x,y,z) = (1 +x)(1 +y)(1 + 2).

Thus Fl(Xl,XQ,X3,X4) =

nors(xi, X2, Xa), X2, X3, X4).

Definitions & Terminology
Examples

» We have for example (1234) 1000 1100
- 0101 010~
(1,2, 3, %) = (0,0,0,0) 2 (1,0,0,0) and o \
F s Fa 1011 ;oooo 0100 <1001
(1,0,0,0) % (1,0,0,0) = (1,0,1,0) = (1,0,1,0), | nor ¥ \
1 VOIO\/YOOOY
and thus: 0110 1110
[FY’W](Ov 0070) = (170’ 170)
cor Qe



Sequential Dynamical Systems — Background
Equivalences on Dynamics Definitions & Terminology
Cycle Equivalence Examples
Summar

SDS — Dynamics and Phase Space

» The phase space of an SDS map [Fy, w] is the finite, directed graph I'[Fy, w] given
by:
V(r[Fy7

D ={x=(x1,x,...,xn) € K"},
e(T[Fy,w]) ={

1) = {0 [Fy,wl(x)) [ x € K"} .

w
w
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Sequential Dynamical Systems — Background
Definitions & Terminology
Examples

SDS — Dynamics and Phase Space

» The phase space of an SDS map [Fy, w] is the finite, directed graph I'[Fy, w] given
by:

V(F[Fy,w]) = {x = (x1,x2,...,xn) € K"},
e(MFy,w]) ={(x,[Fy,w](x)) | x € K"}.

Example: INorci.,, (1,3,2,4)]

0110 m 0011 m 0111 /0101

/
(1324) IIOO>>OOOI 0100&— 1001 0010 1000 1101—> 0000

1110 u \]o]; 1111

1010
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Equivalences on Dynamics Functional Equivalence
Dynamical Equivalence

Equivalence Types:

» Can compare two (SDS) phase spaces at many levels:

m Functional Equivalence: phase spaces are identical
m Dynamical Equivalence: phase spaces are isomorphic

m Cycle Equivalence: phase spaces have isomorphic cycles

cor9ae



Equivalences on Dynamics Functional Equivalence
Dynamical Equivalence

Equivalence Types:

» Can compare two (SDS) phase spaces at many levels:

m Functional Equivalence: phase spaces are identical
m Dynamical Equivalence: phase spaces are isomorphic

m Cycle Equivalence: phase spaces have isomorphic cycles
» In the remainder:

m Review of results on functional and dynamical equivalence for SDS.

m Results from initial work on cycle equivalence for SDS and relations to Coxeter theory.
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Sequential Dynamical Systen Background
Equivalences on Dynamics Functional Equivalence
le Equivalence Dynamical Equivalence
Summar

Functional Equivalence |

» Given two permutation update orders m and o. When are
the SDS maps identical, i.e.

[Fy,n] = [Fy,0]?
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Sequential Dynamical Systen Background
Equivalences on Dynamics Functional Equivalence
le Equivalence Dynamical Equivalence
Summar

Functional Equivalence |

» Given two permutation update orders m and o. When are
the SDS maps identical, i.e.

[Fy,n] = [Fy,0]?
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Sequential Dynamical Systenr Background
Equivalences on Dynamics

Functional Equivalence
Cycle Equivalence Dynamical Equivalence
Summar

Functional Equivalence |

» Given two permutation update orders m and o. When are
the SDS maps identical, i.e.

[Fy,n] = [Fy,0]?

» An answer is given by the update graph U(Y).

Definition

The update graph of Y has vertex set Sy (all permutations
of v[Y]). Two permutations are connected if they differ by
exactly one flip of two consecutive elements i and j such

that {/,j} & e[Y].

co9ae



Equivalences on Dynamics Functional Equivalence
Dynamical Equivalence

Functional Equivalence |

» Given two permutation update orders 7 and o. When are
the SDS maps identical, i.e.

[Fy,ﬂ'] = [Fy,o’] ?

» An answer is given by the update graph U(Y).

— (1234)s  ©(2341) (3412)s ®(4123)
Definition (4321)e  ©(3214) (2143)e «(1432)
The update graph of Y has vertex set Sy (all permutations (1243)e—(1423) (3241)e—=(3421)
of v[Y]). Two permutations are connected if they differ by (2134)0—=(2314) (4132)e—e (4312)
exactly one flip of two consecutive elements i and j such (1324)[1(3124) {2413)1:1{4273/
that {/,j} & e[Y]. (1342) (3142) (2431) (4231)
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uential Dynamical Systems — Background
Equivalences on Dynamics Functional Equivalence
Cycle Equivalence Dynamical Equivalence

Summar

Functional Equivalence |

» Given two permutation update orders m and o. When are
the SDS maps identical, i.e.

[Fy,n] = [Fy,0]?

» An answer is given by the update graph U(Y). U(Circ)

— (1234)s  ©(2341) (3412)s ®(4123)
Definition (4321)e  ©(3214) (2143)s e (1432)
The update graph of Y has vertex set Sy (all permutations (1243)e—(1423) (3241)e—=(3421)
of v[Y]). Two permutations are connected if they differ by (2134)0—=(2314) (4132)e—e (4312)
exactly one flip of two consecutive elements i and j such (1324)[1(3124) (2413}1:1{4273/
that {/,j} & e[Y]. (1342) (3142) (2431) (4231)

Proposition

(i) The permutations in a (connected) component of U(Y') induce identical SDS maps.
(i) There is a bijection fy: Sy / ~y— Acyc(Y).

(iii) The upper bound a(Y') = |Acyc(Y')| is always realized for Nor-SDS.
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Sequential Dynamical Systen Background
Equivalences on Dynamics Functional Equivalence
le Equivalence Dynamical Equivalence
Summar

Dynamical Equivalence |

Two maps ¢,¢: K" — K" are dynamically equivalent if
there is a bijection h: K" — K" such that

¢poh=nhoa.

l.e. the phase spaces are isomorphic as directed graphs.

oA



Sequential Dynamical Systenr Background
Equivalences on Dynamics

Functional Equivalence
Cycle Equivalence Dynamical Equivalence
Summar

Dynamical Equivalence |

Two maps ¢,¢: K" — K" are dynamically equivalent if
there is a bijection h: K" — K" such that

¢poh=nho.
l.e. the phase spaces are isomorphic as directed graphs.

Theorem

Theorem: Let (f,), be an Aut(Y)-invariant sequence of
symmetric vertex functions and let v € Aut(Y'). Then, with
permutation action on n-tuples, we have:

[Fy,vwloy =~o[Fy,n].
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Background

Sequential Dynamical Syster

Equivalences on Dynamics

Functional Equivalence

le Equ Dynamical Equivalence

Summar

Dynamical Equivalence |

Two maps ¢,¢: K" — K" are dynamically equivalent if (1234) 1000 100
there is a bijection h: K" — K" such that ool 0101 o010
ol :/ (:\7004—1007
— 1011 »0000
¢poh=nhoq. o
. ) i 1 1010 0001
l.e. the phase spaces are isomorphic as directed graphs. —
o170 1110
Theorem
Theorem: Let (f,), be an Aut(Y)-invariant sequence of )
symmetric vertex functions and let v € Aut(Y). Then, with > 001 o 0011
permutation action on n-tuples, we have: 1100
mo\\: [
F — F 1101 —3 0000 0010 <1001
[Fy,ym]loy=vo[Fy,]. 1011 —>
1nn 0101 1000
™N
o110 0111
coovae




Sequential Dynamical Systen Background
Equivalences on Dynamics Functional Equivalence
le Equivalence Dynamical Equivalence
Summar

Dynamical Equivalence Il

» Can also have equivalence as a result of vertex functions (or both function and update order):

[Nandy, 7] o inv, = inv, o [Nory, 7]
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ential Dynamic tems — Background
Equivalences on Dynamics Functional Equivalence
Cycle Equivalence Dynamical Equivalence

Summar

Dynamical Equivalence Il

» Can also have equivalence as a result of vertex functions (or both function and update order):

[Nandy, 7] o inv, = inv, o [Nory, 7]

Proposition

An upper bound for the number of dynamically nonequivalent SDS that can be created through
rescheduling is:

1
A(Y) = TAGE(Y)| We%t: » a((m\Y),

where () \ 'Y is the orbit graph of Y under (v).
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ential Dynamical Systems — Background
Equivalences on Dynamics Functional Equivalence
Cycle Equivalence Dynamical Equivalence

Summar

Dynamical Equivalence Il

» Can also have equivalence as a result of vertex functions (or both function and update order):

[Nandy, 7] o inv, = inv, o [Nory, 7]

Proposition

An upper bound for the number of dynamically nonequivalent SDS that can be created through
rescheduling is:

1
A(Y) = TAGE(Y)| We%t: » a((m\Y),

where () \ 'Y is the orbit graph of Y under (~).

Example: Let Y be the three-dimensional cube, let f be a o
fixed function, and consider the induced SDS. Then there are 01—y
8! = 40320 permutation update orders, there are at most 1862
functional equivalence classes, and at most A(Y') = 54 dynami-
cal equivalence classes (when f is outer-symmetric). Both bounds
are sharp (realized by f = nors).

e EEEEEE— ‘oroae
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Equivalences on Dynamics

Equivalence: Examples

» [Norcjr,, 7] for given update orders:

Functional Equivalence
Dynamical Equivalence

(1234) 1000 (1429
1000~ 1100
0101 0010~ ’001%0700 0001 <—1100
0011 / \
o1l A 0110 ovm
1011 0000 0100 <1001 o \
nor ¥ \ 1010 \
1 1019 000 10”,4» oaaa 1010 )ooo
@ AN 1110 / umu
o110 1110 nn
HOI
ono 0011 o 0101
(1324) 1100;»000) 01001001 0010 1000 1101 —> 0000
1110 1011 1 ord

cor9ae



Equivalences on Dynamics

Functional Equivalence
Dynamical Equivalence

Equivalence: Examples

» [Norcjr,, 7] for given update orders:

(1234) 1000 (1423)
e WOIamoo 0001 <—1100
0011 / \
o & mm om
1011 30000 0100 <1001 om
101 ‘\ 10103
i 101g 00d) vonr~> 0“““ ”7”7 )ooo
N Hw/’ WL/
oro 1110 i
HG]
0110 0011 o1 oiol
\‘/ﬁ\ v
(1324) 1100 —0001  0100E—1001 0010 1000 1101 — 0000
!
o 1011 111 010

There are A(Circs) = 3 dynamically inequivalent phase spaces and §(Circa) = 2 cycle
inequivalent phase spaces.
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Sequential Dynamical Syster Background

Equivalences on Dynamics

Cycle Equivalence
Summar

Cycle Equivalence under Shifts

Seto=(n,n—1,...,2,1),

=L n=-1)--- (3], 3] +1)

os(w) =0° - w = (Wst1, Wst2, ..., Wn, W1, ...

p(w)=7-w=(wp, Wn_1,..., w2, wp).

, ws), and

cor Qe



Sequential Dynamical S; Background

Equi s on Dynamics

Cycle Equivalence
Summar

Cycle Equivalence under Shifts

Seto=(n,n—1,...,2,1),
=12 n-1)---([3],[3]+1)
os(w) =0° - w = (Wst1, Wst2,..., Wn, W1,...,Ws), and

p(w)=7-w=(wp, Wn_1,..., w2, wp).

Theorem

For any w € Sy, the SDS maps [Fy,w] and [Fy, os(w)] are cycle equivalent.
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Sequential Dynamical System Background

Equi n Dynamics

ycle Equivalence
Summar

Cycle Equivalence under Shifts

os(w) =0° - w = (Wst1, Wst2,..., Wn, W1,...,Ws), and
p(w) =7 -w = (Wp, Wn_1, ..., w2, w1)
Theorem

For any w € Sy, the SDS maps [Fy,w] and [Fy, os(w)] are cycle equivalent.

Proposition

Over K = F, the SDS maps [Fy,w] and [Fy, p(w)] are cycle equivalent.

cor9ae



Sequential Dynamical 1 Background

Eq on Dynamics

Cycle Equivalence
Summar

Cycle Equivalence under Shifts

os(w) =0° - w = (Wst1, Wst2,..., Wn, W1,...,Ws), and
Theorem
For any w € Sy, the SDS maps [Fy,w] and [Fy, os(w)] are cycle equivalent.

Proposition

Over K = F, the SDS maps [Fy,w] and [Fy, p(w)] are cycle equivalent.

Remark: Holds for any graph and any choice of functions over a finite state space K.
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ential Dynamic

Cycle E

Proof.
Set Py = Per[Fy, ox(w)]. The diagram

[Fy,ok—1(w)]
Po1—— s Py

Fu(k) l le<@

Ppf——— =P
T Ry okl ,

commutes for all 1 < k < m= |w

, and Fw(k)(Pkfl) C P.

=R PR G4



Sequential Dynami 1 Background
n Dynamics

Equivalence
Summar

Proof.
Set Py = Per[Fy, ox(w)]. The diagram

[Fy,ok—1(w)]
Po1—— s Py

Fu (k) l le(k)

Py —— = P,
T Ry okl ,

commutes for all 1 < k < m = |w|, and F,(4)(Px—1) C Px. The restriction map
Fuky: Pk—1 — Fw(k)(Pk—l) is an injection, thus |Px_1| < |Pk| and

|Per[Fy, w]| < [Per[Fy,o1(w)]| < - < |Per[Fy,om_1(w)]| < |Per[Fy, w]| .

All inequalities are equalities, and since the graph and state space are finite all the restriction
maps F,(x) are bijections. O

] o 9ace



Sequential Dynamic

Proof.
Set Py = Per[Fy, ox(w)]. The diagram

[Fy,ok—1(w)]
Po1—— s Py

Fu(k) l le<@

Ppf——— =P
T Ry okl ,

commutes for all 1 < k < m = |w|, and F,(4)(Px—1) C Px. The restriction map
Fuky: Pk—1 — Fw(k)(Pk—l) is an injection, thus |Px_1| < |Pk| and

|Per[Fy, w]| < |Per[Fy, o1(w)]| < - < [Per[Fy, om—_1(w)]| < [Per[Fy, w]| .
All inequalities are equalities, and since the graph and state space are finite all the restriction
maps F,(x) are bijections. O
Proposition
Let K =TF and P = Per[Fy,w] C F3. Then ([Fy,w]|p)~* = [Fy, p(w)]|p.

] RIS



Background
D

ences on Dynamics
Cycle Equivalence
Summar

Enumeration of Cycle Equivalence Classes

Let C(Y) and D(Y') be the undirected graphs defined by

vIEW =A{lrly [m € Sy}, e[C(V)] = {{[nly.[o1(m)]y}Im € Sy},
VDI =A{[x]y [ 7€ Sy}, e[D(Y)] = {{[r]v, [p(m)]v} |m € Sy} Ue[C(Y)] .
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Cycle Equivalence

Enumeration of Cycle Equivalence Classes

Let C(Y) and D(Y') be the undirected graphs defined by

vIEW =A{lrly [m € Sy}, e[C(V)] = {{[nly.[o1(m)]y}Im € Sy},
VDI =A{[x]y [ 7€ Sy}, e[D(Y)] = {{[r]v, [p(m)]v} |m € Sy} Ue[C(Y)] .

» x(Y) and §(Y): number of (connected) components in C(Y) and D(Y'), respectively. Note:
C(Y) < D(Y) and §(Y) < &(Y).
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Cycle Equivalence

Enumeration of Cycle Equivalence Classes

Let C(Y) and D(Y') be the undirected graphs defined by

vIEW =A{lrly [m € Sy}, e[C(V)] = {{[nly.[o1(m)]y}Im € Sy},
VDI =A{[x]y [ 7€ Sy}, e[D(Y)] = {{[r]v, [p(m)]v} |m € Sy} Ue[C(Y)] .

» x(Y) and §(Y): number of (connected) components in C(Y) and D(Y'), respectively. Note:
C(Y) < D(Y) and §(Y) < &(Y).

m The bijection fy: Sy/~y— Acyc(Y) allows one to interpret ]y as an acyclic orientation
o7.
Y

[ ] Mappirjg 7 to o1(7) corresponds to converting 71 from a source to a sink in O — a click
operation.

m The components in C(Y) are the click equivalence classes in Acyc(Y).

m (Extended) Click-equivalence of acyclic orientations is an equivalence relation.
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Cycle Equivalence

Enumeration of Cycle Equivalence Classes

Let C(Y) and D(Y') be the undirected graphs defined by

vIEW =A{lrly [m € Sy}, e[C(V)] = {{[nly.[o1(m)]y}Im € Sy},
VDI =A{[x]y [ 7€ Sy}, e[D(Y)] = {{[r]v, [p(m)]v} |m € Sy} Ue[C(Y)] .

» x(Y) and §(Y): number of (connected) components in C(Y) and D(Y'), respectively. Note:
C(Y) < D(Y) and §(Y) < &(Y).

m The bijection fy: Sy/~y— Acyc(Y) allows one to interpret ]y as an acyclic orientation
o7.
Y

[ ] Mappirjg 7 to o1(7) corresponds to converting 71 from a source to a sink in O — a click
operation.

m The components in C(Y) are the click equivalence classes in Acyc(Y).

m (Extended) Click-equivalence of acyclic orientations is an equivalence relation.

» Can therefore analyze cycle equivalence and enumeration over Acyc(Y).
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1 Dynamics

Cycle Equivalence
Summar

Enumeration of Cycle Equivalence

Proposition

Let Y be a tree. Then k(Y) = 1.

cor9ae



Enumeration of Cycle Equivalence

Proposition

Let Y be a tree. Then k(Y) = 1.

Corollary

All permutation SDS maps [Fy, «] for fixed Fy are cycle equivalent when Y is a tree.

=R AN G



ential Dynamic

Cycle E

Enumeration of Cycle Equivalence

Proposition

Let Y be a tree. Then k(Y) = 1.

Corollary

All permutation SDS maps [Fy, «] for fixed Fy are cycle equivalent when Y is a tree.

Corollary

All permutation SDS over trees induced by parity functions are dynamically equivalent.

] o 9ace



Sequential Dynamical 1 Background

Eq on Dynamics

Cycle Equivalence
Summar

Enumeration of Cycle Equivalence

Proposition

If Circy is a tree pruning of a graph Y then k(Y)=n—1 and 6(Y) = |n/2].
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Enumeration of Cycle Equivalence

Proposition

If Circy is a tree pruning of a graph Y then k(Y)=n—1 and 6(Y) = |n/2].

Proof.

Part I: By Shi in the context enumeration of conjugacy classes of Coxeter elements. Part Il
follows from p being an involution. O

] o 9ace



Enumeration: Special Graph Classes

Proposition

Let Z=Y @ v (vertex join). Then k(Z) =26(Z) = a(Y).

Proof.

Show that each (k) equivalence class contains a unique acyclic orientation v — Y.

=R AN G



Sequential Dynami 1 Background
n Dynamics

Equivalence
Summar

Enumeration: Special Graph Classes

Proposition

Let Z=Y @ v (vertex join). Then k(Z) =26(Z) = a(Y).

Proof.

Show that each (k) equivalence class contains a unique acyclic orientation v — Y. O

Corollary

k(Wheel,) = 2" — 2, §(Wheel,) = 2"71 — 1, k(K,) = (n — 1)

] o 9ace



Sequential Dynamicz s Background

Enumeration: Special Graph Classes

Proposition

Let Z=Y @ v (vertex join). Then k(Z) =26(Z) = a(Y).

Proof.

Show that each (k) equivalence class contains a unique acyclic orientation v — Y. O

Corollary

k(Wheel,) = 2" — 2, §(Wheel,) = 2"71 — 1, k(K,) = (n — 1)

Proposition

If' Y has an odd cycle then 6(Y) = %n( Y).

] RIS



Further Research — Open Questions
Collaborators. Information.
Summary

Further Research and Open Questions

» Questions/topic:

More properties/structure of C(Y) and D(Y).
Are the bounds x(Y') and 6(Y) sharp? Will Nor-SDS suffice to prove sharpness?

Connection to Coxeter theory and Coxeter elements barely explored. What more?

Computational and algorithmic questions: What is the complexity of deciding if two SDS
are cycle equivalent?

» Results from e.g:

m C. M. Reidys: Acyclic Orientations of Random Graphs, Adv. Appl. Math., 21(2):181-192,
1998.

m H. S. Mortveit and C. M. Reidys: Discrete, sequential dynamical systems, Discrete
Mathematics, 226:281-295, 2001.

m J. Y. Shi: Conjugacy Relation on Coxeter Elements, Adv. Math., 161:1-19, 2001.

m M. Macauley and H. S. Mortveit: Cycle Equivalence of Graph Dynamical Systems.
Preprint.
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Collaborators. Information.
Summary

SDS - Collaborators & Information

Joint work with: Matt Macauley

Collaborators: Christian M. Reidys, Chris L. Barrett, Reinhard Laubenbacher, Bodo Pareigis,
Anders A. Hansson, Madhav Marathe, Jon McCammond.

SDS course web page with link to papers:

’ Web: http://www.math.vt.edu/people/hmortvei/class_home/4984_15748.html ‘

NDSSL:

’ Web: http://ndssl.vbi.vt.edu ‘
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