Phase Space Equivalences of Sequential Dynamical Systems

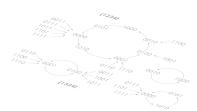
Henning S. Mortveit (Joint Work with Matt Macauley, UCSB)

Department of Mathematics & NDSSL, Virginia Bioinformatics Institute Virginia Polytechnic Institute and State University

Automata XIII, Toronto, August 2007

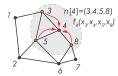
Outline

- 1 Sequential Dynamical Systems Background
 - Definitions & Terminology
 - Examples
- 2 Equivalences on Dynamics
 - Functional Equivalence
 - Dynamical Equivalence
- 3 Cycle Equivalence
- 4 Summary
 - Further Research Open Questions
 - Collaborators. Information.



Sequential Dynamical Systems (SDS) - Definitions

► An SDS is a triple consisting of:



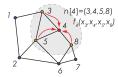
- A graph Y with vertex set $v[Y] = \{1, 2, ..., n\}$.
- For each vertex i a state $x_i \in K$ (e.g. $\mathbb{F}_2 = \{0,1\}$) and a Y-local function $F_i \colon K^n \longrightarrow K^n$

$$F_i(x = (x_1, x_2, \dots, x_n)) = (x_1, \dots, x_{i-1}, \underbrace{f_i(x[i])}_{\text{vertex function}}, x_{i+1}, \dots, x_n).$$

■ A word w of length k over v[Y].

Sequential Dynamical Systems (SDS) - Definitions

► An SDS is a triple consisting of:



- A graph Y with vertex set $v[Y] = \{1, 2, ..., n\}$.
- For each vertex i a state $x_i \in K$ (e.g. $\mathbb{F}_2 = \{0,1\}$) and a Y-local function $F_i \colon K^n \longrightarrow K^n$

$$F_i(x = (x_1, x_2, \dots, x_n)) = (x_1, \dots, x_{i-1}, \underbrace{f_i(x[i])}_{}, x_{i+1}, \dots, x_n)$$

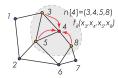
vertex function

- A word w of length k over v[Y].
- ▶ The SDS map of $(Y, \mathbf{F}_Y = (F_i)_1^n, w)$ is

$$[\mathbf{F}_Y, w] = F_{w(k)} \circ F_{w(k-1)} \circ \cdots \circ F_{w(1)}.$$

Sequential Dynamical Systems (SDS) – Definitions

► An SDS is a triple consisting of:



- A graph Y with vertex set $v[Y] = \{1, 2, ..., n\}$.
- For each vertex i a state $x_i \in K$ (e.g. $\mathbb{F}_2 = \{0,1\}$) and a Y-local function $F_i \colon K^n \longrightarrow K^n$

$$F_i(x = (x_1, x_2, \dots, x_n)) = (x_1, \dots, x_{i-1}, \underbrace{f_i(x[i])}_{}, x_{i+1}, \dots, x_n)$$

vertex function

- A word w of length k over v[Y].
- ▶ The SDS map of $(Y, \mathbf{F}_Y = (F_i)_1^n, w)$ is

$$[\mathbf{F}_Y, w] = F_{w(k)} \circ F_{w(k-1)} \circ \cdots \circ F_{w(1)}.$$

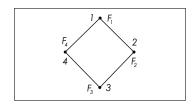
► Comments.

SDS – A Basic Example

- Circle graph on 4 vertices, $Y = Circ_4$.
- Permutation update order $\pi = (1, 2, 3, 4)$.
- Vertex functions given by $nor_3(x, y, z) = (1+x)(1+y)(1+z)$.

Thus
$$F_1(x_1, x_2, x_3, x_4) =$$

 $nor_3(x_1, x_2, x_4), x_2, x_3, x_4).$



▶ We have for example

$$(x_1, x_2, x_3, x_4) = (0, 0, 0, 0) \xrightarrow{F_1} (1, 0, 0, 0)$$
 and $(1, 0, 0, 0) \xrightarrow{F_2} (1, 0, 0, 0) \xrightarrow{F_3} (1, 0, 1, 0) \xrightarrow{F_4} (1, 0, 1, 0),$

and thus:

$$[\mathbf{F}_Y, \pi](0, 0, 0, 0) = (1, 0, 1, 0)$$

SDS – A Basic Example

- Circle graph on 4 vertices, $Y = Circ_4$.
- Permutation update order $\pi = (1, 2, 3, 4)$.
- Vertex functions given by $nor_3(x, y, z) = (1 + x)(1 + y)(1 + z)$.

Thus
$$F_1(x_1, x_2, x_3, x_4) =$$

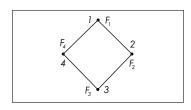
 $nor_3(x_1, x_2, x_4), x_2, x_3, x_4).$

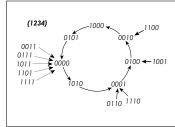
▶ We have for example

$$(x_1, x_2, x_3, x_4) = (0, 0, 0, 0) \xrightarrow{F_1} (1, 0, 0, 0)$$
 and $(1, 0, 0, 0) \xrightarrow{F_2} (1, 0, 0, 0) \xrightarrow{F_3} (1, 0, 1, 0) \xrightarrow{F_4} (1, 0, 1, 0),$

and thus:

$$[\mathbf{F}_Y, \pi](0, 0, 0, 0) = (1, 0, 1, 0)$$





SDS - Dynamics and Phase Space

▶ The *phase space* of an SDS map $[F_Y, w]$ is the finite, directed graph $\Gamma[F_Y, w]$ given by:

$$v(\Gamma[\mathbf{F}_{Y}, w]) = \{x = (x_{1}, x_{2}, \dots, x_{n}) \in K^{n}\},$$

$$e(\Gamma[\mathbf{F}_{Y}, w]) = \{(x, [\mathbf{F}_{Y}, w](x)) \mid x \in K^{n}\}.$$

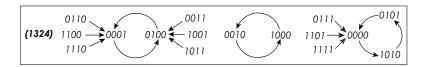
SDS - Dynamics and Phase Space

▶ The *phase space* of an SDS map $[F_Y, w]$ is the finite, directed graph $\Gamma[F_Y, w]$ given by:

$$v(\Gamma[\mathbf{F}_{Y}, w]) = \{x = (x_{1}, x_{2}, \dots, x_{n}) \in K^{n}\},$$

$$e(\Gamma[\mathbf{F}_{Y}, w]) = \{(x, [\mathbf{F}_{Y}, w](x)) \mid x \in K^{n}\}.$$

Example: $\Gamma[\text{Nor}_{\text{Circ}_4}, (1, 3, 2, 4)]$



Equivalence Types:

- ► Can compare two (SDS) phase spaces at many levels:
 - Functional Equivalence: phase spaces are identical
 - Dynamical Equivalence: phase spaces are isomorphic
 - Cycle Equivalence: phase spaces have isomorphic cycles

Equivalence Types:

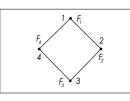
- ► Can compare two (SDS) phase spaces at many levels:
 - Functional Equivalence: phase spaces are identical
 - Dynamical Equivalence: phase spaces are isomorphic
 - Cycle Equivalence: phase spaces have isomorphic cycles
- ▶ In the remainder:
 - Review of results on functional and dynamical equivalence for SDS.
 - Results from initial work on cycle equivalence for SDS and relations to Coxeter theory.

▶ Given two permutation update orders π and σ . When are the SDS maps identical, i.e.

$$[\mathbf{F}_Y,\pi]=[\mathbf{F}_Y,\sigma]$$
 ?

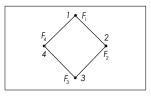
 \blacktriangleright Given two permutation update orders π and $\sigma.$ When are the SDS maps identical, i.e.

$$[\mathbf{F}_Y,\pi]=[\mathbf{F}_Y,\sigma]$$
 ?



 \blacktriangleright Given two permutation update orders π and $\sigma.$ When are the SDS maps identical, i.e.

$$[\mathbf{F}_Y, \pi] = [\mathbf{F}_Y, \sigma]$$
?



▶ An answer is given by the *update graph* U(Y).

Definition

The update graph of Y has vertex set S_Y (all permutations of v[Y]). Two permutations are connected if they differ by exactly one flip of two consecutive elements i and j such that $\{i,j\} \notin e[Y]$.

▶ Given two permutation update orders π and σ . When are the SDS maps identical, i.e.

$$[\mathbf{F}_Y,\pi]=[\mathbf{F}_Y,\sigma]~?$$



▶ An answer is given by the *update graph* U(Y).

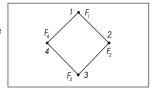
Definition

The update graph of Y has vertex set S_Y (all permutations of v[Y]). Two permutations are connected if they differ by exactly one flip of two consecutive elements i and j such that $\{i,j\} \notin e[Y]$.

$U(Circ_4)$

 \blacktriangleright Given two permutation update orders π and $\sigma.$ When are the SDS maps identical, i.e.

$$[\mathbf{F}_Y, \pi] = [\mathbf{F}_Y, \sigma]$$
?



▶ An answer is given by the *update graph U*(Y).

Definition

The update graph of Y has vertex set S_Y (all permutations of v[Y]). Two permutations are connected if they differ by exactly one flip of two consecutive elements i and j such that $\{i,j\} \notin e[Y]$.

Proposition

- (i) The permutations in a (connected) component of U(Y) induce identical SDS maps.
- (ii) There is a bijection $f_Y : S_Y / \sim_Y \longrightarrow Acyc(Y)$.
- (iii) The upper bound a(Y) = |Acyc(Y)| is always realized for Nor-SDS.

Dynamical Equivalence I

Two maps $\phi, \psi \colon K^n \longrightarrow K^n$ are dynamically equivalent if there is a bijection $h \colon K^n \longrightarrow K^n$ such that

$$\phi \circ h = h \circ \psi$$
.

I.e. the phase spaces are isomorphic as directed graphs.

Dynamical Equivalence I

Two maps $\phi, \psi \colon K^n \longrightarrow K^n$ are dynamically equivalent if there is a bijection $h \colon K^n \longrightarrow K^n$ such that

$$\phi \circ h = h \circ \psi$$
.

I.e. the phase spaces are isomorphic as directed graphs.

Theorem

Theorem: Let $(f_v)_v$ be an $\operatorname{Aut}(Y)$ -invariant sequence of symmetric vertex functions and let $\gamma \in \operatorname{Aut}(Y)$. Then, with permutation action on n-tuples, we have:

$$[\mathbf{F}_Y, \gamma \pi] \circ \gamma = \gamma \circ [\mathbf{F}_Y, \pi]$$
.

Dynamical Equivalence I

Two maps $\phi, \psi \colon K^n \longrightarrow K^n$ are dynamically equivalent if there is a bijection $h \colon K^n \longrightarrow K^n$ such that

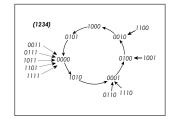
$$\phi \circ h = h \circ \psi$$
.

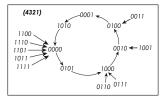
I.e. the phase spaces are isomorphic as directed graphs.

Theorem

Theorem: Let $(f_v)_v$ be an $\operatorname{Aut}(Y)$ -invariant sequence of symmetric vertex functions and let $\gamma \in \operatorname{Aut}(Y)$. Then, with permutation action on n-tuples, we have:

$$[\mathbf{F}_Y, \gamma \pi] \circ \gamma = \gamma \circ [\mathbf{F}_Y, \pi]$$
.





Dynamical Equivalence II

▶ Can also have equivalence as a result of vertex functions (or both function and update order):

$$[\mathsf{Nand}_Y, \pi] \circ \mathsf{inv}_n = \mathsf{inv}_n \circ [\mathsf{Nor}_Y, \pi]$$

Dynamical Equivalence II

▶ Can also have equivalence as a result of vertex functions (or both function and update order):

$$[\mathsf{Nand}_Y,\pi]\circ\mathsf{inv}_n=\mathsf{inv}_n\circ[\mathsf{Nor}_Y,\pi]$$

Proposition

An upper bound for the number of dynamically nonequivalent SDS that can be created through rescheduling is:

$$\Delta(Y) = \frac{1}{|\operatorname{Aut}(Y)|} \sum_{\gamma \in \operatorname{Aut}(Y)} a(\langle \gamma \rangle \setminus Y),$$

where $\langle \gamma \rangle \setminus Y$ is the orbit graph of Y under $\langle \gamma \rangle$.

Dynamical Equivalence II

▶ Can also have equivalence as a result of vertex functions (or both function and update order):

$$[\mathsf{Nand}_Y, \pi] \circ \mathsf{inv}_n = \mathsf{inv}_n \circ [\mathsf{Nor}_Y, \pi]$$

Proposition

An upper bound for the number of dynamically nonequivalent SDS that can be created through rescheduling is:

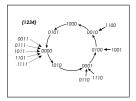
$$\Delta(Y) = \frac{1}{|\operatorname{Aut}(Y)|} \sum_{\gamma \in \operatorname{Aut}(Y)} a(\langle \gamma \rangle \setminus Y),$$

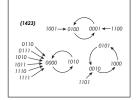
where $\langle \gamma \rangle \setminus Y$ is the orbit graph of Y under $\langle \gamma \rangle$.

Example: Let Y be the three-dimensional cube, let f be a fixed function, and consider the induced SDS. Then there are 8! = 40320 permutation update orders, there are at most 1862 functional equivalence classes, and at most $\Delta(Y) = 54$ dynamical equivalence classes (when f is outer-symmetric). Both bounds are sharp (realized by f = nora).

Equivalence: Examples

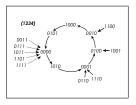
▶ [Nor_{Circ₄}, π] for given update orders:

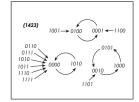




Equivalence: Examples

▶ [Nor_{Circ4}, π] for given update orders:





There are $\Delta(\text{Circ}_4)=3$ dynamically inequivalent phase spaces and $\delta(\text{Circ}_4)=2$ cycle inequivalent phase spaces.

Set
$$\sigma = (n, n - 1, \dots, 2, 1)$$
,
$$\tau = (1, n)(2, n - 1) \cdots (\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor + 1)$$

$$\sigma_s(w) = \sigma^s \cdot w = (w_{s+1}, w_{s+2}, \dots, w_n, w_1, \dots, w_s), \text{ and }$$

$$\rho(w) = \tau \cdot w = (w_n, w_{n-1}, \dots, w_2, w_1).$$

Set
$$\sigma = (n, n-1, \dots, 2, 1)$$
, $\tau = (1, n)(2, n-1) \cdots (\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor + 1)$ $\sigma_s(w) = \sigma^s \cdot w = (w_{s+1}, w_{s+2}, \dots, w_n, w_1, \dots, w_s)$, and $\rho(w) = \tau \cdot w = (w_n, w_{n-1}, \dots, w_2, w_1)$.

Theorem

For any $w \in S_Y$, the SDS maps $[\mathbf{F}_Y, w]$ and $[\mathbf{F}_Y, \sigma_s(w)]$ are cycle equivalent.

Set
$$\sigma = (n, n - 1, ..., 2, 1)$$
,
 $\tau = (1, n)(2, n - 1) \cdots (\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor + 1)$
 $\sigma_s(w) = \sigma^s \cdot w = (w_{s+1}, w_{s+2}, ..., w_n, w_1, ..., w_s)$, and
 $\rho(w) = \tau \cdot w = (w_n, w_{n-1}, ..., w_2, w_1)$.

Theorem

For any $w \in S_Y$, the SDS maps $[\mathbf{F}_Y, w]$ and $[\mathbf{F}_Y, \sigma_s(w)]$ are cycle equivalent.

Proposition

Over $K = \mathbb{F}_2$ the SDS maps $[\mathbf{F}_Y, w]$ and $[\mathbf{F}_Y, \boldsymbol{\rho}(w)]$ are cycle equivalent.

Set
$$\sigma = (n, n - 1, ..., 2, 1)$$
,
 $\tau = (1, n)(2, n - 1) \cdots (\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor + 1)$
 $\sigma_s(w) = \sigma^s \cdot w = (w_{s+1}, w_{s+2}, ..., w_n, w_1, ..., w_s)$, and
 $\rho(w) = \tau \cdot w = (w_n, w_{n-1}, ..., w_2, w_1)$.

Theorem

For any $w \in S_Y$, the SDS maps $[F_Y, w]$ and $[F_Y, \sigma_s(w)]$ are cycle equivalent.

Proposition

Over $K = \mathbb{F}_2$ the SDS maps $[\mathbf{F}_Y, w]$ and $[\mathbf{F}_Y, \boldsymbol{\rho}(w)]$ are cycle equivalent.

Remark: Holds for any graph and any choice of functions over a finite state space K.

Proof.

Set $P_k = \text{Per}[\mathbf{F}_Y, \boldsymbol{\sigma}_k(w)]$. The diagram

$$P_{k-1} \xrightarrow{[\mathbf{F}_{Y}, \sigma_{k-1}(w)]} P_{k-1}$$

$$\downarrow F_{w(k)} \downarrow \qquad \qquad \downarrow F_{w(k)}$$

$$P_{k} \xrightarrow{[\mathbf{F}_{Y}, \sigma_{k}(w)]} P_{k}$$

commutes for all $1 \le k \le m = |w|$, and $F_{w(k)}(P_{k-1}) \subset P_k$.

Proof.

Set $P_k = \text{Per}[\mathbf{F}_Y, \boldsymbol{\sigma}_k(w)]$. The diagram

$$\begin{array}{c|c} P_{k-1} & \xrightarrow{[\mathbf{F}_Y,\,\sigma_{k-1}(w)]} & P_{k-1} \\ \downarrow^{F_{w(k)}} & & & \downarrow^{F_{w(k)}} \\ P_k & \xrightarrow{[\mathbf{F}_Y,\,\sigma_k(w)]} & P_k \end{array}$$

commutes for all $1 \le k \le m = |w|$, and $F_{w(k)}(P_{k-1}) \subset P_k$. The restriction map $F_{w(k)} \colon P_{k-1} \longrightarrow F_{w(k)}(P_{k-1})$ is an injection, thus $|P_{k-1}| \le |P_k|$ and

$$|\mathsf{Per}[\mathsf{F}_Y,w]| \leq |\mathsf{Per}[\mathsf{F}_Y,\sigma_1(w)]| \leq \dots \leq |\mathsf{Per}[\mathsf{F}_Y,\sigma_{m-1}(w)]| \leq |\mathsf{Per}[\mathsf{F}_Y,w]| \; .$$

All inequalities are equalities, and since the graph and state space are finite all the restriction maps $F_{w(k)}$ are bijections.

Proof.

Set $P_k = \text{Per}[\mathbf{F}_Y, \boldsymbol{\sigma}_k(w)]$. The diagram

$$\begin{array}{c|c} P_{k-1} & \xrightarrow{[\mathbf{F}_Y,\,\sigma_{k-1}(w)]} & P_{k-1} \\ \downarrow^{F_{w(k)}} & & & \downarrow^{F_{w(k)}} \\ P_k & \xrightarrow{[\mathbf{F}_Y,\,\sigma_k(w)]} & P_k \end{array}$$

commutes for all $1 \le k \le m = |w|$, and $F_{w(k)}(P_{k-1}) \subset P_k$. The restriction map $F_{w(k)} \colon P_{k-1} \longrightarrow F_{w(k)}(P_{k-1})$ is an injection, thus $|P_{k-1}| \le |P_k|$ and

$$|\mathsf{Per}[\mathsf{F}_Y,w]| \leq |\mathsf{Per}[\mathsf{F}_Y,\sigma_1(w)]| \leq \cdots \leq |\mathsf{Per}[\mathsf{F}_Y,\sigma_{m-1}(w)]| \leq |\mathsf{Per}[\mathsf{F}_Y,w]| \; .$$

All inequalities are equalities, and since the graph and state space are finite all the restriction maps $F_{w(k)}$ are bijections.

Proposition

Let
$$K = \mathbb{F}_2$$
 and $P = \text{Per}[\mathbf{F}_Y, w] \subset \mathbb{F}_2^n$. Then $([\mathbf{F}_Y, w]|_P)^{-1} = [\mathbf{F}_Y, \rho(w)]|_P$.

Let C(Y) and D(Y) be the undirected graphs defined by

$$\begin{split} \mathsf{v}[C(Y)] &= \{ [\pi]_Y \mid \pi \in S_Y \}, \qquad \mathsf{e}[C(Y)] &= \left\{ \{ [\pi]_Y, [\pmb{\sigma}_1(\pi)]_Y \} | \pi \in S_Y \right\}, \\ \mathsf{v}[D(Y)] &= \{ [\pi]_Y \mid \pi \in S_Y \}, \qquad \mathsf{e}[D(Y)] &= \left\{ \{ [\pi]_Y, [\pmb{\rho}(\pi)]_Y \} \mid \pi \in S_Y \right\} \cup \mathsf{e}[C(Y)] . \end{split}$$

Let C(Y) and D(Y) be the undirected graphs defined by

$$\begin{aligned} \mathsf{v}[C(Y)] &= \{ [\pi]_Y \mid \pi \in S_Y \}, & &\mathsf{e}[C(Y)] &= \left\{ \{ [\pi]_Y, [\sigma_1(\pi)]_Y \} \mid \pi \in S_Y \right\}, \\ \mathsf{v}[D(Y)] &= \{ [\pi]_Y \mid \pi \in S_Y \}, & &\mathsf{e}[D(Y)] &= \left\{ \{ [\pi]_Y, [\rho(\pi)]_Y \} \mid \pi \in S_Y \right\} \cup \mathsf{e}[C(Y)]. \end{aligned}$$

 $\blacktriangleright \kappa(Y)$ and $\delta(Y)$: number of (connected) components in C(Y) and D(Y), respectively. Note: C(Y) < D(Y) and $\delta(Y) \le \kappa(Y)$.

Let C(Y) and D(Y) be the undirected graphs defined by

$$\begin{aligned} \mathsf{v}[C(Y)] &= \{ [\pi]_Y \mid \pi \in S_Y \}, & \mathsf{e}[C(Y)] &= \left\{ \{ [\pi]_Y, [\sigma_1(\pi)]_Y \} \mid \pi \in S_Y \right\}, \\ \mathsf{v}[D(Y)] &= \{ [\pi]_Y \mid \pi \in S_Y \}, & \mathsf{e}[D(Y)] &= \left\{ \{ [\pi]_Y, [\rho(\pi)]_Y \} \mid \pi \in S_Y \right\} \cup \mathsf{e}[C(Y)]. \end{aligned}$$

- ▶ $\kappa(Y)$ and $\delta(Y)$: number of (connected) components in C(Y) and D(Y), respectively. Note: C(Y) < D(Y) and $\delta(Y) \le \kappa(Y)$.
 - The bijection $f_Y: S_Y/\sim_Y \longrightarrow \mathsf{Acyc}(Y)$ allows one to interpret $[\pi]_Y$ as an acyclic orientation O^π_Y .
 - Mapping π to $\sigma_1(\pi)$ corresponds to converting π_1 from a source to a sink in O_Y^{π} a *click operation*.
 - The components in C(Y) are the click equivalence classes in Acyc(Y).
 - (Extended) Click-equivalence of acyclic orientations is an equivalence relation.

Let C(Y) and D(Y) be the undirected graphs defined by

$$\begin{aligned} \mathsf{v}[C(Y)] &= \{ [\pi]_Y \mid \pi \in S_Y \}, & \mathsf{e}[C(Y)] &= \left\{ \{ [\pi]_Y, [\sigma_1(\pi)]_Y \} \mid \pi \in S_Y \right\}, \\ \mathsf{v}[D(Y)] &= \{ [\pi]_Y \mid \pi \in S_Y \}, & \mathsf{e}[D(Y)] &= \left\{ \{ [\pi]_Y, [\rho(\pi)]_Y \} \mid \pi \in S_Y \right\} \cup \mathsf{e}[C(Y)]. \end{aligned}$$

- ▶ $\kappa(Y)$ and $\delta(Y)$: number of (connected) components in C(Y) and D(Y), respectively. Note: C(Y) < D(Y) and $\delta(Y) \le \kappa(Y)$.
 - The bijection $f_Y: S_Y/\sim_Y \longrightarrow \operatorname{Acyc}(Y)$ allows one to interpret $[\pi]_Y$ as an acyclic orientation O_Y^{π} .
 - Mapping π to $\sigma_1(\pi)$ corresponds to converting π_1 from a source to a sink in O_Y^{π} a click operation.
 - The components in C(Y) are the click equivalence classes in Acyc(Y).
 - (Extended) Click-equivalence of acyclic orientations is an equivalence relation.
- ► Can therefore analyze cycle equivalence and enumeration over Acyc(Y).

Proposition

Let Y be a tree. Then $\kappa(Y) = 1$.

Proposition

Let Y be a tree. Then $\kappa(Y) = 1$.

Corollary

All permutation SDS maps $[Fy, \pi]$ for fixed \mathbf{F}_Y are cycle equivalent when Y is a tree.

Proposition

Let Y be a tree. Then $\kappa(Y) = 1$.

Corollary

All permutation SDS maps $[Fy, \pi]$ for fixed \mathbf{F}_Y are cycle equivalent when Y is a tree.

Corollary

All permutation SDS over trees induced by parity functions are dynamically equivalent.

Proposition

If $Circ_n$ is a tree pruning of a graph Y then $\kappa(Y) = n - 1$ and $\delta(Y) = \lfloor n/2 \rfloor$.

Proposition

If $Circ_n$ is a tree pruning of a graph Y then $\kappa(Y) = n - 1$ and $\delta(Y) = \lfloor n/2 \rfloor$.

Proof.

Part I: By Shi in the context enumeration of conjugacy classes of Coxeter elements. Part II follows from ρ being an involution.

Enumeration: Special Graph Classes

Proposition

Let
$$Z = Y \oplus v$$
 (vertex join). Then $\kappa(Z) = 2\delta(Z) = a(Y)$.

Proof.

Show that each (κ) equivalence class contains a unique acyclic orientation $v \longrightarrow Y$.

Enumeration: Special Graph Classes

Proposition

Let
$$Z = Y \oplus v$$
 (vertex join). Then $\kappa(Z) = 2\delta(Z) = a(Y)$.

Proof.

Show that each (κ) equivalence class contains a unique acyclic orientation $v \longrightarrow Y$.

Corollary

$$\kappa(Wheel_n) = 2^n - 2$$
, $\delta(Wheel_n) = 2^{n-1} - 1$, $\kappa(K_n) = (n-1)!$.

Enumeration: Special Graph Classes

Proposition

Let
$$Z = Y \oplus v$$
 (vertex join). Then $\kappa(Z) = 2\delta(Z) = a(Y)$.

Proof.

Show that each (κ) equivalence class contains a unique acyclic orientation $v \longrightarrow Y$.

Corollary

$$\kappa(Wheel_n) = 2^n - 2$$
, $\delta(Wheel_n) = 2^{n-1} - 1$, $\kappa(K_n) = (n-1)!$.

Proposition

If Y has an odd cycle then $\delta(Y) = \frac{1}{2}\kappa(Y)$.

Further Research and Open Questions

- ▶ Questions/topic:
 - More properties/structure of C(Y) and D(Y).
 - Are the bounds $\kappa(Y)$ and $\delta(Y)$ sharp? Will Nor-SDS suffice to prove sharpness?
 - Connection to Coxeter theory and Coxeter elements barely explored. What more?
 - Computational and algorithmic questions: What is the complexity of deciding if two SDS are cycle equivalent?
- ▶ Results from e.g:
 - C. M. Reidys: Acyclic Orientations of Random Graphs, Adv. Appl. Math., 21(2):181–192, 1998.
 - H. S. Mortveit and C. M. Reidys: Discrete, sequential dynamical systems, Discrete Mathematics, 226:281–295, 2001.
 - J. Y. Shi: Conjugacy Relation on Coxeter Elements, Adv. Math., 161:1–19, 2001.
 - M. Macauley and H. S. Mortveit: Cycle Equivalence of Graph Dynamical Systems. Preprint.

SDS - Collaborators & Information

Joint work with: Matt Macauley

Collaborators: Christian M. Reidys, Chris L. Barrett, Reinhard Laubenbacher, Bodo Pareigis, Anders Å. Hansson, Madhav Marathe, Jon McCammond.

SDS course web page with link to papers:

Web: http://www.math.vt.edu/people/hmortvei/class_home/4984_15748.html

NDSSL:

Web: http://ndssl.vbi.vt.edu